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Sezgin Sucu,1 Gürhan İçöz,2 and Serhan Varma1

1 Department of Mathematics, Faculty of Science, Ankara University, Tandogan, 06100 Ankara, Turkey
2 Department of Mathematics, Faculty of Science, Gazi University, Teknikokullar, 06500 Ankara, Turkey

Correspondence should be addressed to Serhan Varma, svarma@science.ankara.edu.tr

Received 25 April 2012; Revised 19 July 2012; Accepted 2 August 2012

Academic Editor: Giovanni Galdi

Copyright q 2012 Sezgin Sucu et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

This paper is concerned with a new sequence of linear positive operators which generalize
Szasz operators including Boas-Buck-type polynomials. We establish a convergence theorem for
these operators and give the quantitative estimation of the approximation process by using a
classical approach and the second modulus of continuity. Some explicit examples of our operators
involving Laguerre polynomials, Charlier polynomials, and Gould-Hopper polynomials are given.
Moreover, a Voronovskaya-type result is obtained for the operators containing Gould-Hopper
polynomials.

1. Introduction

The approximation theory, which is concerned with the approximation of functions by
simpler calculated functions, is a branch of mathematical analysis. In 1885, Weierstrass
identified the set of continuous functions on a closed and bounded interval through uniform
approximation by polynomials. Later, Bernstein gave the first impressive example for these
polynomials.

In 1953, Korovkin [1] published his celebrated theorem on the approximation of
sequences of linear positive operators. This theorem contains a simple and easily applicable
criterion to check if a sequence of linear positive operators converges uniformly to the
function. One of the well-known examples of linear positive operators is Szasz operators
[2]
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where n ∈ N, x ≥ 0, and f ∈ C[0,∞) whenever the above sum converges. Many researchers
have dealt with the generalization of Szasz operators in a natural way.

Later, Jakimovski and Leviatan [3] presented a generalization of Szasz operators with
Appell polynomials. Let g(z) =

∑∞
k=0 akz

k(a0 /= 0) be an analytic function in the disc|z| <
R (R > 1) and assume that g(1)/= 0. The Appell polynomials pk(x) have generating functions
of the form

g(u)eux =
∞∑

k=0

pk(x)uk. (1.2)

Under the assumption pk(x) ≥ 0 for x ∈ [0,∞), Jakimovski and Leviatan introduced the
linear positive operators Pn(f ;x) via

Pn

(
f ;x

)
:=

e−nx

g(1)

∞∑

k=0

pk(nx)f
(
k

n

)
, for n ∈ N, (1.3)

and gave the approximation properties of these operators.

Remark 1.1. For g(z) = 1, in view of the generating functions (1.2), we easily find pk(x) =
xk/k! and from (1.3)we meet again the Szasz operators given by (1.1).

Then, Ismail [4] obtained another generalization of the Szasz operators (1.1) and
also Jakimovski and Leviatan operators (1.3) by means of Sheffer polynomials. Let A(z) =∑∞

k=0 akz
k (a0 /= 0) andH(z) =

∑∞
k=1 hkz

k (h1 /= 0) be analytic functions in the disc|z| < R (R >
1) where ak and hk are real. The Sheffer polynomials pk(x) have generating functions of the
type

A(t)exH(t) =
∞∑

k=0

pk(x)tk, |t| < R. (1.4)

Using the following assumptions:

(i) for x ∈ [0,∞), pk(x) ≥ 0,

(ii) A(1)/= 0, H ′(1) = 1.
(1.5)

Ismail investigated the approximation properties of linear positive operators given by

Tn
(
f ;x

)
:=

e−nxH(1)

A(1)

∞∑

k=0

pk(nx)f
(
k

n

)
, for n ∈ N. (1.6)

Remark 1.2. For H(t) = t, one can observe that the generating functions (1.4) reduce to (1.2)
and from this fact, the operators (1.6) return to the operators (1.3).

