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We obtain some fundamental properties for k-strictly pseudo-nonspreading mappings in a
Hilbert space. We study approximation of common fixed points of k-strictly pseudo-nonspreading
mappings and nonexpansive mappings in a Hilbert space by using a new iterative scheme.
Furthermore, we suggest some open problems.

1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Then a
mapping T : C — C is said to be nonexpansive if

ITx = Tyl| < [lx -yl (1.1)

forall x,y € C.

Recently, Kohsaka and Takahashi [1] introduced a class of mappings called nonspread-
ing mappings: Let E be a real smooth, strictly convex, and reflexive Banach space, and let |
denote the duality mapping of E. Let C be a nonempty closed convex subset of E. They called
amaping T : C — C is said to be nonspreading if

¢(Tx, Ty) + ¢(Ty, Tx) < §(Tx,y) + $p(Ty,x) (1.2)
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for all x,y € C, where ¢(x,y) = ||x||> - 2(x, Jy) + ||y||2 for all x,y € E. They considered the
class of nonspreading mappings to study the resolvents of a maximal monotone operator in
the Banach space. Observe that, if E is a real Hilbert space, then ] is the identity and

$(xy) = Il =205, ) + ] = [l -] (13)

for all x,y € E. Thus, if C is a nonempty closed convex subset of a Hilbert space, then T :
C — Cisnonspreading if

2||Tx ~Ty|[* < Tx -yl + [ Tx -y (14
for all x, y € C. Itis shown in [2] that (1.4) is equivalent to
ITx=Ty| < - y|* +2(x T,y ~Ty) 15)

forall x,y € C.
Following the terminology of Browder-Petryshyn [3, (page 198)], a mapping T : C —
H is k-strictly pseudo-nonspreading if there exists k € [0,1) such that

ITx = Ty|” < |x - y|I* +2(x - Tx,y - Ty)
, (1.6)

+k|x-Tx-(y-Ty)

for all x, y € C. Clearly, every nonspreading mapping is k-strictly pseudo-nonspreading.
The following is an example of nonspreading mapping which is not nonexpansive

mapping.

Example 1.1 (see [2]). Let H be a Hilbert space. SetE = {x €e H : ||x|| <1}, D = {x € H : ||x|| <
2} and C = {x € H : ||x|| £ 3}. Define a mapping T : C — C as follows:

T = 0 %fxeD, 17)
Prx if xeC\ D,

where P is the metric projection of H onto E. Then, T is not nonexpansive but nonspreading
mapping.

The following example shows that the class of k-strictly pseudo-nonspreading map-
ping is more general than the class of nonspreading mappings.

Example 1.2 (see [4]). Let R denotes the real numbers with the usual norm. Let T : R — R be
defined for each x € R by

Tx o {x if x € (—00,0), 18)

—2x if x € [0,0).

Then, T is k-strictly pseudo-nonspreading but not nonspreading mapping.
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Remark 1.3 (see [4]). Let C be a nonempty closed convex subset of a real Hilbert space H, and
let S: C — C be a k-strictly pseudo-nonspreading mapping. If F(S) #0, then it is closed and
convex.

Iemoto and Takahashi [2] introduced the following Moudafi iterative procedure [5]:

x1 €C,

(1.9)
Xne1 = (1= an)xn + an{PnSxn + (1= Pn) Txy }

for finding the approximation of common fixed points of nonspreading mapping S and
nonexpansive mapping T in a Hilbert space.

In this paper, we obtain some fundamental properties for k-strictly pseudo-
nonspreading mappings in a Hilbert space. We study approximation of common fixed points
of k-strictly pseudo-nonspreading mappings and nonexpansive mappings in a Hilbert space
by using a new iterative scheme. Furthermore, we suggest some open problems.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the set of real
numbers. Let H be a real Hilbert space with inner product (:,-) and norm || - ||.

