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For continuous boundary data, the modified Poisson integral is used to write solutions to the
half space Dirichlet problem for the Schrödinger operator. Meanwhile, a solution of the Poisson
integral for any continuous boundary function is also given explicitly by the Poisson integral with
the generalized Poisson kernel depending on this boundary function.

1. Introduction and Results

Let R and R+ be the sets of all real numbers and of all positive real numbers, respectively.
Let Rn(n ≥ 2) denote the n-dimensional Euclidean space with points x = (x′, xn), where
x′ = (x1, x2, . . . , xn−1) ∈ Rn−1 and xn ∈ R. The unit sphere and the upper half unit sphere in Rn

are denoted by Sn−1 and Sn−1
+ , respectively. The boundary and closure of an open set D of Rn

are denoted by ∂D and D, respectively. The upper half space is the set H = {(x′, xn) ∈ Rn :
xn > 0}, whose boundary is ∂H.

For a set E, E ⊂ R+ ∪ {0}, we denote {x ∈ H; |x| ∈ E} and {x ∈ ∂H; |x| ∈ E} by HE
and ∂HE, respectively. We identify Rn with Rn−1 ×R and Rn−1 with Rn−1 ×{0}, writing typical
points x, y ∈ Rn as x = (x′, xn), y = (y′, yn), where y′ = (y1, y2, . . . , yn−1) ∈ Rn−1, and putting

x · y =
n∑

j=1

xjyj , |x| = √
x · x, Θ =

x

|x| , Φ =
y
∣∣y

∣∣ . (1.1)

For x ∈ Rn and r > 0, let B(x, r) denote the open ball with center at x and radius r(> 0)
in Rn. We will say that a set E ⊂ H has a covering {rj , Rj} if there exists a sequence of balls
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{Bj}with centers inH such that E ⊂ ⋃∞
j=1 Bj , where rj is the radius of Bj and Rj is the distance

between the origin and the center of Bj .
LetAa denote the class of nonnegative radial potentials a(x), that is, 0 ≤ a(x) = a(|x|),

x ∈ H, such that a ∈ Lb
loc(H) with some b > n/2 if n ≥ 4 and with b = 2 if n = 2 or n = 3.

This paper is devoted to the stationary Schrödinger equation

SSEu(x) = −Δu(x) + a(x)u(x) = 0, (1.2)

where x ∈ H, Δ is the Laplace operator and a ∈ Aa. These solutions are called a-harmonic
functions or generalized harmonic functions associated with the operator SSE. Note that they
are (classical) harmonic functions in the case a = 0. Under these assumptions the operator SSE
can be extended in the usual way from the spaceC∞

0 (H) to an essentially self-adjoint operator
on L2(H) (see [1–3]). We will denote it by SSE as well. This last one has a Green function
Ga(x, y). Here, Ga(x, y) is positive on H and its inner normal derivative ∂Ga(x, y)/∂n(y′) ≥
0. We denote this derivative by Pa(x, y′), which is called the Poisson a-kernel with respect
to H. We remark that G(x, y) and P(x, y′) are the Green function and Poisson kernel of the
Laplacian in H, respectively.

Let Δ∗ be a Laplace-Beltrami operator (spherical part of the Laplace) on the unit
sphere. It is known (see, e.g., [4, page 41]) that the eigenvalue problem

Δ∗ϕ(Θ) + λϕ(Θ) = 0, Θ ∈ Sn−1
+ ,

ϕ(Θ) = 0, Θ ∈ ∂Sn−1
+ ,

(1.3)

has the eigenvalues λj = j(j +n−2) (j = 0, 1, 2 . . .). Corresponding eigenfunctions are denoted
by ϕjv(1 ≤ v ≤ vj), where vj is the multiplicity of λj . We norm the eigenfunctions in L2(Sn−1

+ )
and ϕ1 = ϕ11 > 0.