Remark 1.3. For H(t) = t and A(t) = 1, it is easy to get the Szasz operators from the operators
(1.6).
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Recently, Varma et al. [5] constructed linear positive operators including Brenke-type
polynomials. Brenke-type polynomials [6] have generating functions of the form

A(t)B(xt) =
∞∑

k=0

pk(x)tk, (1.7)

where A and B are analytic functions

A(t) =
∞∑

r=0

art
r , a0 /= 0,

B(t) =
∞∑

r=0

brt
r , br /= 0 (r ≥ 0),

(1.8)

and have the following explicit expression:

pk(x) =
k∑

r=0

ak−rbrxr , k = 0, 1, 2, . . . . (1.9)

Using the following assumptions

(i) A(1)/= 0,
ak−rbr
A(1)

≥ 0, 0 ≤ r ≤ k, k = 0, 1, 2, . . . ,

(ii) B : [0,∞) −→ (0,∞),

(iii) (1.7) and the power series (1.8) converge for |t| < R (R > 1),

(1.10)

Varma et al. introduced the following linear positive operators involving the Brenke-type
polynomials

Ln

(
f ;x

)
:=

1
A(1)B(nx)

∞∑

k=0

pk(nx)f
(
k

n

)
, (1.11)

where x ≥ 0 and n ∈ N.

Remark 1.4. Let B(t) = et. In this case, the operators (1.11) (resp., (1.7)) reduce to the operators
given by (1.3) (resp., (1.2)).

Remark 1.5. Let B(t) = et and A(t) = 1. We meet again the Szasz operators (1.1).

In this paper, our aim is to construct linear positive operators by using Boas-Buck-
type polynomials including the Brenke-type polynomials, Sheffer polynomials, and Appell



4 Abstract and Applied Analysis

polynomials with special cases. Boas-Buck-type polynomials [7] have generating functions
of the type

A(t)B(xH(t)) =
∞∑

k=0

pk(x)tk, (1.12)

where A, B, and H are analytic functions

A(t) =
∞∑

k=0

akt
k (a0 /= 0), B(t) =

∞∑

k=0

bkt
k (bk /= 0),

H(t) =
∞∑

k=1

hkt
k (h1 /= 0).

(1.13)

We will restrict ourselves to the Boas-Buck-type polynomials satisfying

(i) A(1)/= 0, H ′(1) = 1, pk(x) ≥ 0, k = 0, 1, 2, . . . ,

(ii) B : R → (0,∞),

(iii) (1.12) and the power series (1.13) converge for |t| < R(R > 1).

(1.14)

Now, given the above restrictions, we present a new form of linear positive operators
with Boas-Buck-type polynomials as follows:

Bn

(
f ;x

)
:=

1
A(1)B(nxH(1))

∞∑

k=0

pk(nx)f
(
k

n

)
, (1.15)

where x ≥ 0 and n ∈ N.

Remark 1.6. Let H(t) = t. The operators (1.15) (resp., (1.12)) reduce to the operators given by
(1.11) (resp., (1.7)).

Remark 1.7. Let B(t) = et. The operators (1.15) (resp., (1.12)) return to the operators given by
(1.6) (resp., (1.4)).

Remark 1.8. Let H(t) = t and B(t) = et. It is obvious that one can get the operators (1.3) from
the operators (1.15). In addition, if we choose A(t) = 1, we meet again the well-known Szasz
operators (1.1).

The paper is divided into three sections. Following the introduction, Section 2 is
devoted to obtain qualitative and quantitative results for the operators (1.15). In the last
section, we give some significant illustrations with the help of Laguerre, Charlier, and
Gould-Hopper polynomials for the operators (1.15). Moreover, we give a Voronovskaya-type
theorem for the operators including Gould-Hopper polynomials.
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2. Approximation Properties of Bn Operators

In this section, with the help of well-known Korovkin’s theorem, we get approximation
results by means of Bn linear positive operators. Next, we present quantitative results for
estimating the error of approximation using the classical approach and the second modulus
of continuity.