Definition 2.1. Let E be a real Banach space. A mapping T with domain D(T) and range R(T)
in E is said to be demiclosed at a point p € D(T) if whenever {x,} is a sequence in D(T) which
converges weakly to a point x € D(T) and {Tx,} converges strongly to p, then Tx = p.

Lemma 2.2 (see [2]). Let H be a real Hilbert space. Then, the following well known results hold:

(1) lltc+ (1= yylP* = tlx® + (1 = Hllyl® = 11 = Hllx = y|* for all x,y € H and for all
te0,1],

2) 2{x-y,z-w) =[x —w|* +ly - 2> = llx - 2> = lly — wl|* for all x,y,z,w € H.

Lemma 2.3 (see [6]). Let C be a nonempty closed convex subset of H. IfT : C — C is nonexpansive,
then I =T : C — H is 1/2-inverse strongly monotone, that is,

SN =T)x = =Ty | < G-y, (I-T)x - (T~ T)y) 1)

orall x,y € C.
f y

The following lemma is one of the characterizations of a k-strictly pseudo-
nonspreading mapping.

Lemma 2.4. Let C be a nonempty closed convex subset of H. Then, a mapping S : C — C is
k-strictly pseudo-nonspreading if and only if

2||Sx = Sy||” < [|Sx = yI* + lx = Sy|” + K[| = S)x = (I - S)y]|* (22)

orall x,y € C.
f y
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Proof. We have that for all x,y € C,

1Sx = Sy|I* < [lx = ylI* +2(x - Sx,y = Sy) + k||x = Sx = (y - Sy) ||’
= 2||Sx - Sy||* < [|Sx = Sy||” + [lx - y||" + 2(Sx - 3,2 - Sx - (v - Sy))
+2Sx = x| + kllx = Sx = (y - Sy) I
= ||Sx - Sy||* + 2(x - Sx, Sx - Sy) + ||x - Sx|]*
+lx = yl? +2(Sx - x, x - y) + ||Sx - x| + k||x - Sx - (y - Sy)|I*
= |lx = Syll* + [|Sx =y " + K[| - S)x = (T - S)y]|".
(2.3)
This completes the proof of Lemma 2.4. O
Lemma 2.5. Let C be a nonempty closed convex subset of H. Let S be a k-strictly pseudo-

nonspreading mapping of C into itself and let A=1-S.
Then,

2-K)||Ax - Ay|* < 2(x -y, Ax - Ay) + | Ax|* + || Ay || (2.4)

forall x,y € C.

Proof. Let A =1-S. We have

lAx - Ay||* = (Ax - Ay, Ax - Ay)
=(x-y - (Sx-Sy), Ax - Ay) (2.5)
= (x -y, Ax - Ay) - (Sx - Sy, Ax — Ay)

for all x,y € C. From Lemma 2.2-(2) and Lemma 2.4, we get

2(Sx - Sy, Ax — Ay) =2(Sx - Sy, x -y - (Sx - Sy))
= 2(Sx - Sy, x - y) - 2||Sx - Sy’
> ||Sx ~ yl* + ISy - x||” - ISz - I - [|Sy - y I
2 2 2 (2:6)
= (llsx=ylI* + I = Sy|* + Kl Ax - Ay]*)
= ~llx = SxlP = [ly - Sy|* - k|| Ax - Ay||”

= —||Ax| - || Ay||* - k|| Ax - Ay]|*.
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So, from (2.5) and (2.6), we have
1 k
|4x - Ay|| < (x -y, Ax - Ay) + S (1A= + Ay [*) + 5[ Ax - Ay[”. 27)

Therefore, we get
(2~ B Ax - Ay||* <2(x - y, Ax - Ay) + || Ax| + || Ay (28)

forall x,y € C. O

Lemma 2.6 (see [4]). Let C be a nonempty closed convex subset of a real Hilbert space H, and let
S:C — C bea k-strictly pseudo-nonspreading mapping. Then I — S is demiclosed at 0.

