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We investigate the relative perturbation bound of the group inverse and also consider the
perturbation bound of the generalized Schur complement in a Banach algebra.

1. Introduction

Let A denote a Banach algebra with unit 1. The symbols A−1, AD, Ad, Ag , Anil, Aqnil,
and A• stand for the sets of all invertible, Drazin invertible, generalized Drazin invertible,
group invertible, nilpotent, quasinilpotent, and idempotent elements of a Banach algebra A,
respectively.

Some definitions will be given in the following.
Letting a ∈ AD, there is an unique element x ∈ A such that

ak+1x = ak, xax = x, ax = xa. (1.1)

Then x is called the Drazin inverse of a, denoted by aD. The smallest nonnegative integer
k which satisfies (1.1) is called the index of a, denoted by Ind(a) = k. If Ind(a) ≤ 1, then
aD = a�(or ag).
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Let a ∈ A, if the conditions (1.1) are replaced by

axa = a, xax = x, ax = xa. (1.2)

Then x is called the group inverse of a, denoted by x = a�. If the conditions (1.1) are replaced
by

xax = x, ax = xa, a(1 − ax) is quasinilpotent. (1.3)

Then x is called the generalized Drazin inverse of a, denoted by x = ad.
Some notations of the Schur complement are given in the following.
For a 2 × 2 block complex matrix M is defined as

M =
[
A B
C D

]
, (1.4)

where A ∈ Cm×m, D ∈ Cp×p, B ∈ Cm×p, and C ∈ Cp×m. If A is nonsingular, then the classical
Schur complement of A inM is given as follows (see [1]):

S = D − CA−1B. (1.5)

In [2], Benı́tez and Thome considered the expression

N =
[
A− +A−BS−CA− −A−BS−

−S−CA− S−

]
, (1.6)

andN is called the generalized Schur form of the matrixM given in (1.4) being S = D−CA−B
for some fixed generalized inverses A− ∈ A{1}, S− ∈ S{1}, where S is called generalized
Schur complement of A in M. In [2, Theorem 2], Benı́tez and Thome investigated the
expression of the group inverse of M in (1.4) by the generalized Schur complement, where
(1.5) is replaced by

S = D − CA�B. (1.7)

Similar results also were given by Sheng and Chen in [3, Theorem 3.2]. The Drazin inverse of
a 2 × 2 block complex square matrix in (1.4) with a singular generalized Schur complement
was considered in [4–6], where

S = A − CADD. (1.8)

For the expression of a 2 × 2 block operator matrix was investigated by Deng and Wei in [7].
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Some notations for the block matrix form of a given element a ∈ A are introduced
in [8]. Let a ∈ A and s ∈ A• (see [8, Chapter VII]) which denotes the set of all idempotent
elements in A. Then we write

a = sas + sa(1 − s) + (1 − s)as + (1 − s)a(1 − s) (1.9)

and use the notations

a11 = sas, a12 = sa(1 − s), a21 = (1 − s)as, a22 = (1 − s)a(1 − s). (1.10)

For a representation of arbitrary element a ∈ A is given as the following matrix form:

a =
[

sas sa(1 − s)
(1 − s)as (1 − s)a(1 − s)

]
=
[
a11 a12

a21 a22

]
s

. (1.11)

In this paper, we will consider some results on the relative perturbation bounds of
group inverse and also give the perturbation bounds of the generalized Schur complement
of an element a ∈ A under some certain conditions in a Banach algebra.

2. Perturbation Bound of ‖(a + b)� − ad‖ in Banach Algebra

In recent years, perturbation theory for the Drazin inverse of a given matrix A ∈ Cn×n

and its applications have been considered in [9–20]. In [12], Yimin and Guorong gave a
perturbation result for the Drazin inverse under condition (W) (see [12] for details). In [8, Ch
5], Djordjević and Rakočević extended the perturbation bound of Yimin and Guorong [12] to
Banach algebra. In [13], Wei had discussed the upper perturbation bound of ‖B� −A�‖/‖A�‖
with B = A+E and had answered the question of Campbell andMeyer [21]when Ind(A) = 1.
In [14], Wei and Wu presented the perturbation upper bounds of ‖BD − AD‖/‖AD‖ under
the weaker condition core − rankB = core − rankA and completely answered the question
of Campbell and Meyer in [21]. In [16], Wei derived a relative perturbation upper bound of
‖B�−AD‖/‖AD‖ by Jordan canonical ofA. In [5], Li gave sharper upper bounds for ‖B�−AD‖
under weaker conditions: rank(B) = rank(Ak) and ‖AD‖‖E‖ < 1/(1 + ‖AD‖‖A‖). In [17],
Wei et al. derived constructive perturbation bound of the Drazin inverse of a square matrix
by using a technique proposed by Stewart and based on perturbation theory for invariant
subspaces. In [18], Xu et al. gave some upper bounds for ‖BD − AD‖/‖AD‖ only under the
condition that B is a stable perturbation of A. In [22], González and Koliha investigated the
perturbation of the Drazin inverse of a closed linear operator and derived explicit bounds for
the perturbations under certain restrictions on the perturbing operators. In [23], González
and Vélez-Cerrada analyzed the perturbation of the Drazin inverse and also gave explicit
upper bounds of ‖B� −AD‖ and ‖BB� −AAD‖ and obtained a result on the continuity of the
group inverse for operators on Banach space.

In this section, we will investigate the relative perturbation bound of the group inverse
in Banach algebra.