Lemma 2.1. For the operators Bn, one has

Bn(1;x) = 1,

Bn(s;x) =
B′(nxH(1))
B(nxH(1))

x +
A′(1)
nA(1)

,

Bn

(
s2;x

)
=

B′′(nxH(1))
B(nxH(1))

x2 +
[2A′(1) + (1 +H ′′(1))A(1)]B′(nxH(1))

nA(1)B(nxH(1))
x

+
A′′(1) +A′(1)

n2A(1)
,

(2.1)

for any x ∈ [0,∞).

Proof. From the generating functions of the Boas-Buck-type polynomials given by (1.12), we
obtain

∞∑

k=0

pk(nx) = A(1)B(nxH(1)),

∞∑

k=0

kpk(nx) = A′(1)B(nxH(1)) + nxA(1)B′(nxH(1)),

∞∑

k=0

k2pk(nx) =
(
A′′(1) +A′(1)

)
B(nxH(1)) +

(
2A′(1) +A(1) +A(1)H ′′(1)

)

× B′(nxH(1))nx +A(1)B′′(nxH(1))(nx)2.

(2.2)

With regard to these equalities, we get the assertions of the lemma.

Let us define the class of E as follows:

E :=
{
f : x ∈ [0,∞),

f(x)
1 + x2

is convergent as x −→ ∞
}
. (2.3)

Theorem 2.2. Let f ∈ C[0,∞) ∩ E and assume that

lim
y→∞

B′(y
)

B
(
y
) = 1, lim

y→∞
B′′(y

)

B
(
y
) = 1. (2.4)
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Then,

lim
n→∞

Bn

(
f ;x

)
= f(x) (2.5)

uniformly on each compact subset of [0,∞).

Proof. According to Lemma 2.1 and taking into account the assumptions (2.4), we find

lim
n→∞

Bn

(
si;x

)
= xi, i = 0, 1, 2. (2.6)

The above-mentioned convergences are satisfied uniformly in each compact subset of [0,∞).
Applying the universal Korovkin-type property (vi) of Theorem 4.1.4 from [8], we lead to the
desired result.

In order to estimate the rate of convergence, wewill give some definitions and lemmas.

Definition 2.3. Let f ∈ C̃[0,∞) and δ > 0. The modulus of continuity ω(f ; δ) of the function f
is defined by

ω
(
f ; δ

)
:= sup

x,y∈[0,∞)

|x−y|≤δ

∣∣f(x) − f
(
y
)∣∣,

(2.7)

where C̃[0,∞) is the space of uniformly continuous functions on [0,∞).

Definition 2.4. The second modulus of continuity of the function f ∈ C[a, b] is defined by

ω2
(
f ; δ

)
:= sup

0<t≤δ

∥∥f(· + 2t) − 2f(· + t) + f(·)∥∥, (2.8)

where ‖f‖ = max
x∈[a,b]

|f(x)|.

Lemma 2.5 (Gavrea and Raşa [9]). Let g ∈ C2[0, a] and (Kn)n≥0 be a sequence of linear positive
operators with the property Kn(1;x) = 1. Then,

∣∣Kn

(
g;x

) − g(x)
∣∣ ≤ ∥∥g ′∥∥

√

Kn

(
(s − x)2;x

)
+
1
2
∥∥g ′′∥∥Kn

(
(s − x)2;x

)
. (2.9)

Lemma 2.6 (Zhuk [10]). Let f ∈ C[a, b] and h ∈ (0, (b − a)/2). Let fh be the second-order Steklov
function attached to the function f . Then, the following inequalities are satisfied:

(i)
∥∥fh − f

∥∥ ≤ 3
4
ω2

(
f ;h

)
,

(ii)
∥∥f ′′

h

∥∥ ≤ 3
2h2

ω2
(
f ;h

)
.

(2.10)
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Lemma 2.7. For x ∈ [0,∞), one has

Bn

(
(s − x)2;x

)
=

B′′(nxH(1)) − 2B′(nxH(1)) + B(nxH(1))
B(nxH(1))

x2

+
A(1)(H ′′(1) + 1)B′(nxH(1)) + 2A′(1)[B′(nxH(1)) − B(nxH(1))]

nA(1)B(nxH(1))
x

+
A′′(1) +A′(1)

n2A(1)
.