Hence, well-known estimates (see, e.g., [5, page 14]) imply the following inequality:

vj∑

v=1

ϕjv(Θ)
∂ϕjv(Φ)
∂nΦ

≤ M(n)j2n−1, (1.4)

where the symbol M(n) denotes a constant depending only on n.
Let Vj(r) and Wj(r) stand, respectively, for the increasing and nonincreasing, as r →

+∞, solutions of the equation

−y′′(r) − n − 1
r

y′(r) +

(
λj

r2
+ a(r)

)
y(r) = 0, 0 < r < ∞, (1.5)

normalized under the condition Vj(1) = Wj(1) = 1.
We will also consider the class Ba, consisting of the potentials a ∈ Aa such that there

exists a finite limit limr→∞r2a(r) = k ∈ [0,∞). Moreover, r−1|r2a(r) − k| ∈ L(1,∞). If a ∈ Ba,
then solutions of (1.2) are continuous (see [6]).

In the rest of paper, we assume that a ∈ Ba, and we will suppress this assumption for
simplicity. Further, we use the standard notations u+ = max{u, 0}, u− = −min{u, 0}, [d] is the
integer part of d and d = [d] + {d}, where d is a positive real number.
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Denote

ι±j,k =
2 − n ±

√
(n − 2)2 + 4

(
k + λj

)

2
(
j = 0, 1, 2, 3 . . .

)
. (1.6)

Remark 1.1. ι+j,0 = j(j = 0, 1, 2, 3, . . .) in the case a = 0.

It is known (see [7]) that in the case under consideration the solutions to (1.5) have
the asymptotics

Vj(r) ∼ d1r
ι+
j,k , Wj(r) ∼ d2r

ι−
j,k , as r −→ ∞, (1.7)

where d1 and d2 are some positive constants.
If a ∈ Aa, it is known that the following expansion for the Green functionGa(x, y) (see

[8, Chapter 11], [1, 9])

Ga

(
x, y

)
=

∞∑

j=0

1
χ′(1)

Vj

(
min

(|x|, ∣∣y∣∣))Wj

(
max

(|x|, ∣∣y∣∣))
( vj∑

v=1

ϕjv(Θ)ϕjv(Φ)

)
, (1.8)

where |x|/= |y| and χ′(1) = w(W1(r), V1(r))|r=1 is itsWronskian. The series converges uniform-
ly if either |x| ≤ s|y| or |y| ≤ s|x|(0 < s < 1).

For a nonnegative integer m and two points x, y ∈ H, we put

K(a,m)
(
x, y

)
=

{
0 if

∣∣y
∣∣ < 1,

K̃(a,m)
(
x, y

)
if 1 ≤ ∣∣y

∣∣ < ∞,
(1.9)

where

K̃(a,m)
(
x, y

)
=

m∑

j=0

1
χ′(1)

Vj(|x|)Wj

(∣∣y
∣∣)
( vj∑

v=1

ϕjv(Θ)ϕjv(Φ)

)
. (1.10)

We introduce another function of x, y ∈ H

G(a,m)
(
x, y

)
= Ga

(
x, y

) −K(a,m)
(
x, y

)
. (1.11)

The generalized Poisson kernel P(a,m)(x, y′)with respect toH is defined by

P(a,m)
(
x, y′) =

∂G(a,m)
(
x, y

)

∂n
(
y′) . (1.12)

In fact

P(a, 0)
(
x, y′) = Pa

(
x, y′). (1.13)
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We remark that the kernel function P(0, m)(x, y′) coincides with ones in Finkelstein
and Scheinberg [10] and Siegel and Talvila [11] (see [8, Chapter 11]).

Put

U(a,m;u)(x) =
∫

∂H

P(a,m)
(
x, y′)u

(
y′)dy′, (1.14)

where u(y′) is a continuous function on ∂H.
If γ is a real number and γ ≥ 0, (resp., γ < 0), ι+[γ],k+{γ} > −ι+1,k+1 (resp., −ι+[−γ],k−{−γ} >

−ι+1,k + 1) and

ι+[γ],k +
{
γ
} − n + 1 ≤ ι+m+1,k < ι+[γ],k +

{
γ
} − n + 2

(
resp., −ι+[−γ],k −

{−γ} − n + 1 ≤ ι+m+1,k < −ι+[−γ],k −
{−γ} − n + 2

)
.