Tan and Xu [7] proved the following; see also [6, 8].

Lemma 2.7. Let {a,} and {b,} are sequences of nonnegative real numbers such that a,.1 < a, + by
foralln e N.If 3, by, < oo, then limy,_, ,a, exists.

Lemma 2.8. Let {a,}, {Bn} be sequences of nonnegative real numbers such that >,7°; ey = oo. If
3% anfn < o, then lim inf,, _, o, B, = 0.

3. Main Theorem

In this section, we prove our main theorem for finding common fixed points of k-strictly
pseudo-nonspreading mapping and nonexpansive mapping in a Hilbert space.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H and let S : C — C
be a k-strictly pseudo-nonspreading mapping and let T : C — C be a nonexpansive mapping such
that F(S) N F(T)#0. Let {ay}, {Pn}, {yn} be sequences in [0,1] such that B, € (k,1]. Define a
sequence {x,} as follows:

x1 €C,

3.1
X1 = (1= an) (Buxn + (1= ) Sxn) + atn (YuXn + (1 = yn) Txy) G-

for all n € N. Then, the followings hold:

(1) if iminf, oy (Br — yn) > 0, Sooq @n(1 —yn) < 0o, and 1 + k < (2 — ay) B + AnYn, then
{x,} converges weakly to g € F(S),

(2) if B > Y, 21 (1= Pn) < 00, 20— 1= (B —yn) > 0, and liminf,, _, o0, (B — Y) (20 —
1-a,(Bn—17vn)) >0, then {x,} converges weakly to q € F(T),

(3) if liminf, ,ea, > 0, liminf,,(1 - a,) > 0, liminf,,(1 - B,) > O, and
liminf, o yx (1 = y) > 0, then {x,} converges weakly to q € F(S) N F(T).

Proof. Putting U, = ] + (1 - pp)Sand V,, = y,I + (1 —y,)T. We first show that the sequence
{x,} is bounded. Indeed, from Lemma 2.2-(1) and S as a k-strictly pseudo-nonspreading
mapping, we have
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[ = Uny|* = 1B (x = y) + (1= Ba) (Sx = Sy)
= Bullx = y|I” + (1= Bu) | Sx - SyI*
~Ba(1=Pn)|lx = Sx = (y - Sy)|’
< Pullx=ylI* + (1= pa)
x ([lx = ylI* +2(x - Sx,y - Sy) + k|lx - Sx - (y - Sy) |I°)
~pu(1=Pa)|lx = Sx= (v - Sy)|’
= lx = yl* +2(1 - ) (x - Sx,y - Sy)
~(1=pu) (B = k) x = Sx = (y = Sy) I

<l =y|* +2(1 - Bu)(x — Sx,y - Sy)

(3.2)

2
= ”x — y”Z + m(.x - unx/y - Uny>/

forall x,y € C. Letp € F(S) N F(T), then
Unp = fup + (1= Pn)Sp = p- (33)
From (3.2) and (3.3), we have
[ =pll = [|Unxn = Unpl| < ||xn = p- (3.4)
Since T is a nonexpansive mapping and F(T) #0, we get

|Vaxen = pl| = |lyn2n + (1= y2) Txn — p||
<Yl = pll + (1= y) [ Tx0 —p|| (3.5)

< [l = p
forall p € F(S) N F(T). From (3.4) and (3.5), we get

201 = pII* = [|(1 = @)Uty + @ Vi = p|*
< (1-an)||Upxn - p||2 + 0ty || Vi, — p”2 (3.6)