At first, we will give some concepts and lemmas as follows.
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For a ∈ Ad, let p = aad and p ∈ A• (see [24]):

a =
[
a1 0
0 a2

]
p

, ad =
[
a−1
1 0
0 0

]
p

, aπ = 1 − p =
[
0 0
0 1 − p

]
p

, (2.1)

where a1 ∈ pAp is invertible and a2 ∈ (1 − p)A(1 − p) is quasinilpotent.
For any a ∈ Ad, we write σ(a), ρ(a), and r(a) for the spectrum, the resolvent set, and

the spectral radius of a, respectively. For λ ∈ ρ(a) and let R(λ, a) = (λ−a)−1. If 0 is an isolated
point of σ(a), then the spectral idempotent corresponding to the set {0} is defined by

aπ =
1

2πi

∫
γ

R(λ, a)dλ, (2.2)

where γ is a small circle surrounding 0 and separating 0 from σ(a)/{0}.
Some lemmas will be useful for the following proof in this paper.

Lemma 2.1 (see [24, Theorem 2.3]). Let x, y ∈ A, and let p ∈ A•. Assume that

x =
[
a c
0 b

]
p

, y =
[
b 0
c a

]
1−p

. (2.3)

(i) If a ∈ (pAp)d and b ∈ ((1 − p)A(1 − p))d, then x, y ∈ Ad and

xd =
[
ad u
0 bd

]
p

, yd =
[
bd 0
u ad

]
1−p

, (2.4)

where u =
∑∞

n=0(a
d)n+2cbnbπ +

∑∞
n=0 a

πanc(bd)n+2 − adcbd.

(ii) If x ∈ Ad and a ∈ (pAp)d, then b ∈ [(1 − p)A(1 − p)]d and xd is given by (2.4).

Lemma 2.2 (see [24, Corollary 3.4]). If a, b ∈ A are generalized Drazin invertible, b is quasi-
nilpotent, and ab = 0, then a + b is generalized Drazin invertible and

(a + b)d =
∞∑
n=0

bn
(
ad
)n+1

. (2.5)

The following lemma is a generalization of [25, Theorem 1].

Lemma 2.3. Let a, b ∈ Ad such that ab = ba. Then a + b ∈ Ad if and only if 1 + adb ∈ Ad. In this
case

(a + b)d = ad
(
1 + adb

)d
bbd +

∞∑
n=0

bπ(−b)n
(
ad
)n+1

+
∞∑
n=0

(
bd
)n+1

(−a)naπ. (2.6)
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Now we will state a lemma for the representation of the group inverse of an element
a ∈ Ad with 2 × 2 block form in Banach algebra (see [26, Theorem 7.7.7] and [23, Theorem
2.2.] which were established for a finite dimensional case and partitioned operators matrix,
resp.).

Lemma 2.4. Let z ∈ A, and it has the block matrix form as z = [ z1 z12
z21 z2 ]p, where p ∈ A• is an

idempotent element, z1 is invertible in pAp, and z2 = z21z
−1
1 z12. Let δ = p + z−11 z12z21z

−1
1 . Then z is

group invertible if and only if δ is an invertible element in pAp. In this case

z� =

[
(δz1δ)

−1 (δz1δ)
−1z−11 z12

z21z
−1
1 (δz1δ)

−1 z21z
−1
1 (δz1δ)

−1z−11 z12

]
p

,

zπ =
[

p − δ−1 −δ−1z−11 z12
−z21z−11 δ−1 1 − p − z21z

−1
1 δ−1z−11 z12

]
p

.

(2.7)

Let b ∈ A be a perturbation element of a. According to (2.1), we obtain

b =
[
b1 b12
b21 b2

]
p

, a + b =
[
a1 + b1 b12
b21 a2 + b2

]
p

, (2.8)

where p = aad.

Theorem 2.5. Let a ∈ Ad and b ∈ A be a perturbation element of a, a and a + b which are defined
as (2.1) and (2.8), respectively. If ‖adbaad‖ < 1, then a1 + b1 is invertible in subalgebra pAp.
Furthermore let a2 + b2 = b21(a1 + b1)

−1b12 and δ = p + [p(a + b)p]db(1−p)b[p(a + b)p]d ∈ pAp.
Then a + b is group invertible if and only if δ ∈ pAp is invertible and δ is invertible if and only if
[p(a + b)p]2 + pb(1 − p)bp ∈ pAp is invertible. In this case,

∥∥∥(a + b)� − ad
∥∥∥∥∥ad

∥∥ ≤ T2
1

1 − ∥∥a−1
1 b1
∥∥(‖b12‖ + ‖b21‖) + T2

1

∥∥a−1
1

∥∥3
(
1 − ∥∥a−1

1 b1
∥∥)4 ‖b12‖‖b21‖

+

(
T1T2 + T2 +

∥∥a−1
1 b1
∥∥

1 − ∥∥a−1
1 b1
∥∥T1
)
T1,

(2.9)

where

a1 = pap, b1 = pbp, b12 = pb
(
1 − p
)
, b21 =

(
1 − p
)
bp,

T1 = ‖a1 + b1‖2
∥∥∥∥
(
(a1 + b1)

2 + b12b21
)−1∥∥∥∥, T2 =

∥∥a−1
1

∥∥‖b12b21‖
1 − ∥∥a−1

1 b1
∥∥ .

(2.10)

Proof. Let p = aad. Then a, ad, b and a+b have the matrix form as (2.1) and (2.8), respectively,
where a1 is invertible in pAp and a2 is quasinilpotent in (1 − p)A(1 − p).
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It follows from the hypothesis ‖adbaad‖ < 1 that ‖a−1
1 b1‖ < 1. Thus, it implies that

p + a−1
1 b1 ∈ pAp is invertible. It is easy to see that (a1 + b1)

−1 = (p + a−1
1 b1)

−1a−1
1 . Let δ =

p+[p(a+b)p]db(1−p)b[p(a+b)p]d ∈ pAp; that is, we have δ = p+(a1+b1)
−1b12b21(a1+b1)

−1.
Therefore, we have

δ = (a1 + b1)
−1[(a1 + b1)p(a1 + b1) + b12b21

]
(a1 + b1)

−1

= (a1 + b1)
−1
[
(a1 + b1)

2 + b12b21
]
(a1 + b1)

−1

=
[
p(a + b)p

]d[[
p(a + b)p

]2 + pb
(
1 − p
)
bp
][
p(a + b)p

]d
.