(1.15)

If these conditions all hold, we write γ ∈ C(k,m, n) (resp., γ ∈ D(k,m, n)).
Let γ ∈ C(k,m, n) (resp., γ ∈ D(k,m, n)) and u be functions on ∂H satisfying

∫

∂H

∣∣u
(
y′)∣∣

1 +
∣∣y′∣∣ι+[γ],k+{γ}

dy′ < ∞
(
resp.

∫

∂H

∣∣u
(
y′)∣∣

(
1 +

∣∣y′∣∣ι+[−γ],k+{−γ}
)
dy′ < ∞

)
. (1.16)

For γ and u, we define the positive measure μ (resp., ν) on Rn by

dμ
(
y′) =

{∣∣u
(
y′)∣∣∣∣y′∣∣−ι+[γ],k−{γ}dy′, y′ ∈ ∂H(1,+∞),

0, y′ ∈ Rn − ∂H(1,+∞)
(
resp. dν

(
y′) =

{∣∣u
(
y′)∣∣∣∣y′∣∣ι+[−γ],k+{−γ}dy′, y′ ∈ ∂H(1,+∞),

0, y′ ∈ Rn − ∂H(1,+∞)

)
.

(1.17)

We remark that the total mass of μ and ν is finite.
Let ε > 0 and ξ ≥ 0, and let μ be any positive measure on Rn having finite mass. For

each x = (x′, xn) ∈ Rn, the maximal function is defined by

M
(
x;μ, ξ

)
= sup

0<ρ<|x|/2

μ
(
B
(
x, ρ

))

ρξ
. (1.18)

The set {x = (x′, xn) ∈ Rn;M(x;μ, ξ)|x|ξ > ε} is denoted by E(ε;μ, ξ).
About classical solutions of the Dirichlet problem for the Laplacian, Siegel and Talvila

(cf. [11, Corollary 2.1]) proved the following result.

Theorem A. If u is a continuous function on ∂H satisfying

∫

∂H

∣∣u
(
y′)∣∣

1 +
∣∣y′∣∣n+mdy′ < ∞, (1.19)
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then, the function U(0, m;u)(x) satisfies

U(0, m;u) ∈ C2(H) ∩ C0
(
H
)
,

ΔU(0, m;u) = 0 in H,

U(0, m;u) = u on ∂H,

lim
|x|→∞,x∈H

U(0, m;u)(x) = o
(
x1−n
n |x|n+m

)
.

(1.20)

Our first aim is to give the growth properties at infinity forU(a,m;u)(x).

Theorem 1.2. If 0 ≤ ζ ≤ n, γ ∈ C(k,m, n) (resp., γ ∈ D(k,m, n)) and u is a measurable function on
∂H satisfying (1.16), then there exists a covering {rj , Rj} of E(ε;μ, n−ζ) (resp., E(ε; ν, n−ζ))(⊂ H)
satisfying

∞∑

j=0

(
rj

Rj

)2−ζ
Vj

(
Rj

rj

)
Wj

(
Rj

rj

)
< ∞ (1.21)

such that

lim
|x|→∞,x∈H−E(ε;μ,n−ζ)

|x|−ι+[γ],k−{γ}+n−1ϕζ−1
1 (Θ)U(a,m;u)(x) = 0 (1.22)

(
resp., lim

|x|→∞,x∈H−E(ε;ν,n−ζ)
|x|ι+[−γ],k+{−γ}+n−1ϕζ−1

1 (Θ)U(a,m;u)(x) = 0
)
. (1.23)

If u is a measurable function on ∂H satisfying

∫

∂H

∣∣u
(
y′)∣∣

1 +
∣∣y′∣∣γ dy

′ < ∞, (1.24)

where γ is a real number, for this γ and u, we define

dμ′(y′) =

{∣∣u
(
y′)∣∣∣∣y′∣∣−γdy′, y′ ∈ ∂H(1,+∞),

0, y′ ∈ Rn − ∂H(1,+∞).
(1.25)

Obviously, the total mass of μ′ is also finite.