< [lxa ~pl”

for all n € N. Therefore, there exists lim,, _, .-||x, — p|| and hence {x,} is bounded.
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Let
im [l = p|| = c. (3.7)
To prove (1), let
Zni1 = (1 = an)UnXy + @y (YnXn + (1= y2) Sxn) (3.8)

and A = I — S. Then, we have

”(1 - an)unxn + anvnxn

||xn+1 — Zn+l ||

—(1 = ap) Uy — @y (YuXpn + (1= yn) Sxn) ||
(3.9)

a"”Y”x" + (1 - Yn)Tx" ~YnXn — (1 - Yn)sxn"
@ (1= 1) IT2n = S,

Since X771 an(1 - y») < o0, we have lim,, _, o ||x, — z,|| = 0. From the continuity of || - ||, we get
tim |2, - pl| = tim [~ = ¢ 610

Since U, = I + (1 - pB,)S, we get

Uxy — Sxp = Puxn + (1= Bn) Sxn — Sxy
= Bu(xy — Sxp) = Pu(I - S)xy
= ﬁnAxnr
3.11)
Upxy — Xp = Prxn + (1 = Pn)Sxn — x4
=—(1- ) (xn — Sxy)

=—(1-pn)Axy.
So, we have from Lemma 2.5, Lemma 2.6 (;Ap = 0), as well as (3.4), (3.11) that

zni1 =PIl = |1 = @) Unxn + atn (Y + (1= 1) Sxn) = p||*
= |Upxn = p = an(Unxy — Sxz) + a¥n (0 — Sx) ||2

= ||unxn -pP- anﬁnAxn + (annAxn||2



8 Abstract and Applied Analysis
= |Uxs = p = (B = ) A
< U = pII* = 200 (B = Yu) (U = p, Ax) + @ (B = 1) | Ax |
< % =PI = 200 (B = y) (UnXn = p, Ax = Ap) + i (B = ) Al
= [lxn = pII* = 200 (B = y) (UnXn = 2, Ax,, = Ap)
= 200 (B = Yu) (% = P, A% = Ap) + (B = 1) | Al
< [lxn = plI* + 200 (1= Bn) (B = y) (Ax, Ax, — Ap)
+ (B = 1) (1A% + | Ap||* - 2 - ko) | Ax - Ap]|*)
02 (Bu = )" A%
= [lxn = pII* + 200 (1 = ) (B = v I A%l
= (1= K) ety (B = ¥) 1A% [I” + a2 (Bn = 1) | Axa

=l = I = an (B = ) (1 = k = 2(1 = Bu) = au (B = y) ) Il AxaI*
(3.12)

Hence
0 (Br =) (1= k =2(1 = ) = @u (Bn = ) IAX I < || % = pl|* = |20 = p|I*. (313)
Since liminf, _, o, (Br — 72) > 0, we get

Tim ||, — Sz = lim || Ax, | = 0. (3.14)

Since {x,} is a bounded sequence, there exists a subsequence {x,,} C {x,} such that {x,,}
converges weakly to g. From Lemma 2.6, we obtain g € F(S). To show our conclusion, it
is sufficient to show that for another subsequence {x,;} C {x,} such that {x,} converges
weakly to v € F(S), g = v. Before proving this, we show that for any z € F(S), lim, —, oo||x,—z||
exists. Since

Upz =ppz+ (1-P1)Sz =2 (3.15)

and, from (3.2), we get

[Unn — zI* = [Upxtn — Unz|® < |30 — 2| (3.16)
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for all z € F(S). Hence, we have

Izner = 21l = | (1 = @)U + i (yxn + (1= 1) Sx) — 2|
= (11 = ) Ui = 2) + @ (Y n = 2) + (1= 1) (S0 = 2)) |
< (1= ) [Unn = 2l + Yl xa = 2l + (1 = 1) 1S — 2]
< (1)l — 2| + aulln — 2l| + @ (1~ 7)1 Sx0 — 2]
= [lotn — 2l| + 2 (1 = 1) S, — 2|

< ”Zn - Z|| + ”xn - Zn“ + an(l - Yn)”sxn - Z”

(3.17)

for all z € F(S). From Lemma 2.7 and (3.9), lim,_ ||z, — z|| exists. So, there exists
limy, —, - ||x,, — z|| for all z € F(S) because lim,, o (x, — z,) = 0. Suppose that g #v. We have

from Opial’s theorem [9] that

Jim [l = qf| = lim ||z, ~ ]| < Jim lx,, ~ o] = Jim |lx, ~ o]