(2.11)

From the previous equations, we get that δ is invertible if and only if [p(a+b)p]2+pb(1−p)bp
is invertible. Since a2 + b2 = b21(a1 + b1)

−1b12 and by Lemma 2.4, we obtain that a + b is group
invertible if and only if δ ∈ pAp is invertible.

In the following, we consider the upper bound of ‖(a + b)� − ad‖/‖ad‖.
Applying Lemma 2.4, we obtain

(a + b)� =

[
η η(a1 + b1)

−1b12
b21(a1 + b1)

−1η b21(a1 + b1)
−1η(a1 + b1)

−1b12

]
p

, (2.12)

where η = (δ(a1 + b1)δ)
−1.

Note that

η − a−1
1 = (δ(a1 + b1)1δ)

−1 − a−1
1 = δ−1(a1 + b1)

−1δ−1 − a−1
1

= δ−1a−1
1 δ−1 + δ−1

∞∑
n=1

(
a−1
1 b1
)n

a−1
1 δ−1 − a−1

1

= δ−1
(
a−1
1 − δa−1

1 δ
)
δ−1 + δ−1

∞∑
n=1

(
a−1
1 b1
)n

a−1
1 δ−1

= δ−1
(
a−1
1 − (p + θ

)
a−1
1

(
p + θ

))
δ−1 + δ−1

∞∑
n=1

(
a−1
1 b1
)n

a−1
1 δ−1

= δ−1
[
a−1
1 −
(
pa−1

1 p + θa−1
1 p + pa−1

1 θ + θa−1
1 θ
)]

δ−1 + δ−1
∞∑
n=1

(
a−1
1 b1
)n

a−1
1 δ−1

= −δ−1
(
θa−1

1 p + pa−1
1 θ + θa−1

1 θ
)
δ−1 + δ−1

∞∑
n=1

(
a−1
1 b1
)n

a−1
1 δ−1

= −δ−1
(
θa−1

1 p + δa−1
1 θ
)
δ−1 + δ−1

∞∑
n=1

(
a−1
1 b1
)n

a−1
1 δ−1

= −δ−1θa−1
1 δ−1 − a−1

1 θδ−1 + δ−1
∞∑
n=1

(
a−1
1 b1
)n

a−1
1 δ−1,

(2.13)
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∥∥∥δ−1
∥∥∥ =
∥∥∥∥
[
p + (a1 + b1)

−1b12b21(a1 + b1)
−1
]−1∥∥∥∥

≤ ‖a1 + b1‖2
∥∥∥∥
[
(a1 + b1)

2 + b12b21
]−1∥∥∥∥ = T1,

(2.14)

where θ = (a1 + b1)
−1b12b21(a1 + b1)

−1.
It shows from ‖adbaad‖ < 1 (i.e., ‖a−1

1 b1‖ < 1) that

‖θ‖ =
∥∥∥(a1 + b1)

−1b12b21(a1 + b1)
−1
∥∥∥

≤
∥∥a−1

1

∥∥‖b12b21‖
1 − ∥∥a−1

1 b1
∥∥ = T2.

(2.15)

From (2.13), (2.14), (2.15), and by ‖a−1
1 b1‖ < 1, we obtain that

∥∥∥η − a−1
1

∥∥∥ =
∥∥∥∥∥−δ−1θa−1

1 δ−1 − a−1
1 θδ−1 + δ−1

∞∑
n=1

(
a−1
1 b1
)n

a−1
1 δ−1

∥∥∥∥∥

≤
∥∥∥δ−1θa−1

1 δ−1
∥∥∥ + ∥∥∥a−1

1 θδ−1
∥∥∥ +
∥∥∥∥∥δ−1

∞∑
n=1

(
a−1
1 b1
)n

a−1
1 δ−1

∥∥∥∥∥

≤
(
T1T2 + T2 +

∥∥a−1
1 b1
∥∥

1 − ∥∥a−1
1 b1
∥∥T1
)
T1
∥∥∥a−1

1

∥∥∥.

(2.16)

It follows from (2.12) that

(a + b)� − ad =

[
η − a−1

1 η(a1 + b1)
−1b12

b21(a1 + b1)
−1η b21(a1 + b1)

−1η(a1 + b1)
−1b12

]
p

. (2.17)

Therefore, according to (2.14), (2.15), and (2.16), we obtain

∥∥∥(a + b)� − ad
∥∥∥ =
∥∥∥∥∥∥
[

η − a−1
1 η(a1 + b1)

−1b12

b21(a1 + b1)
−1η b21(a1 + b1)

−1η(a1 + b1)
−1b12

]

p

∥∥∥∥∥∥
≤
∥∥∥η − a−1

1

∥∥∥ + ∥∥∥η(a1 + b1)
−1b12
∥∥∥ + ∥∥∥b21(a1 + b1)

−1η
∥∥∥

+
∥∥∥b21(a1 + b1)

−1η(a1 + b1)
−1b12
∥∥∥

≤
∥∥a−1

1

∥∥T2
1

1 − ∥∥a−1
1 b1
∥∥(‖b12‖ + ‖b21‖) + T2

1

( ∥∥a−1
1

∥∥
1 − ∥∥a−1

1 b1
∥∥
)4

‖b12‖‖b21‖

+

(
T1T2 + T2 +

∥∥a−1
1 b1
∥∥

1 − ∥∥a−1
1 b1
∥∥T1
)
T1
∥∥∥a−1

1

∥∥∥.

(2.18)

Since ‖a−1
1 ‖ = ‖ad‖ and by (2.18), it is easy to see that the conclusion holds.