If we take a = 0 in Theorem 1.2, then we immediately have the following growth
property based on (1.5) and Remark 1.1.
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Corollary 1.3. Let 0 ≤ ζ ≤ n, γ > −(n − 1)(p − 1) and γ − n ≤ m < γ − n + 1. If u is defined as
previously, then the function U(0, m;u)(x) is a harmonic function on H and there exists a covering
{rj , Rj} of E(ε;μ′, n − ζ)(⊂ H) satisfying

∞∑

j=0

(
rj

Rj

)n−ζ
< ∞ (1.26)

such that

lim
|x|→∞,x∈H−E(ε;μ′,n−ζ)

|x|n−γ−1ϕζ−1
1 (Θ)U(a,m;u)(x) = 0. (1.27)

Remark 1.4. In the case ζ = n, (1.26) is a finite sum, and the set E(ε;μ′, 0) is a bounded set and
(1.27) holds in H.

Next we are concerned with solutions of the Dirichlet problem for the Schrödinger
operator onH. For related results, we refer the readers to the paper by Kheyfits [1].

Theorem 1.5. If γ ∈ C(k,m, n) (resp., γ ∈ D(k,m, n)) and u is a continuous function on ∂H
satisfying (1.16), then

U(a,m;u) ∈ C2(H) ∩ C0
(
H
)
,

SSE U(a,m;u) = 0 in H,

U(a,m;u) = u on ∂H,

(1.28)

lim
|x|→∞,x∈H

|x|−ι+[γ],k−{γ}+n−1ϕn−1
1 (Θ)U(a,m;u)(x) = 0 (1.29)

(
resp., lim

|x|→∞,x∈H
|x|ι+[−γ],k+{−γ}+n−1ϕn−1

1 (Θ)U(a,m;u)(x) = 0
)
. (1.30)

If we take ι+[γ],k + {γ} = ι+
m+1,k +n− 1, then we immediately have the following corollary,

which is just Theorem A in the case a = 0.

Corollary 1.6. If u is a continuous function on ∂H satisfying

∫

∂H

∣∣u
(
y′)∣∣

1 +
∣∣y′∣∣ι+m+1,k+n−1

dy′ < ∞, (1.31)

then (1.28) hold and

lim
|x|→∞,x∈H

|x|−ι+m+1,kϕn−1
1 (Θ)U(a,m;u)(x) = 0. (1.32)

As an application of Corollary 1.6, we can give a solution of the Dirichlet problem for
any continuous function on ∂H.
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Theorem 1.7. If u is a continuous function on ∂H satisfying (1.31) and h(x) is a solution of the
Dirichlet problem for the Schrödinger operator on H with u satisfying

lim
|x|→∞,x∈H

|x|−ι+m+1,kh+(x) = 0, (1.33)

then

h(x) = U(a,m;u)(x) +
m∑

j=0

( vj∑

v=1

djvϕjv(Θ)

)
Vj(|x|), (1.34)

where x ∈ H and djv are constants.

2. Lemmas

Throughout this paper, let M denote various constants independent of the variables in
questions, which may be different from line to line.

Lemma 2.1. If 1 ≤ |y′| < (1/2)|x|, then

∣∣Pa

(
x, y′)∣∣ ≤ M|x|ι−1,k ∣∣y′∣∣ι+1,k−1ϕ1(Θ). (2.1)

If |y′| ≥ 1 and |y′| ≥ 2|x|, then

∣∣P(a,m)
(
x, y′)∣∣ ≤ MVm+1(|x|)

Wm+1
(∣∣y′∣∣)

∣∣y′∣∣ ϕ1(Θ)
∂ϕ1(Φ)
∂nΦ

. (2.2)

If (1/2)|x| < |y′| < 2|x|, then
∣∣P

(
x, y′)∣∣ ≤ M

∣∣x − y′∣∣−n|x|ϕ1(Θ). (2.3)

Proof. Equations (2.1) and (2.2) are obtained by Kheyfits (see [8, Chapter 11] or [1, Lemma
1]). Equation (2.3) follows from Hayman and Kennedy (see [12, Lemma 4.2]).