= lim X, —v“
]—>OO
< o =

This is a contradiction. So, {x,} converges weakly to g € F(S).
To prove (2), let

Zns1 = (1= o) (Buxn + (1= Bn) Txp) + anVuxy

and B = I —T. It follows that

1xXn1 = znsa [l = |(1 = an)Unxn + anVaxn
(1= ) (Buxn + (1= B)Txp) — a0 Vi |
= (1= aw) || Buxn + (1 = Pu) Sxtn = Puxn = (1= fn) Txa|
< (L= Bu)lISxn = Toxul-

(3.18)

(3.19)

(3.20)
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So, from the boundedness of {x,}, {z,} is also bounded. Since T is a nonexpansive, by
Lemma 2.3, B is 1/2-inverse strongly monotone and Bp = 0, we have
Zner = pI* = /(1 = @) (Buxn + (1= ) Tx) + Vi = |
= [1Bu(xu = p) + (1= u) (Txu = p) = au (B = y2) Ba
= [1Ba (e =p) + (1= u) (T = p)||”
=20 (Pn = V) (Pn (0 = p) + (1= ) (Txn — p), Bxn)
+a5 (B = 1) 1B
< Bullxn=pll + (=) I Txn ~pll)°
= 205 (Bn = Yu) {Xn — p, Bxn — Bp)
=205 (1= Pu) (Bn = Yn){Txn — p, Bxu — Bp)
+ 3 (B = ) 1Bl (3.21)
< ||xn - P||2 =203 Bn(Bn = Yn){*n — p, Bxn — Bp)
—2a,(1 = B) (Bn — yn)(Txn — xu, Bx,, — Bp)
=20 (1= ) (B = 1) {n = P, B = Bp) + 3, (B — ) | Bl
= Jlxw = pII” + 20 (1 = ) (B = 1) (Boxu, Bva)
= 20, (B = V) (X = p, Bxn = Bp) + @ (B — ) | Bxa |
< Jloew = pII* + 220 (1 = ) (B = ) 1Bl
= (B = )| Bon = Bpl|” + e (B = 1)1 Bl

= [l = p|I” = atu (B = 1) (1 = 2(1 = Bu) — @ (B = ¥)) | Bxul®

and hence

tn(Bn = ¥n) (1= 2(1 = Bu) = tu(Bn = ¥u) ) IBxal* < || = p||* = || 201 = || (3.22)

for p € F(S) N F(T). Summing from n = 1 to N, from (3.20), we have

Z;an(ﬂn ~¥u) 2B = 1 = (B = Yu)) | B>

N-1

< e =pl* + X ([Fxner = pl* = 12001 = pI°) = llz5a =

n=1
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N-1
<llxa=pIP + 3 (lxnes = pll+ 2001 = pID 01 =z

n=1
, N
< lx=pll"+ X5 (1= Ba) (Ixner = pll + 2001 =PI IS0 = T
n=1
) N-1
<l =pll+ MY (1-Ba),
n=1
(3.23)

where M = sup, , { (|xns1 =Pl +[|Zns1 =pIDIISxn =T x| }. Letting N — oo, from 372, (1-f,) <
o0, we have

Zanmn—m@ﬂn—l — (B — 1)) 1Bl

< Jlxa - pl + M3 (1 - ) 024
n=1
< 00o.
Since X771 an(Bn — ¥n) (2Pn — 1 — @ (B — yn)) = oo, from Lemma 2.8, we get
lim inf[|x¢, — Toxy|| = lim inf[| Bx,|| = 0. (3.25)