Thus, we complete the proof.
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Let A,E ∈ B(X) be both bounded linear operators with B = A + E on Banach space,
whereX denotes Banach space. If ‖ADE‖+‖Bπ−Aπ‖ < 1 is satisfied, (it implies that ‖ADE‖ < 1
and ‖ADEAAD‖ < 1), then we have the remark.

Remark 2.6 (see [23, Theorem 4.2]). Let A,B ∈ B(X) be Drazin invertible and group invert-
ible, respectively. If ‖ADE‖ + ‖Bπ −Aπ‖ < 1, then

∥∥B# −AD
∥∥∥∥AD
∥∥ ≤

∥∥ADE
∥∥ + 2‖Bπ −Aπ‖

1 − ∥∥ADE
∥∥ − ‖Bπ −Aπ‖ . (2.19)

Let a = a1 ⊕ a2 and ad = [a1]
−1
p = a#

1; if we put δa = b + a2, then 1 + δaa is invertible in
A when ‖adbaad‖ < 1. From the Proposition 2.2 (5) of [20], we have a2 +b2 = b21(a1 +b1)

−1b12
when (a1 + δa)A ∩ (1 − aad)A = {0} for [a1]p[a1]

−1
p = p = aad. Therefore, for ‖a#

1‖‖b + a2‖ <

(1 + ‖1 − aad‖)−1, we arrive at [20, Theorem 4.2]. In fact, the following remark implies that
Theorem 2.5 improves the upper bound of ‖(a + b)# − a#‖ of [20, Theorem 4.2].

Remark 2.7 (see [20, Theorem 4.2]). Let a ∈ G(A) and let a = a + δa ∈ A with K#εa <
(1 + ‖aπ‖). Assume that aA ∩ (1 − aa#)A = {0}. Then a ∈ G(A) and

∥∥∥a# − a#
∥∥∥ ≤ (1 + 2‖aπ‖)∥∥a#

∥∥K#(a)εa

[1 − (1 + ‖aπ‖)‖a#‖K#(a)εa]
2
, (2.20)

where K# = ‖a‖‖a#‖ and εa = ‖δa‖‖a‖−1.

Theorem 2.8. Let a, b ∈ A be generalized Drazin invertible and satisfy the conditions

∥∥∥adbaad
∥∥∥ < 1, aπba = 0. (2.21)

Then (a + b)� exists if and only if aπ(a + b) is group invertible. In this case,

∥∥∥(a + b)� − ad
∥∥∥∥∥ad

∥∥ ≤
∥∥ad
∥∥

(
1 − ∥∥adb

∥∥)2
[
‖b‖ + ‖baπ‖

∞∑
n=0

∥∥∥an+1
∥∥∥
∥∥∥∥
(
bd
)n+1∥∥∥∥

]

+

[ ∥∥ad
∥∥

(
1 − ∥∥adb

∥∥)2 ‖baπb‖ + ‖baπ‖
1 − ∥∥adb

∥∥
] ∞∑
n=0

‖an‖
∥∥∥∥
(
bd
)n+1∥∥∥∥

+ ‖aπ‖
∥∥∥ad
∥∥∥−1

∞∑
n=0

‖an‖
∥∥∥∥
(
bd
)n+1∥∥∥∥ +

∥∥adb
∥∥

1 − ∥∥adb
∥∥ .

(2.22)

Proof. Since ad exists, ad is defined as (2.1). Let b have the block matrix form as

b =
[
b1 b3
b4 b2

]
p

. (2.23)
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Applying the condition aπba = 0, we have b2a2 = 0 and

aπbaada =
[

0 0
b4a1 0

]
p

= 0. (2.24)

It follows from (2.24) that a1 ∈ pAp is invertible, b4 = 0, and

b =
[
b1 b3
0 b2

]
p

. (2.25)

Combining (2.1) and (2.25), we obtain

a + b =
[
a1 + b1 b3

0 a2 + b2

]
p

. (2.26)

The condition ‖adbaad‖ < 1 implies ‖a−1
1 b1‖ < 1 in the subalgebra pAp. Therefore, we

conclude that a1 + b1 ∈ pAp is invertible and Ind(a1 + b1) = 0. According to (2.26) and by
Lemma 2.1, one observes that (a + b)d exists if and only if (a2 + b2)

d also. Thus, (a + b)� exists
if and only if aπ(a + b) is group invertible.

If aπ(a + b) is group invertible and by Lemma 2.1, we obtain

(a + b)� =

[
(a1 + b1)

−1 x

0 (a2 + b2)
�

]
p

, (2.27)

where x = (a1 + b1)
−2b3(a2 + b2)

π − (a1 + b1)
−1b3(a2 + b2)

�.
Since b2a2 = 0 and a2 is quasinilpotent, by Lemma 2.2, we obtain

(a2 + b2)
� =

∞∑
n=0

an
2

(
bd2

)n+1
= aπ

∞∑
n=0

an
(
bd
)n+1

. (2.28)

From ‖adbaad‖ < 1, one easily has

(a1 + b1)
−1 ⊕ 0 =

∞∑
n=0

(
a−1
1 b1
)n

a−1
1 ⊕ 0 =

∞∑
n=0

(
adb
)n

ad

= a−1
1

(
1 + b1a

−1
1

)−1 ⊕ 0 = ad
∞∑
n=0

(
bad
)n

.

(2.29)
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It follows from (2.27) and (2.29) that

x = (a1 + b1)
−2b3(a2 + b2)

π − (a1 + b1)
−1b3(a2 + b2)

�

=

( ∞∑
n=0

(
adb
)n

ad

)2[
b − baπ

∞∑
n=0

an+1
(
bd
)n+1]

+

⎡
⎣
( ∞∑

n=0

(
adb
)n

ad

)2

baπb −
∞∑
n=0

(
adb
)n

adbaπ

⎤
⎦ ∞∑

n=0

an
(
bd
)n+1

.