(2.11)

Proof. Using the linearity property of Bn operators, one can write

Bn

(
(s − x)2;x

)
= Bn

(
s2;x

)
− 2xBn(s;x) + x2Bn(1;x). (2.12)

Applying Lemma 2.1, we obtain the equality stated in the lemma.

Generally, we use the modulus of continuity and second modulus of continuity to
obtain quantitative error estimation for convergence by linear positive operators. Now, we
will calculate the rate of convergence in the following two theorems.

Theorem 2.8. Let f ∈ C̃[0,∞) ∩ E. Bn operators verify the following inequality:

∣∣Bn

(
f ;x

) − f(x)
∣∣ ≤ 2ω

(
f ;

√
ϑn(x)

)
, (2.13)

where

ϑ := ϑn(x) = Bn

(
(s − x)2;x

)

=
B′′(nxH(1)) − 2B′(nxH(1)) + B(nxH(1))

B(nxH(1))
x2

+
A(1)(H ′′(1) + 1)B′(nxH(1)) + 2A′(1)[B′(nxH(1)) − B(nxH(1))]

nA(1)B(nxH(1))
x

+
A′′(1) +A′(1)

n2A(1)
.

(2.14)

Proof. Making use of Lemma 2.1 and the property of modulus of continuity, we deduce

∣∣Bn

(
f ;x

) − f(x)
∣∣ ≤ 1

A(1)B(nxH(1))

∞∑

k=0

pk(nx)
∣∣∣∣f
(
k

n

)
− f(x)

∣∣∣∣

≤
{

1 +
1

A(1)B(nxH(1))
1
δ

∞∑

k=0

pk(nx)
∣∣∣∣
k

n
− x

∣∣∣∣

}

ω
(
f ; δ

)
.

(2.15)
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Taking into account the Cauchy-Schwarz inequality and then by using Lemma 2.7, we get

∞∑

k=0

pk(nx)
∣
∣
∣
∣
k

n
− x

∣
∣
∣
∣ ≤

{ ∞∑

k=0

pk(nx)

}1/2{ ∞∑

k=0

pk(nx)
∣
∣
∣
∣
k

n
− x

∣
∣
∣
∣

2
}1/2

= A(1)B(nxH(1))
√

Bn

(
(s − x)2;x

)
.

(2.16)

Considering the last inequality in (2.15), we obtain

∣∣Bn

(
f ;x

) − f(x)
∣∣ ≤

{
1 +

1
δ

√
ϑn(x)

}
ω
(
f ; δ

)
, (2.17)

where ϑn(x) is given by (2.14). In inequality (2.17), by choosing δ =
√
ϑn(x), we get the

desired result.

Theorem 2.9. For f ∈ C[0, a], the following estimate

∣∣Bn

(
f ;x

) − f(x)
∣∣ ≤ 2

a

∥∥f
∥∥h2 +

3
4

(
a + 2 + h2

)
ω2

(
f ;h

)
(2.18)

holds, where

h := hn(x) =
4

√

Bn

(
(s − x)2;x

)
. (2.19)

Proof. Let fh be the second-order Steklov function attached to the function f . With regard to
the identity Bn(1;x) = 1, we have

∣∣Bn

(
f ;x

) − f(x)
∣∣ ≤ ∣∣Bn

(
f − fh;x

)∣∣ +
∣∣Bn

(
fh;x

) − fh(x)
∣∣ +

∣∣fh(x) − f(x)
∣∣

≤ 2
∥∥fh − f

∥∥ +
∣∣Bn

(
fh;x

) − fh(x)
∣∣.

