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Using the setting of 0-complete partial metric spaces, some common fixed point results of maps
that satisfy the nonlinear contractive conditions are obtained. These results generalize and improve
the existing fixed point results in the literature in the sense that weaker conditions are used. An
example shows how our result can be used when the corresponding result in standard metric
cannot.

1. Introduction and Preliminaries

Matthews [1] generalized the concept of a metric space by introducing partial metric spaces.
Based on the notion of partial metric spaces, Matthews [1, 2], Oltra and Valero [3], Ilić et al.
[4, 5] obtained some fixed point theorems formappings satisfying different contractive condi-
tions. Recently, Abdeljawad et al. [6] proved one fixed point result for generalized contraction
principle with control functions on partial metric spaces. For some new results on partial
metric and cone metric spaces, see [1–27].

The aim of this paper is to continue the study of common fixed points of mappings but
now in 0-complete partial metric spaces, under nonlinear generalized contractive conditions.

Consistent with Matthews [1, 2], O’Neill [21, 22], and Oltra et al. [23], the following
definitions and results will be needed throughout this paper.

Definition 1.1. A partial metric on a nonempty set X is a function p : X × X → R+ such that
for all x, y, z ∈ X :

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),
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(p2) p(x, x) ≤ p(x, y),
(p3) p(x, y) = p(y, x),

(p4) p(x, z) ≤ p(x, y) + p(y, z) − p(y, y).
A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial

metric on X.
For a partial metric p on X, the function ps : X ×X → R+ given by

ps
(
x, y
)
= 2p

(
x, y
) − p(x, x) − p(y, y) (1.1)

is a (usual) metric on X. Each partial metric p on X generates a T0 topology τp on X with a
base of the family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) <
p(x, x) + ε} for all x ∈ X and ε > 0.

Definition 1.2 (see [1, 20]). (i) A sequence {xn} in a partial metric space (X, p) converges to
x ∈ X if and only if p(x, x) = limn→+∞p(xn, x).

(ii) a sequence {xn} in a partial metric space (X, p) is called 0-Cauchy if limn,m→+∞p(xn,
xm) = 0.

(iii) a partial metric space (X, p) is said to be 0-complete if every 0-Cauchy sequence
{xn} in X converges, with respect to τp, to a point x ∈ X such that p(x, x) = 0. In
this case, p is a 0-complete partial metric on X.

Remark 1.3. (1) (see [20]) Clearly, a limit of a sequence in a partial metric space does not need
to be unique. Moreover, the function p(·, ·) does not need to be continuous in the sense that
xn → x and yn → y implies p(xn, yn) → p(x, y). For example, if X = [0,+∞) and p(x, y) =
max{x, y} for x, y ∈ X, then for {xn} = {1}, p(xn, x) = x = p(x, x) for each x ≥ 1 and so, for
example, xn → 2 and xn → 3 when n → ∞.

(2) (see [6]) However, if p(xn, x) → p(x, x) = 0, then p(xn, y) → p(x, y) for all y ∈ X.

Assertions similar to the following lemma were used (and proved) in the course of
proofs of several fixed point results in various papers [8, 9, 20, 28].

Lemma 1.4. Let (X, p) be a partial metric space and let {yn} be a sequence inX such that p(yn, yn+1)
is nonincreasing and that

lim
n→+∞

p
(
yn, yn+1

)
= 0. (1.2)

If {y2n} is not a 0-Cauchy sequence in (X, p), then there exist ε > 0 and two sequences {mk} and
{nk} of positive integers such that mk > nk > k and the following four sequences tend to ε+ when
k → +∞ :

p
(
y2mk , y2nk

)
, p
(
y2mk , y2nk+1

)
, p
(
y2mk−1, y2nk

)
, p
(
y2mk−1, y2nk+1

)
. (1.3)

Definition 1.5 (see [29]). Let f and g be self-maps of a set X. If w = fx = gx for some x ∈ X,
then x is called a coincidence point of f and g, and w is called a point of coincidence of f
and g. The pair f, g of self-maps is weakly compatible if they commute at their coincidence
points.
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The following lemma is Proposition 1.4 of [29].