(2.30)

Combining (2.27), (2.28), and (2.29), we obtain

(a + b)� =

⎡
⎢⎢⎢⎣

∞∑
n=0

a−1
1

(
b1a

−1
1

)n
x

0
∞∑
n=0

an
2

(
bd2

)n+1

⎤
⎥⎥⎥⎦

p

=

( ∞∑
n=0

(
adbad

)n)2[
b − baπ

∞∑
n=0

an+1
(
bd
)n+1]

+

⎡
⎣
( ∞∑

n=0

(
adb
)n

ad

)2

baπb −
∞∑
n=0

(
adb
)n

adbaπ

⎤
⎦ ∞∑

n=0

an
(
bd
)n+1

+
∞∑
n=0

(
adb
)n

ad + aπ
∞∑
n=0

an
(
bd
)n+1

.

(2.31)

From (2.31), we derive

(a + b)� − ad =

( ∞∑
n=0

(
adb
)n

ad

)2[
b − baπ

∞∑
n=0

an+1
(
bd
)n+1]

+

⎡
⎣
( ∞∑

n=0

(
adb
)n

ad

)2

baπb −
∞∑
n=0

(
adb
)n

adbaπ

⎤
⎦ ∞∑

n=0

an
(
bd
)n+1

+ aπ
∞∑
n=0

an
(
bd
)n+1

+
∞∑
n=1

(
adb
)n

ad.

(2.32)
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Moreover, by (2.32) we get

∥∥∥(a + b)� − ad
∥∥∥ ≤
( ∥∥ad

∥∥
1 − ∥∥adb

∥∥
)2[

‖b‖ + ‖baπ‖
∞∑
n=0

∥∥∥an+1
∥∥∥
∥∥∥∥
(
bd
)n+1∥∥∥∥

]

+

⎡
⎣
( ∥∥ad

∥∥
1 − ∥∥adb

∥∥
)2

‖baπb‖ +
∥∥ad
∥∥‖baπ‖

1 − ∥∥adb
∥∥
⎤
⎦ ∞∑

n=0
‖an‖
∥∥∥∥
(
bd
)n+1∥∥∥∥

+ ‖aπ‖
∞∑
n=0

‖an‖
∥∥∥∥
(
bd
)n+1∥∥∥∥ +

∥∥ad
∥∥∥∥adb

∥∥
1 − ∥∥adb

∥∥ .

(2.33)

Finally, from (2.33)we easily finish the proof.

Corollary 2.9. Let a ∈ Ag and let b ∈ Ad. If a, b satisfy the conditions

∥∥∥a�baa�
∥∥∥ < 1, aπba = 0, (2.34)

then (a + b)� exists if and only if aπb is group invertible. In this case,

∥∥∥(a + b)� − a�
∥∥∥∥∥a�

∥∥ ≤ ‖b‖∥∥(aπb)π
∥∥

∥∥a�
∥∥

(
1 − ∥∥a�b

∥∥)2

+

∥∥baπb�
∥∥

1 − ∥∥a�b
∥∥ +

∥∥aπb�
∥∥∥∥a�
∥∥ +

∥∥a�b
∥∥

1 − ∥∥a�b
∥∥ .

(2.35)

The conditions of Theorem 2.8 ‖adbaad‖ < 1, aπba = 0 are weaker than the conditions
(W) (see [12, Theorem 3.2] for finite dimensional cases and [8, Theorem 5.3.2 and Corollary
5.3.3] for Banach algebra). According to aπba = 0, we obtain that (2.26) holds. However, in
view of (W), we have

a + b =
[
a1 + b1 0

0 a2

]
p

. (2.36)

Thus, by the conditions (W), we know that a and a + b have the same Drazin invertible
property (see [12, Theorem 3.1]). Thus, if a is group invertible, then (a+b) is group invertible.
It is easy to see that ‖adbaad‖ < 1, aπba = 0 are weaker than the conditions (W). From [8,
Theorem 5.3.2 and Corollary 5.3.3], we easily state the following remark.

Remark 2.10. Let a ∈ Ag and let b ∈ Ad. If a, b satisfy the condition (W)

∥∥∥a�baa�
∥∥∥ < 1, b = aa�baa�, (2.37)
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then a + b is group invertible and

∥∥∥(a + b)� − a�
∥∥∥∥∥a�

∥∥ ≤
∥∥a�b
∥∥

1 − ∥∥a�b
∥∥ . (2.38)

Theorem 2.11. Let a, b ∈ A be generalized Drazin invertible and satisfy the conditions

max
{∥∥∥adbaad

∥∥∥, ‖aπa‖
∥∥∥aπbd

∥∥∥} < 1, aπba = 0. (2.39)

Then (a + b)� exists if and only if aπ(a + b) is group invertible. In this case,

∥∥∥(a + b)� − ad
∥∥∥∥∥ad

∥∥ ≤
∥∥ad
∥∥

(
1 − ∥∥adb

∥∥)2
[
‖b‖ + ‖baπ‖ ‖a‖∥∥bd∥∥

1 − ‖a‖∥∥bd∥∥
]

+

[ ∥∥ad
∥∥

(
1 − ∥∥adb

∥∥)2 ‖baπb‖ + ‖baπ‖
1 − ∥∥adb

∥∥
]

‖a‖∥∥bd∥∥
1 − ‖a‖∥∥bd∥∥

+

∥∥ad
∥∥−1‖aπ‖∥∥bd∥∥

1 − ‖a‖∥∥bd∥∥ +

∥∥adb
∥∥

1 − ∥∥adb
∥∥ .

