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An SEIS epidemic model with a changing delitescence is studied. The disease-free equilibrium
and the endemic equilibrium of the model are studied as well. It is shown that the disease-free
equilibrium is globally stable under suitable conditions. Moreover, we also show that the unique
endemic equilibrium of the system is globally asymptotically stable under certain conditions.

1. Introduction

Infectious diseases have tremendous influence on human life. Every year millions of
human beings suffer from or die of various infectious diseases. It has been an increasingly
complex issue to control infectious diseases. In order to predict the spreading of infectious
diseases among regions, many epidemic models have been proposed and analyzed in recent
years (see [1–14]). Bilinear and standard incidence rates have been frequently used in
classical epidemiological models (see [5]). However, it is more effective by using nonlinear
incidence. Mathematical models describing the population dynamics of infectious diseases
have been playing an important role in disease control for a long time. Many scholars have
studied mathematical models which describe the dynamical behavior of the transmission
of infectious diseases (see also [1–14] and the references therein). A variety of nonlinear
incidence rates have been used in epidemiological models (see [6–14]). However, the models
with a changing delitescence have seldom been studied.

In recent years, the spread of infectious diseases is diversiform, such as H1N1 disease.
The diversity of the delitescence period in each infected body who is infected with H1N1
virus is mainly due to the variation of the virus and the distinct constitution of different
people. The study of the models with a changing delitescence plays an important role in
controlling infectious diseases. In this paper, we consider an SEIS epidemic model with
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a changing delitescence and a nonlinear incidence rate, and we study the existence and
stability of the equilibriums of the SEIS epidemic model.

By a standard nonlinear incidence rate βSI/(1+αI) and a changing delitescence μ, we
consider an SEIS epidemic model which consists of the susceptible individuals (S), exposed
individuals but not yet infected (E), infectious individuals (I), and the total population (N).

The model is given as follows:

S′ = A − dS − βSI

1 + αI
+ γI,

E′ = μ
βSI

1 + αI
− (d + ε)E,

I ′ =
(
1 − μ

) βSI

1 + αI
+ εE − (

d + γ + δ
)
I,

(1.1)

whereA is the recruitment rate of individuals (including newborns and immigrants) into the
susceptible population; d is the natural death rate; γ is the rate at which infected individuals
are treated or recovered; δ is disease-related death rate; ε is the rate at which exposed
individuals become infectious; μ is the rate at which infected individuals become exposed;
1−μ is the rate at which infected individuals become infectious. The nonlinear incidence rate
is assumed to be of the form βSI/(1 + αI). A,d, γ, δ, ε, and μ are all normal numbers with
0 < μ < 1. This, together with N = S + E + I, implies

N ′ = (S + E + I)′ = A − dN − δI. (1.2)

Thus, substituting S = N − E − I and (1.2) into (1.1), we have

E′ = μ
βI

1 + αI
(N − E − I) − (d + ε)E,

I ′ =
(
1 − μ

) βSI

1 + αI
(N − E − I) + εE − (

d + γ + δ
)
I,

N ′ = A − dN − δI.

(1.3)

Form (1.2), in the absence of the disease, that is, I = 0,N → A/d. Since the spread of the
disease in the population will lead to the decrease of N, it follows that N ∈ [0, A/d]. Note
that D is a positively invariant region for the original model:

D =
{
(E, I,N) | E ≥ 0, I ≥ 0,N ≥ 0, E + I ≤ N ≤ A

d

}
, (1.4)

and model (1.3) is obviously well-pased in D.
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2. Existence of Equilibria

Now, we study equilibria of model (1.3), (note that m = d + ε, n = d + γ + δ). Steady states of
model (1.3) satisfy the following equations:

μ
βI

1 + αI
(N − E − I) − (d + ε)E = 0,

(
1 − μ

) βSI

1 + αI
(N − E − I) + εE − (

d + γ + δ
)
I = 0,

A − dN − δI = 0.

(2.1)

If I = 0, then E = 0 and N = A/d, so (2.1) has the disease-free equilibrium
P0(0, 0, A/d).