(2.20)

Taking account of the fact that fh ∈ C2[0, a], it follows from Lemma 2.5

∣∣Bn

(
fh;x

) − fh(x)
∣∣ ≤ ∥∥f ′

h

∥∥
√

Bn

(
(s − x)2;x

)
+
1
2
∥∥f ′′

h

∥∥Bn

(
(s − x)2;x

)
. (2.21)

If one combines Landau inequality with Lemma 2.6, we can write

∥∥f ′
h

∥∥ ≤ 2
a

∥∥fh
∥∥ +

a

2
∥∥f ′′

h

∥∥

≤ 2
a

∥∥f
∥∥ +

3a
4

1
h2

ω2
(
f ;h

)
.

(2.22)
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From the last inequality and Lemma 2.6, (2.21) becomes by taking h = 4
√
Bn((s − x)2;x)

∣
∣Bn

(
fh;x

) − fh(x)
∣
∣ ≤ 2

a

∥
∥f

∥
∥h2 +

3a
4
ω2

(
f ;h

)
+
3
4
h2ω2

(
f ;h

)
. (2.23)

Substituting (2.23) in (2.20), hence Lemma 2.6 gives the proof of the theorem.

Remark 2.10. In Theorem 2.9, we present the proof for h ∈ (0, a/2). For the special case
B(t) = et,H(t) = t, A(t) = 1 and x = 0, one can get h = 0 from the equality h := hn(x) =
4
√
Bn((s − x)2;x). The inequality obtained in Theorem 2.9 still holds true when h = 0.

Remark 2.11. Note that in Theorems 2.8–2.9 when n → ∞, respectively, ϑ and h tend to zero
under the assumptions (2.4).

3. Examples

Example 3.1. Laguerre polynomials are one of the most important classical orthogonal
polynomials in the literature. Such polynomials are used in every area of mathematics. In
addition, these polynomials have served with several interesting properties for physicists.
For example, Laguerre polynomials arise as solutions of the Coulomb potential in quantum
mechanics.

Laguerre polynomials have generating functions of the form

1

(1 − t)α+1
exp

(
− xt

1 − t

)
=

∞∑

k=0

L
(α)
k (x)tk, |t| < 1, (3.1)

and explicit expressions

L
(α)
k (x) =

k∑

m=0

(α + k)!
(k −m)!(α +m)!m!

(−x)m, α > −1. (3.2)

It is clear that Laguerre polynomials are Boas-Buck-type polynomials. Note that when x ∈
(−∞, 0], L(α)

k
(x) are positive. For ensuring the restrictions (1.14) and the assumptions (2.4),

we have to modify the generating functions (3.1) as follows:

1

(1 − (t/2))α+1
exp

(
xt

2(2 − t)

)
=

∞∑

k=0

L
(α)
k (−x/2)

2k
tk, |t| < 2. (3.3)
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With the help of generating functions (3.3), we find the following linear positive operators
including Laguerre polynomials from the operators (1.15)

L̃n

(
f ;x

)
= e−(nx/2)

∞∑

k=0

L
(α)
k (−(nx/2))

2α+k+1
f

(
k

n

)
, (3.4)

where α > −1 and x ∈ [0,∞).

Remark 3.2. It is worthy to note that we obtain new linear positive operators different from
the one given in [4].

Example 3.3. Varma and Taşdelen [11] gave the following linear positive operators involving
Charlier polynomials as a generalization of the Szasz operators:

Ln

(
f ;x, a

)
= e−1

(
1 − 1

a

)(a−1)nx ∞∑

k=0

C
(a)
k (−(a − 1)nx)

k!
f

(
k

n

)
, (3.5)

where a > 1, x ∈ [0,∞) and C
(a)
k (x) Charlier polynomials have the generating functions of

the type

et
(
1 − t

a

)x

=
∞∑

k=0

C
(a)
k (x)
k!

tk, |t| < a. (3.6)

Note that one can get the operators (3.5) as an example of the operators given by the equality
(1.6) defined in [4].

On the other hand, Charlier polynomials are also the Boas-Buck-type polynomials by
choosing

A(t) = et, B(t) = et, H(t) = ln
(
1 − t

a

)
. (3.7)

For ensuring the restrictions (1.14) and the assumptions (2.4), we have to change the
generating functions (3.6) by

ete−(a−1)x ln(1−(t/a)) =
∞∑

k=0

C
(a)
k (−(a − 1)x)

k!
tk, |t| < a. (3.8)

In view of the generating functions (3.8), we have the linear positive operators (3.5)
investigated in [11] from the operators (1.15).