Lemma 2.2 (see [2, Theorem 1]). If u(x) is a solution of (1.2) on H satisfying

lim
|x|→∞,x∈H

|x|−ι+m+1,ku+(x) = 0, (2.4)

then

u(x) =
m∑

j=0

( vj∑

v=1

djvϕjv(Θ)

)
Vj(|x|). (2.5)
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Lemma 2.3. Let ε > 0 and ξ ≥ 0, and let μ be any positive measure on Rn having finite total mass.
Then, E(ε;μ, ξ) has a covering {rj , Rj} (j = 1, 2, . . .) satisfying

∞∑

j=1

(
rj

Rj

)2−n+ξ
Vj

(
Rj

rj

)
Wj

(
Rj

rj

)
< ∞. (2.6)

Proof. Set

Ej

(
ε;μ, ξ

)
=
{
x ∈ E

(
ε;μ, ξ

)
: 2j ≤ |x| < 2j+1

} (
j = 2, 3, 4, . . .

)
. (2.7)

If x ∈ Ej(ε;μ, ξ), then there exists a positive number ρ(x) such that

(
ρ(x)
|x|

)2−n+ξ
Vj

( |x|
ρ(x)

)
Wj

( |x|
ρ(x)

)
∼
(
ρ(x)
|x|

)ξ

≤ μ
(
B
(
x, ρ(x)

))

ε
. (2.8)

Here, Ej(ε;μ, ξ) can be covered by the union of a family of balls {B(xj,i, ρj,i) : xj,i ∈
Ej(ε;μ, ξ)} (ρj,i = ρ(xj,i)). By the Vitali lemma (see [13]), there exists Λj ⊂ Ej(ε;μ, ξ),
which is at most countable, such that {B(xj,i, ρj,i) : xj,i ∈ Λj} are disjoint and Ej(ε;μ, ξ) ⊂⋃

xj,i∈Λj
B(xj,i, 5ρj,i).
So

∞⋃

j=2

Ej

(
ε;μ, ξ

) ⊂
∞⋃

j=2

⋃

xj,i∈Λj

B
(
xj,i, 5ρj,i

)
. (2.9)

On the other hand, note that
⋃

xj,i∈Λj
B(xj,i, ρj,i) ⊂ {x : 2j−1 ≤ |x| < 2j+2}, so that

∑

Pj,i∈Λj

(
5ρj,i∣∣xj,i

∣∣

)2−n+ξ
Vj

(∣∣xj,i

∣∣

5ρj,i

)
Wj

(∣∣xj,i

∣∣

5ρj,i

)
∼

∑

xj,i∈Λj

(
5ρj,i∣∣xj,i

∣∣

)ξ

≤ 5ξ
∑

xj,i∈Λj

μ
(
B
(
xj,i, ρj,i

))

ε

≤ 5ξ

ε
μ
(
H
[
2j−1, 2j+2

))
.

(2.10)

Hence, we obtain

∞∑

j=1

∑

xj,i∈Λj

(
ρj,i∣∣xj,i

∣∣

)2−n+ξ
Vj

(∣∣xj,i

∣∣

ρj,i

)
Wj

(∣∣xj,i

∣∣

ρj,i

)
∼

∞∑

j=1

∑

xj,i∈Λj

(
ρj,i∣∣xj,i

∣∣

)ξ

≤
∞∑

j=1

μ
(
H
[
2j−1, 2j+2

))

ε

≤ 3μ(Rn)
ε

.

(2.11)
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Since E(ε;μ, ξ) ∩ {x ∈ Rn; |x| ≥ 4} =
⋃∞

j=2 Ej(ε;μ, ξ), then E(ε;μ, ξ) is finally covered by
a sequence of balls (B(xj,i, ρj,i), B(x1, 6))(j = 2, 3, . . . ; i = 1, 2, . . .) satisfying

∑

j,i

(
ρj,i∣∣xj,i

∣∣

)2−n+ξ
Vj

(∣∣xj,i

∣∣

ρj,i

)
Wj

(∣∣xj,i

∣∣

ρj,i

)
∼
∑

j,i

(
ρj,i∣∣xj,i

∣∣

)ξ

≤ 3μ(Rn)
ε

+ 6ξ < +∞, (2.12)

where B(x1, 6)(x1 = (1, 0, . . . , 0) ∈ Rn) is the ball that covers {x ∈ Rn; |x| < 4}.