If I /= 0, from the third equation of (2.1), we obtain

N =
A

d
− δ

d
I. (2.2)

From the first and second equations of (2.1), we obtain

E =
μn

m
(
1 − μ

)
+ με

I. (2.3)

By substituting (2.2) and (2.3) into the first equation of (2.1), we obtain the following
equation for I:

[

β

(
δ

d
+ 1 +

μn

m
(
1 − μ

)
+ με

)

+
mnα

m
(
1 − μ

)
+ με

]

I =
mn

m
(
1 − μ

)
+ με

[
βA

(
m
(
1 − μ

)
+ με

)

mnd
− 1

]

.

(2.4)

Let R0 = βA(m(1 − μ) + με)/mnd.
It is easy to see that (2.4) has a positive root if and only if R0 > 1. So (2.1) has a unique

endemic equilibrium P ∗(E∗, I∗,N∗) with

I∗ =

(
mn/

(
m
(
1 − μ

)
+ με

))((
βA

(
m
(
1 − μ

)
+ με

)
/mnd

) − 1
)

β
(
(δ/d) + 1 + μn/

(
m
(
1 − μ

)
+ με

))
+mnα/

(
m
(
1 − μ

)
+ με

) ,

E∗ =
μn

m
(
1 − μ

)
+ με

I∗, N∗ =
A

d
− δ

d
I∗.

(2.5)

Then, we have the following theorem.

Theorem 2.1. If R0 ≤ 1, model (1.3) only has the disease-free equilibrium P0(0, 0, A/d); if R0 >
1, model (1.3) has a unique endemic equilibrium P ∗(E∗, I∗,N∗) except the disease-free equilibrium
P0(0, 0, A/d).
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3. Stability of Equilibria

Theorem 3.1. If R0 < 1, then the disease-free equilibrium P0(0, 0, A/d) is locally asymptotically
stable; if R0 = 1, P0(0, 0, A/d) is stable; if R0 > 1, P0(0, 0, A/d) is unstable.

Proof. The linearization of model (1.3) about the equilibrium P0(0, 0, A/d) gives

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣∣
∣

λ +m −μβA
d

0

ε λ −
(
1 − μ

)
βA

d
+ n 0

0 δ λ + d

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣∣
∣

= 0. (3.1)

Thus, we have

|λE − J(P0)| = (λ + d)

[

λ2 +

(

m + n −
(
1 − μ

)
βA

d

)

λ +mn −
(
1 − μ

)
mβA

d
− εμβA

d

]

= 0.

(3.2)

Assume that λ1, λ2, and λ3 are the roots of the above equation. Then, we know that λ1 = −d <
0, and λ2, λ3 are the roots of the following equation:

λ2 +

(

m + n −
(
1 − μ

)
βA

d

)

λ +mn −
(
1 − μ

)
mβA

d
− εμβA

d
= 0. (3.3)

According to Viete theorem, we have

λ1 + λ2 =

(
1 − μ

)
mβA

d
−m − n, λ1λ2 = mn(1 − R0). (3.4)

If R0 < 1, we have

λ1 + λ2 =

(
1 − μ

)
mβA

d
−m − n <

mn
(
1 − μ

)

m
(
1 − μ

)
+ με

−m − n < 0, λ1λ2 = mn(1 − R0) > 0.

(3.5)

It is easy to see that all the roots of (3.3) have negative real parts if and only if R0 < 1. If R0 = 1,
it is obvious that one of eigenvalue of (3.3) is 0. If R0 > 1, one of the roots of (3.3) has positive
real part. This completes the proof.

Theorem 3.2. If R0 < 1, then the disease-free equilibrium P0(0, 0, A/d) is globally asymptotically
stable.
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Proof. Consider a Liapunov function as V = εE +mI, then we have

V ′ =
(
m
(
1 − μ

)
+ με

)βI(N − E − I)
1 + αI

−mnI ≤ (
m
(
1 − μ

)
+ με

)
β
A

d
I −mnI = mnI(R0 − 1).

(3.6)

If R0 < 1, V ′ ≤ 0, then V ′ = 0 if and only if E = I = 0.
Hence, according to Theorem 3.1, if R0 < 1, the disease-free equilibrium P0(0, 0, A/d)

is globally asymptotically stable. This completes the proof.