Since T is a nonexpansive mapping, from (3.1), we get

ITxns1 = Xns1ll = [[Txns1 = (1 = an)UnXpn — Vx|
S Txpe1 = Txn|| + (1 = an)[[Txn = UnXul| + an||Tn — V||
< loenar = Xnll + (1 = an) | Txn = Unxn|| + an||Txn = Vixa||
< (1= an)[[Unxn = xp| + an|[Vixn — x4l
+ (1= an) || Txn = Brxn — (1 = Pu) Sxa|
+ || T = YuXn — (1= yu) Ty |
= (1= an)||Bnxn + (1 = Bn) Sxn — xu|| + &n||Ynn + (1 = y) Txn — x|
+ (1= an) || Bn(Txn = ) + (1= ) (Txn = Sx) || + ||y (Txn — x0) ||
< (1= an) (1= Bu)lISxn = Xull + u (1 = yu) IT X5 = x|
+ (1= an)ITxn = xull + (1 = an) (1 = Bu) IT2n = Sxnl| + Yl Txn — x|

< ”Txn - xn” + (1 - ﬁn)(”sxn - xn” + ”Txn - an“)
(3.26)
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Since >7°;(1 - Bn) < oo, from Lemma 2.7, there exists the limit of {||Tx, — x,||}. Therefore,
from (3.25), we get

Tim ([T, = x| = 0. (3.27)

Since {x,} is a bounded sequence, there exists a subsequence {x,,} C {x,} such that {x,,}
converges weakly to g. Since a nonexpansive mapping T is demiclosed, we have g € F(T). As
in the proof of (1), {x,} converges weakly to g € F(T).

(3) From (3.6) and (3.7), we have that, for any p € F(S) n F(T),

0 [l pIF e =l — 2~ 2 =0 (3.28)

asn — oo. We first show that {x,} converges weakly to some point in F(S). Actually, from
(3.4) and (3.5), we have

[lens =plI* < (1= an) [ = pII* + | Vo = pI|”
< (1= a) |Unxn = p||* + aul|xa = | (3.29)

2
< lxn - pll
for p € F(S) N F(T). Hence, we get

0< [|x = plI” = (1 = ) |Unn = p|” = el = p|”
2 2
= (1= an)([lxn = pIP = 1Bu + (1= ) S - pII*) (3.30)

< len = plI* = 1w =l
Since liminf, _, (1 — a,,) > 0, it follows from (3.28) and (3.30) that

Jim (flxn = plI” = 1B+ (1= ) S = p|I*) = 0. (331)
From Lemma 2.2-(1), we have

[|Buxn + (1= Bu) Sxu — p||*
= 1B (xn = p) + (1= ) (Sxu = p) || (3.32)
= Bull2en = pII* + (1= Bu) [|Sxu = p|I* = Bu(1 = Bu) llxn = Sxal™
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Since S is a k-strictly pseudo-nonspreading mapping, from (1.6), we get

B (1 = Pu) ot = S
= ullxn = pII* + (1= Bu) [|Sx0 = PII” = |Buxn + (1 = ) Sz = |
< Pullxn = I+ (1= ) ([Ixn = pIF + Kllx = Sxall?) (3.33)
~[|Buxa + (1= Bu) S = p|I”
= [lxn =" + k(1= ) ltn = Sxall* = [1Bus + (1= B) S~ p|*

2

and hence
(1=Pu) (Bu =) lxn = pII” < llxa = pII* = |Buxn + (1= pu)Sxa—plI” (334)
for p € F(S) N F(T). Since liminf, (1 - B,) > 0, from (3.31), we get

nlijr;o||xn - Sx,|| = 0. (3.35)

As in the proof of (1), from Lemma 2.6, we obtain that if {x,,} converges weakly to v, then
v € F(S). We also show that such v is in F(T). In fact, from (3.4) and (3.5), we get

1201 = plI* < (1= @) [Unn = p|I* + || Vexw = p|°
<(1—ay)||xn - p||2 + || Ynxn + (1= yn) Txp — p||2 (3.36)