3. Proof of Theorem 1.2

We only prove the case γ ≥ 0, the remaining case γ < 0 can be proved similarly.
For any ε > 0, there exists Rε > 1 such that

∫

∂H(Rε,∞)

∣∣u
(
y′)∣∣

1 +
∣∣y′∣∣ι+[γ],k+{γ}

dy′ < ε. (3.1)

The relation Ga(x, y) ≤ G(x, y) implies this inequality (see [14])

Pa

(
x, y′) ≤ P

(
x, y′). (3.2)

For any fixed point x ∈ H(Rε,+∞) − E(ε;μ, n − ζ) satisfying |x| > 2Rε, letting I1 =
∂H[0, 1), I2 = ∂H[1, Rε], I3 = ∂H(Rε, (1/2)|x|], I4 = ∂H((1/2)|x|, 2|x|), I5 = ∂H[2|x|,∞) and
I6 = ∂H[1, 2|x|), we write

|U(a,m;u)(x)| ≤
6∑

i=1

Ua,i(x), (3.3)

where

Ua,i(x) =
∫

Ii

∣∣Pa

(
x, y′)∣∣∣∣u

(
y′)∣∣dy′ (i = 1, 2, 3, 4),

Ua,5(x) =
∫

I5

∣∣P(a,m)
(
x, y′)∣∣∣∣u

(
y′)∣∣dy′,

Ua,6(x) =
∫

I6

∣∣∣∣∣
∂K̃(Ω, a,m)

(
x, y

)

∂n
(
y′)

∣∣∣∣∣
∣∣u
(
y′)∣∣dy′.

(3.4)
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By ι+[γ],k+{γ} > −ι+1,k+1, (1.16), (2.1), and (3.1), we have the following growth estimates

Ua,2(x) ≤ M|x|ι−1,kϕ1(Θ)
∫

I2

∣∣y′∣∣ι+1,k−1∣∣u
(
y′)∣∣dy′

≤ M|x|ι−1,kRι+[γ],k+{γ}+ι+1,k−1
ε ϕ1(Θ),

Ua,1(x) ≤ M|x|ι−1,kϕ1(Θ),

Ua,3(x) ≤ Mε|x|ι+[γ],k+{γ}−n+1ϕ1(Θ).

(3.5)

Next, we will estimate Ua,4(x).
Take a sufficiently small positive number d3 such that I4 ⊂ B(x, (1/2)|x|) for any x ∈

Π(d3), where

Π(d3) =

{
x ∈ H; inf

z∈∂Sn−1
+

∣∣∣∣
x

|x| −
z

|z|
∣∣∣∣ < d3, 0 < |x| < ∞

}
, (3.6)

and divide H into two setsΠ(d3) and H −Π(d3).
If x ∈ H−Π(d3), then there exists a positive d′

3 such that |x−y′| ≥ d′
3|x| for any y′ ∈ ∂H,

and hence

Ua,4(x) ≤ M|x|1−nϕ1(Θ)
∫

I4

∣∣u
(
y′)∣∣dy′

≤ Mε|x|ι+[γ],k+{γ}−n+1ϕ1(Θ).

(3.7)

We will consider the case x ∈ Π(d3). Now put

Ξi(x) =
{
y ∈ I4; 2i−1δ(x) ≤

∣∣x − y′∣∣ < 2iδ(x)
}
, (3.8)

where δ(x) = infy′∈∂H |x − y′|.
Since ∂H ∩ {y ∈ Rn : |x − y| < δ(x)} = ∅, we have

Ua,4(x) = M
i(x)∑

i=1

∫

Ξi(x)
|x|ϕ1(Θ)

∣∣u
(
y′)∣∣

∣∣x − y′∣∣n dy
′, (3.9)

where i(x) is a positive integer satisfying 2i(x)−1δ(x) ≤ |x|/2 < 2i(x)δ(x).
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Since |x|ϕ1(Θ) ≤ Mδ(x) (x ∈ H), we obtain

∫

Ξi(x)
|x|ϕ1(Θ)

∣∣u
(
y′)∣∣

∣∣x − y′∣∣n dy
′ ≤ 2(1−i)nϕ1(Θ)δ(x)ζ−n

∫

Ξi(x)
|x|δ(x)−ζ∣∣u(y′)∣∣dy′

≤ Mϕ
1−ζ
1 (Θ)δ(x)ζ−n

∫

Ξi(x)
|x|1−ζ∣∣u(y′)∣∣dy′

≤ M|x|n−ζϕ1−ζ
1 (Θ)δ(x)ζ−n

∫

Ξi(x)