Example 3.4. Gould-Hopper polynomials [12] have the generating functions of the form

eht
d+1

exp(xt) =
∞∑

k=0

gd+1
k (x, h)

tk

k!
(3.9)
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and the explicit representations

gd+1
k (x, h) =

[k/(d+1)]∑

s=0

k!
s!(k − (d + 1)s)!

hsxk−(d+1)s, (3.10)

where, as usual, [·] denotes the integer part. Gould-Hopper polynomials gd+1
k

(x, h) are
d-orthogonal polynomial set of Hermite type [13]. Van Iseghem [14] and Maroni [15]
discovered the notion of d-orthogonality. Gould-Hopper polynomials are Boas-Buck-type
polynomials with

A(t) = eht
d+1
, B(t) = et, H(t) = t. (3.11)

Under the assumption h ≥ 0; the restrictions (1.14) and condition (2.4) for the operators Bn

given by (1.15) are satisfied. With the help of the generating functions (3.9), we obtain the
explicit form of Bn operators including Gould-Hopper polynomials by

L∗
n

(
f ;x

)
= e−nx−h

∞∑

k=0

gd+1
k (nx, h)

k!
f

(
k

n

)
, (3.12)

where x ∈ [0,∞).

Remark 3.5. First time, the operators L∗
n are given in [5] as an explicit example of the operators

(1.11). For h = 0, we obtain that

gd+1
k (nx, 0) = (nx)k. (3.13)

Substituting h = 0 and gd+1
k

(nx, 0) = (nx)k in the operators (3.12), we get the well-known
Szasz operators. By the help of L∗

n operators, we present an attractive generalization of the
Szasz operators with Gould-Hopper polynomials.

Next, we give a Voronovskaya-type theorem for the operators L∗
n. In order to prove this

theorem, we need some auxiliary results.

Lemma 3.6. For the operators L∗
n, one has

L∗
n(1;x) = 1,

L∗
n(s;x) = x +

h(d + 1)
n

,

L∗
n

(
s2;x

)
= x2 +

2h(d + 1) + 1
n

x +
h(h + 1)(d + 1)2

n2
,

L∗
n

(
s3;x

)
= x3 +

3h(d + 1) + 3
n

x2

+
3h2(d + 1)2 + 3h(d + 1)(d + 2) + 1

n2
x +

h
(
h2 + 3h + 1

)
(d + 1)3

n3
,
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L∗
n

(
s4;x

)
= x4 +

4h(d + 1) + 6
n

x3 +
6h2(d + 1)2 + 6h(d + 1)(d + 3) + 7

n2
x2

+
6h2(d + 1)2(2d + 3) + 2h(d + 1)

(
2d2 + 7d + 7

)
+ 4h3(d + 1)3 + 1

n3
x

+
h
(
h3 + 6h2 + 7h + 1

)
(d + 1)4

n4
.

(3.14)

Proof. By virtue of the generating functions (3.9) for Gould-Hopper polynomials, we obtain
the above equalities.

Lemma 3.7. For x ≥ 0, the following equalities hold:

L∗
n

(
(s − x)2;x

)
=

x

n
+
h(h + 1)(d + 1)2

n2
,

L∗
n

(
(s − x)4;x

)
=

3
n2

x2 +
6h2(d + 1)2 + 2h(d + 1)(3d + 5) + 1

n3
x

+
h
(
h3 + 6h2 + 7h + 1

)
(d + 1)4

n4
.

(3.15)

Proof. According to Lemma 3.6, it is easy to get the above equalities.