2
< [lxn =l
for p € F(S) N F(T). Hence, we have

0< [l = pl|* = (1 = @n) | = plI* = @alyaxn + (1 = 1) Txa = p||”
= an([lxn = pII* = uxa + (1= ) Txu = p||*) (3.37)

< Nl =plI* = I~ pI*
Since liminf, _, ,a, > 0, it follows from (3.28) that

tim (flxw = plI” = [[yxn + (1= 1) Txu = p|?) = 0. (3.38)

n— oo
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Since T is a nonexpansive mapping, we have

[xn + (1= y) T~ p|*
= Yl = pII” + (0= yu) | T2t = pI|* = ¥ (1 = ) 120 = Tt (3.39)

<l =pII” = v (1= yu) Il = T,
and hence
¥ (1= Y 10 = Tl < [|26 = || = [|Yxn + (1= ) Tt = p||”- (3.40)
Since im inf, — ooy (1 — ¥a) > 0, from (3.38), we get

Tim [l = Tocu|| = 0. (3.41)

Since {x,,} converges weakly to g, we have g € F(T). Let {x,,} be another subsequence of
{x,,} such that {xn).} converges weakly to v. Then, we have g = v. In fact, if g# v, then we
obtain

i [l = g1] = Jim | ~ 4]
< lim [lx,, = ol = lim ||x, - o] = l.lig}o Xn; = v|| (3.42)
< lim ||, —11” = lim []2c, - q]]-

This is a contradiction. So, we have g = v. Therefore, we conclude that {x, } converges weakly
tog e F(S)NF(T). O

For nonspreading mapping S, we have k = 0 reduces the followings.

Corollary 3.2 (cf. [2]). Let C be a nonempty closed convex subset of a Hilbert space H and let
S : C — C be a nonspreading mapping and let T : C — C be a nonexpansive mapping such that
F(S) N F(T) #0. Define a sequence {x,} as follows:

x1 € C,

Xpe1 = (1- an)(ﬁnxn + (1 - ﬂ”)sxn) +an (Ynxn + (1 - Y")Tx")

(3.43)

foralln € N, where {a,}, {Bn}, {yn} C [0,1]. Then, the followings hold:

(1) ifiminf, - 0@ (B —¥n) > 0, Sooq an(1=yn) < coand 1 < (2 — ay,)Bn + ayYn, then {x,}
converges weakly to q € F(S),

(2) if B > Y, 2o (1= Pn) < 00, 2By —1—any(Bn —¥n) > 0and iminf, _ an (Bn — Yn) 2P0 —
1-a,(Bn—7vn)) >0, then {x,} converges weakly to q € F(T),
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(3) if liminf, . ,a, > 0, liminf,,,(1 - a,) > 0, liminf,,,(1 — Bn) > 0 and
liminf, o yx (1 = y) > 0, then {x,} converges weakly to q € F(S) N F(T).

Corollary 3.3 (cf. [2, 10]). Let C be a nonempty closed convex subset of a Hilbert space H and let
S : C — C be a nonspreading mapping such that F(S) # 0. Define a sequence {x,} as follows:

x1 € C,
(3.44)
Xpi1 = AnXy + (1 — ;) Sxp

forall n € N, where {a,} C [0,1]. If liminf,_, ,a, > 0, then {x,} converges weakly to q € F(S).
Proof. Putting B, =0, y, = 1 for n € N in Theorem 3.1, we get the conclusion. O

Corollary 3.4. Let C be a nonempty closed convex subset of a Hilbert space H and let T : C — C be
a nonexpansive mapping such that F(T) # 0. Define a sequence {x,} as follows:

x1 €C,
(3.45)
Xpi1 = (1 —an)x, + a,Tx,
forall n € N, where {a,,} C [0,1]. If 3721 a, = oo, then {x,} converges weakly to q € F(T).
Proof. Putting B, = 1,y, = 0 for n € N in Theorem 3.1, we get the conclusion. O