∣∣y′∣∣1−n∣∣u
(
y′)∣∣dy′

≤ Mε|x|ι+[γ],k+{γ}−ζ+1ϕ1−ζ
1 (Θ)

(
μ(Ξi(x))

(2iδ(x))n−ζ

)

(3.10)

for i = 0, 1, 2, . . . , i(x).
Since x /∈ E(ε;μ, n − ζ), we have

μ(Ξi(x))

(2iδ(x))n−ζ
≤ μ

(
B
(
x, 2iδ(x)

))

(2iδ(x))n−ζ
≤ M

(
x;μ, n − ζ

) ≤ ε|x|ζ−n (i = 0, 1, 2, . . . , i(x) − 1),

μ
(
Λi(x)(x)

)

(2iδ(x))n−ζ
≤ μ(B(x, |x|/2))

(|x|/2)n−ζ
≤ ε|x|ζ−n.

(3.11)

So

Ua,4(x) ≤ Mε|x|ι+[γ],k+{γ}−n+1ϕ1−ζ
1 (Θ). (3.12)

By ι+m+1,k ≥ ι+[γ],k + {γ} − n + 1, (1.7), (2.2), and (3.1), we have

Ua,5(x) ≤ MVm+1(|x|)
∫

I5

∣∣u
(
y′)∣∣

Vm+1
(∣∣y′∣∣)∣∣y′∣∣n−1

dy′

≤ Mε|x|ι+[γ],k+{γ}−n+1ϕ1(Θ).

(3.13)

We only consider Ua,6(x) in the case m ≥ 1, since Ua,6(x) ≡ 0 for m = 0. By the
definition of K̃(a,m), (1.4), and (2.2), we see that

Ua,6(x) ≤ M

χ′(1)

m∑

j=0

j2n−1qj(|x|), (3.14)

where

qj(|x|) = Vj(|x|)
∫

I6

Wj

(∣∣y′∣∣)∣∣u
(
y′)∣∣

∣∣y′∣∣ dy′. (3.15)
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To estimate qj(|x|), we write

qj(|x|) ≤ q′j(|x|) + q′′j (|x|), (3.16)

where

q′j(|x|) = Vj(|x|)ϕ1(Θ)
∫

I2

Wj

(∣∣y′∣∣)∣∣u
(
y′)∣∣

∣∣y′∣∣ dy′,

q′′j (|x|) = Vj(|x|)ϕ1(Θ)
∫

{y′∈∂H:Rε<|y′ |<2|x|}

Wj

(∣∣y′∣∣)∣∣u
(
y′)∣∣

∣∣y′∣∣ dy′.

(3.17)

Notice that

Vj(|x|)
Vm+1

(∣∣y′∣∣)

Vj

(∣∣y′∣∣)∣∣y′∣∣ ≤ M
Vm+1(|x|)

|x| ≤ M|x|ι+m+1,k−1 (∣∣y′∣∣ ≥ 1, Rε < 2|x|). (3.18)

Thus, by ι+
m+1,k < ι+[γ],k + {γ} − n + 2, (1.7), and (1.16), we conclude

q′j(|x|) = Vj(|x|)ϕ1(Θ)
∫

I2

∣∣u
(
y′)∣∣

Vj

(∣∣y′∣∣)∣∣y′∣∣n−1
dy′

≤ MVj(|x|)ϕ1(Θ)
∫

I2

Vm+1
(∣∣y′∣∣)

∣∣y′∣∣ι+m+1,k

∣∣u
(
y′)∣∣

Vj

(∣∣y′∣∣)∣∣y′∣∣n−1
dy′

≤ M|x|ι+m+1,k−1R
ι+[γ],k+{γ}−ι+m+1,k−n+2
ε ϕ1(Θ).