Theorem 3.8. Let f ∈ C2[0, a]. Then, one has

lim
n→∞

n
[
L∗
n

(
f ;x

) − f(x)
]
= h(d + 1)f ′(x) +

xf ′′(x)
2

. (3.16)

Proof. In view of Taylor formula for the function f , we find

f(s) = f(x) + (s − x)f ′(x) +
(s − x)2

2!
f ′′(x) + (s − x)2η(s;x), (3.17)

where η(s;x) ∈ C[0, a] and lims→xη(s;x) = 0. Applying L∗
n to the both sides of (3.17), we get

L∗
n

(
f ;x

)
= f(x) + f ′(x)L∗

n(s − x;x) +
f ′′(x)
2

L∗
n

(
(s − x)2;x

)

+ L∗
n

(
(s − x)2η(s;x);x

)
.

(3.18)

According to Lemmas 3.6–3.7, (3.18) becomes

L∗
n

(
f ;x

)
= f(x) + f ′(x)

h(d + 1)
n

+
f ′′(x)
2

[
x

n
+
h(h + 1)(d + 1)2

n2

]

+ I, (3.19)
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where

I := e−nx−h
∞∑

k=0

gd+1
k (nx, h)

k!

(
k

n
− x

)2

η

(
k

n
;x

)
. (3.20)

Now, we consider the sum I as follows:

I = e−nx−h
∑

|(k/n)−x|≤δ

gd+1
k (nx, h)

k!

(
k

n
− x

)2

η

(
k

n
;x

)

+ e−nx−h
∑

|(k/n)−x|>δ

gd+1
k (nx, h)

k!

(
k

n
− x

)2

η

(
k

n
;x

)
.

(3.21)

From the continuity of function η, it results that for all ε > 0, there exists a positive δ such
that if |(k/n) − x| ≤ δ, then |η(k/n;x)| < ε. Furthermore, since the function η is bounded, we
can write |η(k/n;x)| < M for |(k/n) − x| > δ. In view of these facts, (3.21) leads to

I ≤ εL∗
n

(
(s − x)2;x

)
+Me−nx−h

∑

|(k/n)−x|>δ

gd+1
k (nx, h)

k!

(
k

n
− x

)2

. (3.22)

Taking into account the fact

e−nx−h
∑

|(k/n)−x|>δ

gd+1
k (nx, h)

k!

(
k

n
− x

)2

≤ 1
δ2

L∗
n

(
(s − x)4;x

)
(3.23)

in the last inequality, we have

I ≤ εL∗
n

(
(s − x)2;x

)
+
M

δ2
L∗
n

(
(s − x)4;x

)
. (3.24)

Substituting the inequality (3.24) in the equality (3.19), then from Lemma 3.7, we obtain

L∗
n

(
f ;x

) − f(x) ≤ f ′(x)
h(d + 1)

n
+
(
ε +

f ′′(x)
2

)[
x

n
+
h(h + 1)(d + 1)2

n2

]

+
M

δ2

[
3
n2

x2 +
6h2(d + 1)2 + 2h(d + 1)(3d + 5) + 1

n3
x

+
h
(
h3 + 6h2 + 7h + 1

)
(d + 1)4

n4

]

.

(3.25)
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Equivalently, we can write

L∗
n

(
f ;x

) − f(x) = O
(
1
n

){

f ′(x)h(d + 1) +
(
ε +

f ′′(x)
2

)[

x +
h(h + 1)(d + 1)2

n

]

+
M

δ2

[
3
n
x2 +

6h2(d + 1)2 + 2h(d + 1)(3d + 5) + 1
n2

x

+
h
(
h3 + 6h2 + 7h + 1

)
(d + 1)4

n3

]}

.

(3.26)

Taking limits for n → ∞, (3.26) becomes

lim
n→∞

n
[
L∗
n

(
f ;x

) − f(x)
]
= h(d + 1)f ′(x) +

xf ′′(x)
2

, (3.27)

which completes the proof.

Remark 3.9. Theorem 3.8 is an explicit example of Gonska’s result given in [16]. It is worthy
to note that this Voronovskaya-type result is given for the L∗

n operators which contain Gould-
Hopper polynomials.

Remark 3.10. Taking h = 0 in Theorem 3.8, we get a Voronovskaya-type result for the Szasz
operators.
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