Now, we study the local stability of the endemic equilibrium P ∗(E∗, I∗,N∗).
Substituting E∗ = (μn/(m(1 − μ) + με))I∗ into the first equation of (2.1), we have

β

1 + αI∗
(N∗ − E∗ − I∗) =

mn

m
(
1 − μ

)
+ με

. (3.7)

Then, the Jacobi matrix of (1.3) about P ∗(E∗, I∗,N∗) is

J(P ∗) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− μβI∗

1 + αI∗
−m

μ

1 + αI∗

[
mn

m
(
1 − μ

)
+ με

− βI∗
]

μβI∗

1 + αI∗

−
(
1 − μ

)
βI∗

1 + αI∗
+ ε

1 − μ

1 + αI∗

[
mn

m
(
1 − μ

)
+ με

− βI∗
]

− n

(
1 − μ

)
βI∗

1 + αI∗

0 −δ −d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3.8)

Denote

j11 = − μβI∗

1 + αI∗
−m, j12 =

μ

1 + αI∗

[
mn

m
(
1 − μ

)
+ με

− βI∗
]

, j13 =
μβI∗

1 + αI∗
,

j21 = −
(
1 − μ

)
βI∗

1 + αI∗
+ ε, j22 =

1 − μ

1 + αI∗

[
mn

m
(
1 − μ

)
+ με

− βI∗
]

− n, j23 =

(
1 − μ

)
βI∗

1 + αI∗
,

j31 = 0, j32 = −δ, j33 = −d.
(3.9)

According to [15], if (1 − μ)β > εα and mn/(m(1 − μ) + με) ≤ βI∗, then mn/β(m(1 −
μ) + με) ≤ I∗ ≤ ε/((1 − μ)β − εα). Note that jii < 0 (i = 1, 2, 3), j12j21 ≤ 0, j13j31 = 0, j23j32 < 0,
and then J(P ∗) is stable.
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If (1−μ)β > εα andmn/(m(1−μ)+με) > βI∗, then ε/((1−μ)β−εα) ≤ I∗ ≤ mn/β(m(1−
μ) + με). Meanwhile, ((1 − μ)/(1 + αI∗))[mn/(m(1 − μ) + με) − βI∗] − n < 0, that is,

(
nα +

(
1 − μ

)
β
)
I∗ > 0 >

(
1 − μ

)
mn

m
(
1 − μ

)
+ με

− n = − nμε

m
(
1 − μ

)
+ με

, (3.10)

hence, jii < 0 (i = 1, 2, 3), j12j21 ≤ 0, j13j31 = 0, j23j32 < 0, which proves that J(P ∗) is stable.
If (1 − μ)β ≤ εα and mn/(m(1 − μ) + με) > βI∗, to obtain jii < 0 (i = 1, 2, 3), j12j21 ≤ 0,

j13j31 = 0, j23j32 < 0, there must be ε ≤ ((1 − μ)β − εα)I∗, but it is impossible.
From the above discussion, we get the following conclusion.

Theorem 3.3. If R0 > 1, system (1.3) has a unique endemic equilibrium P ∗(E∗, I∗,N∗), which is
locally asymptotically stable.

From the third equation of (1.3), we haveN ′ = A−dN−δI ≤ A−dN. Note that I → 0
as t → ∞, thenN(t) → A/d as t → ∞. The limit system of (1.3) is

E′ = μ
βI

1 + αI

(
A

d
− E − I

)
−mE,

I ′ =
(
1 − μ

) βI

1 + αI

(
A

d
− E − I

)
+ εE − nI.

(3.11)

It is easy to see that system (3.11) has a disease-free equilibrium P 0(0, 0). If R0 > 1, system
(3.11) has a unique endemic equilibrium P

∗
(E

∗
, I

∗
)with

I∗ =

(
mn/

(
m
(
1 − μ

)
+ με

))(
βA

(
m
(
1 − μ

)
+ με

)
/mnd − 1

)

β
(
1 + μn/

(
m
(
1 − μ

)
+ με

))
+mnα/

(
m
(
1 − μ

)
+ με

) ,

E∗ =
μn

m
(
1 − μ

)
+ με

I∗.

(3.12)

Consider the Dulac function B = 1/I. Note that

P = μ
βI

1 + αI

(
A

d
− E − I

)
−mE,

Q =
(
1 − μ

) βI

1 + αI

(
A

d
− E − I

)
+ εE − nI,

(3.13)

then ∂(BP)/∂(E) + ∂(BQ)/∂(I) = −μ(β/(1 + αI)) − m/I − ((1 − μ)β/(1 + αI)2)(−(1 + αI) −
α(A/d − E − I)) − (ε/I2)E < 0, there is no limit cycle in the first quadrant of the I-E plane.
System (3.11) has a unique endemic equilibrium P

∗
(E

∗
, I

∗
), then we prove that P

∗
(E

∗
, I

∗
) is

globally asymptotically stable.
From the above discussion, we get the following conclusion.