(3.19)

Analogous to the estimate of q′j(|x|), we have

q′′j (|x|) ≤ Mε|x|ι+[γ],k+{γ}−n+1ϕ1(Θ). (3.20)

Thus, we can conclude that

qj(|x|) ≤ Mε|x|ι+[γ],k+{γ}−n+1ϕ1(Θ), (3.21)

which yields

Ua,6(x) ≤ Mε|x|ι+[γ],k+{γ}−n+1ϕ1(Θ). (3.22)

Combining (3.5)–(3.22), we obtain that if Rε is sufficiently large and ε is sufficiently
small, then U(a,m;u)(x) = o(|x|ι+[γ],k+{γ}−n+1ϕ1−ζ

1 (Θ)) as |x| → ∞, where x ∈ H(Rε,+∞) −
E(ε;μ, n−ζ). Finally, there exists an additional finite ball B0 coveringH[0, Rε], which together
with Lemma 2.3 gives the conclusion of Theorem 1.2.
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4. Proof of Theorem 1.5

For any fixed x ∈ H, take a number satisfying R > max{1, 2|x|}. By ι+
m+1,k ≥ ι+[γ],k + {γ} − n + 1,

(1.5), (1.16), and (2.2), we have

∫

∂H(R,∞)

∣∣P(a,m)
(
x, y′)∣∣∣∣u

(
y′)∣∣dy′ ≤ MVm+1(|x|)ϕ1(Θ)

∫

∂H(R,∞)

∣∣u
(
y′)∣∣

∣∣y′∣∣ι+m+1,k+n−1
dy′

≤ M|x|ι+m+1,kϕ1(Θ)
∫

∂H(2|x|,∞)

∣∣y′∣∣ι+[γ],k+{γ}−ι+m+1,k−n+1dy′

≤ M|x|ι+[γ],k+{γ}−n+1ϕ1(Θ)

< ∞.

(4.1)

Then, U(a,m;u)(x) is absolutely convergent and finite for any x ∈ H. Thus U(a,m;u)(x) is
a solution of (1.2) on H.

Nowwe study the boundary behavior ofU(a,m;u)(x). Let y′ ∈ ∂H be any fixed point
and l any positive number satisfying l > max{|y′| + 1, (1/2)R}.

Set χS(l) as the characteristic function of S(l) = {y′ ∈ ∂H, |y′| ≤ l}, and write

U(a,m;u)(x) = U′(x) −U′′(x) +U′′′(x), (4.2)

where

U′(x) =
∫

∂H[0,2l]
Pa

(
x, y′)u

(
y′)dy′,

U′′(x) =
∫

∂H(1,2l]

∂K(a,m)
(
x, y

)

∂n
(
y′) u

(
y′)dy′,

U′′′(x) =
∫

∂H(2l,∞)
P(a,m)

(
x, y′)u

(
y′)dy′.

(4.3)

Notice that U′(x) is the Poisson a-integral of u(y′)χS(2l), We have limx→y′, x∈HU′(x) =
u(y′). Since limΘ→Φ′ϕjv(Θ) = 0(j = 1, 2, 3 . . . ; 1 ≤ v ≤ vj) as x → y′ ∈ ∂H, we have
limx→y′, x∈HU′′(x) = 0 from the definition of the kernel function K(a,m)(x, y). U′′′(x) =
O(|x|ι+[γ],k+{γ}−n+1ϕ1(Θ)) and therefore tends to zero.

So the function U(a,m;u)(x) can be continuously extended toH such that

lim
x→y′, x∈H

U(a,m;u)(x) = u
(
y′)

(4.4)

for any y′ ∈ ∂H from the arbitrariness of l.
Finally, (1.29) and (1.30) follow from (1.22) and (1.23), respectively, in the case ζ = n.

Thus, we complete the proof of Theorem 1.5.
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5. Proof of Theorem 1.7

From Corollary 1.6, we have the solution U(a,m;u)(x) of the Dirichlet problem on H with
u satisfying (1.31). Consider the function h(x) − U(a,m;u)(x). Then, it follows that this is a
solution of (1.2) inH and vanishes continuously on ∂H.

Since

0 ≤ (h −U(Ω, a,m;u))+(x) ≤ h+(x) + (U(a,m;u))−(x) (5.1)

for any x ∈ H, we have

lim
|x|→∞,x∈H

|x|−ι+m+1,k(h −U(Ω, a,m;u))+(x) = 0 (5.2)

from (1.32) and (1.33). Then, the conclusion of Theorem 1.7 follows immediately fromLemma
2.2.
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