4. Some Open Problems

Let S be a semigroup. We denote by [*(S) the Banach space of all bounded real-valued
functional on S with supremum norm. For each s € S, we define the left and right translation
operators I(s) and r(s) on [*(S) by

(IS f)B) = f(st),  (r(s)f)() = f(ts) (4.1)

foreacht € S and f € I°(S), respectively. Let X be a subspace of [*(S) containing 1. An
element y in the dual space X* of X is said to be a mean on X if ||u|| = (1) = 1. For s € S,
we can define a point evaluation 65 by 65(f) = f(s) for each f € X. It is well known that y is
mean on X if and only if

inff(s) < u(f) < supf(s) (4.2)

seS

for each f € X.

Let X be a translation invariant subspace of I*°(S) (i.e., I(s)X C X and r(s)X C X for
each s € S) containing 1. Then, a mean y on X is said to be left invariant (resp. right invariant)
if

u(1)f) = () (resp. p(r(s)f) = u(f)) (43)
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for each s € S and f € X. A mean y on X is said to be invariant if y is both left and
right invariant [11-14]. X is said to be left (resp., right) amenable if X has a left (resp.
right) invariant mean. X is amenable if X is left and right amenable. Moreover, [°(S) is
amenable when S is a commutative semigroup or a solvable group. However, the free group
or semigroup of two generators is not left or right amenable (see [15-17]). A net {u,} of
means on X is said to be asymptotically left (resp., right) invariant if

lim (1 (1(5)f) = i (£)) =0 (resp. Lim(n(r(9)) = o)) =0) (49

for each f € X and s € S, and it is said to be left (resp., right) strongly asymptotically
invariant (or strong regular) if

lign”l*(s)‘uu o] =0 <resp. lign”r*(s)yu - el = O) (4.5)

for each s € S, where I*(s) and r*(s) are the adjoint operators of I(s) and r(s), respectively.
Such nets were first studied by Day in [15] where they were called weak * invariant and norm
invariant, respectively.

It is easy to see that if a semigroup S is left (resp. right) amenable, then the semigroup
S'=SU{e} wherees' = s'e = s' forall s' € Sis also left (resp. right) amenable and conversely.

From now on S denotes a semigroup with an identity e. S is called left reversible if
any two right ideals of S have nonvoid intersection, that is, aS N bS#0 for a,b € S. In this
case, (S,<) is a directed system when the binary relation “<” on S is defined by a < b if and
only if {a} UaS D {b} UbS for a,b € S. Itis easy to see that t < ts for all t,s € S. Further, if
t < s, then pt < ps for all p € S. The class of left reversible semigroup includes all groups and
commutative semigroups. If a semigroup S is left amenable, then S is left reversible. But the
converse is not true ([18-23]).

Let S be a semigroup and let C be a closed and convex subset of E. Let F(T) denote
the fixed point set of T. Then, & = {T'(s) : s € S} is called a representation of S as nonexpansive
mappings on C if T(s) is nonexpansive with T(e) = I and T(st) = T(s)T (t) for each s,t € S. We
denote by F(S) the set of common fixed points of {T(s) : s € S}, that is,

F(S) = (\F(T(s)) = (J{x € C: T(s)x = x}. (4.6)

seS seS

We know that if y is a mean on X and if for each x* € E* the function s — (T(s)x, x*)
is contained in X and C is weakly compact, then there exists a unique point x; of E such that
u(T(-)x,x*) = (xo,x*) for each x* € E*. We denote such a point xo by T,,x. Note that T, x is
contained in the closure of the convex hull of {T(s)x : s € S} for each x € C. Note that T,z = z
for each z € F(S); see [12-14, 17, 20, 22].

Open Problems.
(1) Does Theorem 3.1 hold for a Banach space? (cf. [24, 25])

(2) Does Theorem 3.1 hold a commutative or amenable or reversible semigroup of
nonexpansive mappings in place of T using asymptotically invariant nets?
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