Theorem 3.4. There is no limit cycle, and the endemic equilibrium P ∗(E∗, I∗,N∗) of system (3.11)
is globally asymptotically stable.
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Figure 1: Dynamical behavior of system (1.3)with μ = 0.9.
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Figure 2: Dynamical behavior of system (1.3) with μ = 0.001.

When t → ∞, P ∗(E∗, I∗,N∗) → P ∗(E∗, I∗, A/d). It is easy to see that the stability of
P ∗(E∗, I∗, A/d) is equivalent to that of P

∗
(E

∗
, I

∗
). Since P

∗
(E

∗
, I

∗
) is globally asymptotically

stable, the unique endemic equilibrium P ∗(E∗, I∗,N∗) is also globally asymptotically stable.

4. Numerical Simulation

Figures 1–5 are drawn by MATLAB. With different parameters, they describe the changes of
the number of exposed individuals who are not yet infectious, infectious individuals, and the
total population.



8 Abstract and Applied Analysis

0
0

100 200 300 400 500 600 700 800 900 1000

900

800

700

600

500

400

300

200

100

Solution trajectory

N

E

I

t

Figure 3: Dynamical behavior of system (1.3) with μ = 0.99.
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Figure 4: Dynamical behavior of system (1.3)with μ = 0.5.

With β = 0.02, d = 0.01, A = 0.5, m = 0.4, n = 0.5, ε = 0.1, α = 0.4, δ = 0.01, we
consider (2,3,5), (3,2,7), (2,2,5), (3,4,8), (2,5,9), (5,4,9), (2,4,9) as the initial values. Figure 1
describes system (1.3)with μ = 0.9 (R0 = 0.65), Figure 2 describes system (1.3)with μ = 0.001
(R0 = 1.99).

For the initial values (20,30,500), (30,20,700), (20,20,500), (30,40,800), (20,50,900),
(50,40,900), (20,40,900), Figures 3, 4, and 5 are drawn with β = 0.5, d = 0.01, A = 5, m = 0.3,
n = 0.5, ε = 0.1, α = 0.4, δ = 0.01 by MATLAB. With μ = 0.99 (R0 = 170), μ = 0.5 (R0 = 333.33),
and μ = 0.01 (R0 = 496.67), Figures 3–5 describe the endemic equilibriums of system (1.3).

From Figures 1 and 2, it is easy to see that the value of μ decides the development
trend of the infectious disease, that is, whether the infectious disease dies out or does not
exist forever when the other conditions are the same.
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Figure 5: Dynamical behavior of system (1.3)with μ = 0.01.
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Figure 6: Dynamical behavior of system (3.11).

From Figures 3–5, with a unique endemic equilibrium of system (1.3), the value
of μ will affect the numbers of exposed individuals who are not yet infectious, infectious
individuals, and the total population.

With β = 0.5, d = 0.01, m = 0.3, n = 0.5, μ = 0.5, α = 0.4, ε = 0.1, Figure 6 shows that
system (3.11) has no limit cycle.

5. Conclusion

Because of distinct constitutions of individuals, some infected individuals who are not yet
infectious become exposed individuals, while other infected individuals immediately become
infectious. So, we establish an epidemic model with a changing delitescence between SEIS
and SIS model by using the proportional number μ.
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This paper mainly considers the existence and stability of equilibriums. We use Jacobi
matrix to discuss the local asymptotical stability of the endemic equilibrium, and we obtain
sufficient conditions for this. When we discuss its global asymptotical stability, we use the
Dulac function in its limit system (3.11), and we get relatively complete conclusions.

After the discussion of the stability of the equilibriums, we have made numerical
simulations of the epidemic model with different values of μ. By discussing the basic
reproduction number R0 = βA(m(1−μ) +με)/mnd, we show that the value of μ is important
in the tendency of the infectious diseases with the other conditions being the same. We must
pay attention to the changing delitescence, develop effective control strategies, then we can
better control the tendency of infectious diseases.
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