(2.40)

Proof. The notations are taken as Theorem 2.8, and the rest of proof of theorem is similar to
Theorem 2.8. Now, we only consider the perturbation of a2 + b2. From (2.28) and the first
condition of (2.39), we have ‖a2‖‖bd2‖ < 1 and

∥∥∥(a2 + b2)
�
∥∥∥ =
∥∥∥∥∥

∞∑
n=0

an
2

(
bd2

)n+1∥∥∥∥∥ ≤
‖aπ‖∥∥bd∥∥
1 − ‖a‖∥∥bd∥∥ . (2.41)

Thus, from (2.41) we completed the proof.

Theorem 2.12. Let a, b ∈ A be generalized Drazin invertible and satisfy the conditions

∥∥∥adbaad
∥∥∥ < 1, aπba = abaπ. (2.42)

Then (a + b)� exists if and only if aπ(a + b) is group invertible. In this case,

∥∥∥(a + b)� − ad
∥∥∥∥∥ad

∥∥ ≤
∥∥adb

∥∥
1 − ∥∥adb

∥∥ + ‖aπ‖
∥∥∥ad
∥∥∥−1

∞∑
n=0

∥∥∥∥
(
bd
)n+1∥∥∥∥‖an‖. (2.43)
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Proof. Letting p = aad, and it is similar to Theorem 2.8, we obtain that a, ad, and p have the
matrix forms as (2.1). Here b is taken as (2.23) in the proof of Theorem 2.8. The condition
aπba = abaπ implies that

aπba =
[
0 0
0 1 − p

]
p

[
b1 b3
b4 b2

]
p

[
a1 0
0 a2

]
p

=
[

0 0
b4a1 b2a2

]
p

,

abaπ =
[
a1 0
0 a2

]
p

[
b1 b3
b4 b2

]
p

[
0 0
0 1 − p

]
p

=
[
0 a1b3
0 a2b2

]
p

.

(2.44)

Thus, according to (2.44), we obtain b4a1 = 0, a1b3 = 0 and a2b2 = b2a2. Because a1 is invertible
in subalgebra pAp, we have b3 = b4 = 0. Thus, b, a + b have the matrix forms as follows:

b =
[
b1 0
0 b2

]
p

, a + b =
[
a1 + b1 0

0 a2 + b2

]
p

. (2.45)

It follows from the condition ‖adbaad‖ < 1 that ‖a−1
1 b1‖ < 1. Thus, it shows from

‖a−1
1 b1‖ < 1 that a1+b1 is invertible in subalgebra pAp. Therefore, easily we observe that a+b

is Drazin invertible if and only if a2 + b2 ∈ (1−p)A(1−p) is Drazin invertible. That is, (a+ b)�

exists if and only if aπ(a + b) is group invertible.
In the following, we will consider the perturbation of a2.
Let a2 + b2 be group invertible. The condition aπba = abaπ implies that a2b2 = b2a2

holds. Since a2 is quasinilpotent in subalgebra (1 − p)A(1 − p) and by Lemma 2.3, we get

(a2 + b2)
� =

∞∑
n=0

(
bd2

)n+1
(−a2)n = aπ

∞∑
n=0

(
bd
)n+1

(−a)n. (2.46)

By virtue of ‖a−1
1 b1‖ < 1, we get that

[
aad(a + b)

]−1
= (a1 + b1)

−1 =
∞∑
n=0

(
a−1
1 b1
)n

a−1
1 =

∞∑
n=0

(
adb
)n

ad. (2.47)

It follows from (2.46) and (2.47) that
∥∥∥∥
[
aad(a + b)

]−1 − [aada
]−1
p

∥∥∥∥ =
∥∥∥∥∥

∞∑
n=1

(
adb
)n

ad

∥∥∥∥∥ ≤
∥∥ad
∥∥∥∥adb

∥∥
1 − ∥∥adb

∥∥ ,

∥∥∥[aπ(a + b)]d
∥∥∥ = ∥∥∥(a2 + b2)

�
∥∥∥ ≤ ‖aπ‖

∞∑
n=0

∥∥∥∥
(
bd
)n+1∥∥∥∥‖an‖.

(2.48)

Next, according to (2.48), we obtain

∥∥∥(a + b)� − ad
∥∥∥ ≤
∥∥ad
∥∥∥∥adb

∥∥
1 − ∥∥adb

∥∥ + ‖aπ‖
∞∑
n=1

∥∥∥∥
(
bd
)n+1∥∥∥∥‖an‖. (2.49)

Finally, using (2.49) the proof is finished.
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Corollary 2.13. Let a ∈ Ag and let b ∈ Ad. If a, b satisfy the conditions

∥∥∥a�baa�
∥∥∥ < 1, aπba = abaπ. (2.50)

Then (a + b)� exists if and only if aπb is group invertible. In this case,

∥∥∥(a + b)� − a�
∥∥∥∥∥a�

∥∥ ≤
∥∥a�b
∥∥

1 − ∥∥a�b
∥∥ +

‖aπ‖∥∥bd∥∥∥∥a�
∥∥ . (2.51)

Let A,E ∈ Cn×n with B = A + E, and let

A = P−1
[
A1 0
0 A2

]
P, E = P−1

[
E1 E12

E21 E2

]
P. (2.52)

If Bπ = Aπ (see [10, Theorem 2.1] ), then

B = P−1
[
B1 0
0 B2

]
P, A + E = P−1

[
A1 + E1 0

0 A2 + E2

]
P, (2.53)

where B1 is invertible and B2 = A2 is quasinilpotent (it follows that E2 = 0). It follows
from (2.53) that Aπ = Bπ implies that AπBA = ABAπ , (i.e., AπEA = AEAπ). If A is group
invertible, then B is group invertible and

B� = P−1
[
B−1
1 0
0 0

]
P, (2.54)

where B1 = A1 + E1.
By virtue of Aπ = Bπ and ‖AD(B −A)‖ < 1 (see [10]), we give the following remark.

Remark 2.14 (see [10, Theorem 3.1]). Let A,B ∈ Cd×d with Aπ = Bπ . Then

∥∥AD
∥∥

1 +
∥∥AD(B −A)

∥∥ ≤
∥∥∥BD
∥∥∥. (2.55)

If ‖AD(B −A)‖ < 1, then

∥∥∥BD
∥∥∥ ≤

∥∥AD
∥∥

1 − ∥∥AD(B −A)
∥∥ ,

∥∥BD −AD
∥∥∥∥AD

∥∥ ≤
∥∥AD(B −A)

∥∥
1 − ∥∥AD(B −A)

∥∥ .
(2.56)
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Theorem 2.15. Let a, b ∈ A be generalized Drazin invertible and satisfy the conditions

max
{∥∥∥aπabd

∥∥∥,∥∥∥adbaad
∥∥∥} < 1, aπba = abaπ. (2.57)

Then (a + b)� exists if and only if aπ(a + b) is group invertible. In this case,

∥∥∥(a + b)� − ad
∥∥∥∥∥ad

∥∥ ≤
∥∥adb

∥∥
1 − ∥∥adb

∥∥ +
‖aπ‖∥∥bd∥∥∥∥ad
∥∥(1 − ∥∥bda∥∥) . (2.58)

Proof. Similarly to Theorem 2.12, we have that the formulas (2.45) hold. The details will be
omitted. In the following we only give the simple proof.

By the condition

max
{∥∥∥aπabd

∥∥∥,∥∥∥adbaad
∥∥∥} < 1, (2.59)

it shows that ‖a−1
1 b1‖ < 1 and ‖a2b

d
2‖ < 1. Thus, the first result shows that a1 + b1 ∈ pAp is

invertible. In view of Lemma 2.1, one concludes that a + b is Drazin invertible if and only if
a2 + b2 is Drazin invertible. That is, (a + b)� exists if and only if aπ(a + b) is group invertible.

In the following, we consider the perturbation of a2.
After application of the hypothesis aπba = abaπ , we find that a2b2 = b2a2. It follows

from Theorem 2.12 and Lemma 2.3 that

(a2 + b2)
� =

∞∑
n=0

(
bd2

)n+1
(−a2)n = aπ

∞∑
n=0

(−1)n
(
bd
)n+1

an. (2.60)

It follows from the condition ‖a2b
d
2‖ < 1 and

σ
(
a2b

d
2

)
∪ {0} = σ

(
bd2a2

)
∪ {0}. (2.61)

It implies that ‖bd2a2‖ < 1 and

∥∥∥(a2 + b2)
�
∥∥∥ ≤ ‖aπ‖∥∥bd∥∥

1 − ∥∥bda∥∥ . (2.62)

Therefore, combining (2.49)with (2.62), we have

∥∥∥(a + b)� − ad
∥∥∥ ≤
∥∥ad
∥∥∥∥adb

∥∥
1 − ∥∥adb

∥∥ +
‖aπ‖∥∥bd∥∥
1 − ∥∥bda∥∥ . (2.63)

Thus, by (2.63), we complete the proof.
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3. Perturbation Bound of the Generalized Schur Complement

The perturbation bounds of the Schur complement are investigated in [29–31]. In [29] Stewart
gave perturbation bounds for the Schur complement of a positive definite matrix in a positive
semidefinite matrix. In [30] Wei and Wang generalized the results in [29] and enrich the
perturbation theory for the Schur complement. In [31] the authors derived some new norm
upper bounds for Schur complements of a positive semidefinite operator matrix. In this
section, we consider the perturbation bounds of the generalized Schur complement in Banach
algebra.

Some notations of the generalized Schur complement over Banach algebra will be stat-
ed in the following.

Let a ∈ A, and let it be written in the form as follows:

a = a11 + a12 + a21 + a22. (3.1)

It has the following matrix form:

M =
[
a11 a12

a21 a22

]
s

, (3.2)

where s ∈ A• is idempotent element inA and aij is taken as (1.10).
The formulas (1.5) and (1.6) are written in Banach algebra, respectively:

s1 = a22 − a21a
−1
11a12,

M =
[
a−
11 + a−

11a12s
−
1a21a

−
11 −a−

11a12s
−
1

−s−1a21a
−
11 s−1

]
s

.
(3.3)

Similarly, the generalized Schur complement in (1.7) and (1.8) is defined in the following
over Banach algebra, respectively:

s1 = a22 − a21a
�

11a12,

s1 = a22 − a21a
d
11a12,

(3.4)

where s1 denotes the generalized Schur complement of a11 in M.

Theorem 3.1. LetM be given as (3.2) let and

M =
[
a11 + Δa11 a12 + Δa12

a21 + Δa21 a22 + Δa22

]
s

=
[
a11 a12

a21 a22

]
s

(3.5)

be perturbed version of M, and the following conditions are satisfied:

‖Δa11‖ ≤ ε‖a11‖, ‖Δa12‖ ≤ ε‖a12‖, ‖Δa21‖ ≤ ε‖a21‖, ‖Δa22‖ ≤ ε‖a22‖, (3.6)
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where ε > 0. If a11, Δa11 and a11 satisfy the conditions of Theorem 2.8, then

‖s1 − s1‖ ≤ ε‖a22‖ + ‖a21‖‖a12‖
(
θ
(
2ε + ε2

)
+
∥∥aπ

11

∥∥η2 + ε
∥∥∥ad

11

∥∥∥‖a11‖η1
)

+ ε‖a21‖‖a11‖‖a12‖
(
η2
1 +
∥∥aπ

11

∥∥η1η2 +
(
ε + ε2

)∥∥aπ
11

∥∥‖a11‖η2
1η2
)
,

(3.7)

where

η1 =

∥∥∥ad
11

∥∥∥
1 −
∥∥∥ad

11Δa11

∥∥∥ , η2 =
∞∑
n=0

∥∥∥an+1
11

∥∥∥
∥∥∥∥
[
(Δa11)d

]n+1∥∥∥∥, (3.8)

θ = ε‖a11‖η2
1

(
1 +
∥∥aπ

11

∥∥η2) + ε‖a11‖
∥∥aπ

11

∥∥η1η2(1 + εη1‖a11‖
)

+
∥∥aπ

11

∥∥η2 + ε
∥∥∥ad

11

∥∥∥‖a11‖η1,
(3.9)

and s1 and s1 are Schur complement of a11 inM and Schur complement of a11 inM, respectively.

Proof. Since a11, Δa11 and a11 satisfy Theorem 2.8, according to (2.31), we obtain

a
�

11
=

( ∞∑
n=0

(
ad
11Δa11

)n
ad
11

)2[
Δa11 −Δa11a

π
11

∞∑
n=0

an+1
11

[
(Δa11)d

]n+1]

+

⎡
⎣
( ∞∑

n=0

(
ad
11Δa11

)n
ad
11

)2

Δa11a
π
11Δa11 −

∞∑
n=0

(
ad
11Δa11

)n
ad
11Δa11a

π
11

⎤
⎦ ∞∑

n=0

an
11

[
(Δa11)d

]n+1

+
∞∑
n=0

(
ad
11Δa11

)n
ad
11 + aπ

11

∞∑
n=0

an
11

[
(Δa11)d

]n+1
.

(3.10)

Therefore, it is easy to see that

s1 = a22 + Δa22 − (a21 + Δa21)a
�

11(a12 + Δa12)

= a22 + Δa22 − a21a
�

11a12 −Δa21a
�

11a12 − a21a
�

11Δa12 −Δa21a
�

11Δa12

= s1 + Δa22 −Δa21a
�

11a12 − a21a
�

11Δa12 −Δa21a
�

11Δa12

− a21a
π
11

∞∑
n=0

an
11

[
(Δa11)d

]n+1
a12 + a21

∞∑
n=1

(
ad
11Δa11

)n
ad
11a12

+ a21

( ∞∑
n=0

(
ad
11Δa11

)n
ad
11

)2

Δa11

[
1 − aπ

11(a11 + Δa11)
∞∑
n=0

an
11

[
(Δa11)d

]n+1]
a12

− a21

∞∑
n=0

(
ad
11Δa11

)n
ad
11Δa11a

π
11

∞∑
n=0

an
11

[
(Δa11)d

]n+1
a12,
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∥∥∥a�

11

∥∥∥ ≤ ε‖a11‖
⎛
⎝

∥∥∥ad
11

∥∥∥
1 −
∥∥∥ad

11Δa11

∥∥∥

⎞
⎠

2[
1 +
∥∥aπ

11

∥∥ ∞∑
n=0

∥∥∥an+1
11

∥∥∥
∥∥∥∥
[
(Δa11)d

]n+1∥∥∥∥
]

+

⎡
⎢⎣ε2
⎛
⎝

∥∥∥ad
11

∥∥∥
1 −
∥∥∥ad

11Δa11

∥∥∥

⎞
⎠

2∥∥aπ
11

∥∥‖a11‖2 +
ε
∥∥∥ad

11

∥∥∥‖a11‖
∥∥aπ

11

∥∥
1 −
∥∥∥ad

11Δa11

∥∥∥

⎤
⎥⎦

∞∑
n=0

∥∥an
11

∥∥∥∥∥∥
[
(Δa11)d

]n+1∥∥∥∥

+
∥∥aπ

11

∥∥ ∞∑
n=0

∥∥an
11

∥∥∥∥∥∥
[
(Δa11)d

]n+1∥∥∥∥ +
ε
∥∥∥ad

11

∥∥∥2‖a11‖
1 −
∥∥∥ad

11Δa11

∥∥∥ .

(3.11)

From (3.11) and by the conditions (3.6), we obtain

‖s1 − s1‖ ≤ ‖Δa22‖ + θ
(
2ε + ε2

)
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(3.12)

where
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(3.13)

Thus, we finish the proof.

Similar to Theorem 3.1. It follows from the proof of Theorem 2.11 that the results are
given as follow.
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Theorem 3.2. LetM andM be taken as Theorem 3.1, and let the relations in (3.6) be satisfied, where
ε > 0. If a11, Δa11 and a11 satisfy the conditions of Theorem 2.11, then

‖s1 − s‖ ≤ ε‖a22‖ + ‖a21‖‖a12‖
(
θ
(
2ε + ε2

)
+
∥∥aπ

11
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1η2
)
,

(3.14)

where η1, θ, s1 and s1 are taken as Theorem 3.1.

Theorem 3.3. LetM andM be taken as Theorem 3.1, and let the relations in (3.6) be satisfied, where
ε > 0. If a11, Δa11 and a11 satisfy the conditions of Theorem 2.12, then

‖s1 − s‖ ≤ ε‖a22‖ +
[(

1 + 2ε + ε2
)
δ1 + ε

∥∥∥ad
11
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where
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and s1 and s1 are taken as Theorem 3.1.

Proof. Similar to the proof of Theorem 3.1 the details are omitted. A simple proof is given as
follows.

By (2.45), (2.46), and (2.47), we obtain
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In view of (3.17), we easily have
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It shows from (3.18) that
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where
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Therefore, we complete the proof.

Similar to Theorems 3.1 and 3.3. The proof of the following theorem follows from
Theorem 2.15.

Theorem 3.4. LetM andM be taken as Theorem 3.1, and let the relations in (3.6) be satisfied, where
ε > 0. If a11, Δa11 and a11 satisfy the conditions of Theorem 2.15, then

‖s1 − s‖ ≤ ε‖a22‖ +
(
1 + 2ε + ε2

)
‖a21‖‖a12‖δ1, (3.21)

where
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and s1 and s1 are taken as Theorem 3.1.
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