Lemma 1.6. Let f and g be weakly compatible self-maps of a set X. If f and g have a unique point of
coincidence w = fx = gx, then w is the unique common fixed point of f and g.

Definition 1.7 (see [30]). The following two classes of mappings are defined as Ψ = {ψ|ψ :
[0,∞) → [0,∞) is a nondecreasing right continuous function such that limn→+∞ψn(t) = 0
for all t > 0, and Φ = {ψ|ψ : [0,∞) → [0,∞) is a nondecreasing function such that
limn→+∞ψn(t) = 0 for all t > 0.

It is clear for the function

ψ(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
3
t, 0 ≤ t < 1

1
2
, t = 1

2
3
t, t > 1,

(1.4)

that ψ ∈ Φ but ψ /∈ Ψ.

Lemma 1.8 (see [19]). If ψ ∈ Φ, then ψ(t) < t for all t > 0 and ψ(0) = 0.

2. Common Fixed Point Results

In this section, we obtain some common fixed point results defined on 0-complete partial
metric spaces.

Theorem 2.1. Let (X, p) be a partial metric space and T, f be mappings onX with TX ⊂ fX. Assume
that

p
(
Tx, Ty

) ≤ ψ
(

max

{

p
(
fx, fy

)
, p
(
fx, Tx

)
, p
(
fy, Ty

)
,
p
(
fx, Ty

)
+ p
(
fy, Tx

)

2

})

(2.1)

for all x, y ∈ X, where ψ ∈ Ψ. If TX or fX is a 0-complete subspace of X, then T and f have a unique
point of coincidence. Moreover, if T and f are weakly compatible, then T and f have a unique common
fixed point.

Proof. First, we prove that T and f have a unique point of coincidence (if it exists). If y ∈ X
with y = Tu = fu and z ∈ X with z = Ts = fs, we assume z/=y. Applying (2.1)we have

p
(
y, z
)
= p(Tu, Ts)

≤ ψ

(

max

{

p
(
fu, fs

)
, p
(
fu, Tu

)
, p
(
fs, Ts

)
,
p
(
fu, Ts

)
+ p
(
fs, Tu

)

2

})

= ψ

(

max

{

p
(
y, z
)
, p
(
y, y
)
, p(z, z),

p
(
y, z
)
+ p
(
z, y
)

2

})

= ψ
(
p
(
y, z
)) (

by
(
p2
))

< p
(
y, z
)
.

(2.2)

This implies a contradiction, so we conclude that z = y.



4 Abstract and Applied Analysis

Now, consider the sequence {xn} ⊂ X defined by x0 ∈ X and Txn = fxn+1. Consider
the two possible cases:

(i) p(Txn+1, Txn) = 0 for some n ∈ N.

In this case Txn = fxn(= y a point of coincidence). Because of Lemma 1.6 (unique
point of coincidence and weakly compatible mappings)we have a unique common
fixed point.

(iii) p(Txn+1, Txn) > 0 for every n ∈ N.

Applying (2.1) with x = xn+1 and y = xn, we have,

p(Txn+1, Txn) ≤ ψ
(

max

{

p
(
fxn+1, fxn

)
, p
(
fxn+1, Txn+1

)
, p
(
fxn, Txn

)
,

p
(
fxn+1, Txn

)
+ p
(
fxn, Txn+1

)

2

})

= ψ
(
max

{
p(Txn, Txn−1), p(Txn, Txn+1), p(Txn−1, Txn) ,

p(Txn, Txn) + p(Txn−1, Txn+1)
2

})

= ψ
(
max

{
p(Txn, Txn−1), p(Txn, Txn+1),

p(Txn, Txn) + p(Txn−1, Txn+1)
2

})

≤ ψ
(
max

{
p(Txn, Txn−1), p(Txn, Txn+1),

p(Txn−1, Txn) + p(Txn, Txn+1)
2

})

= ψ
(
max

{
p(Txn, Txn−1), p(Txn, Txn+1)

})
.

(2.3)

If p(Txn+1, Txn) is a maximum, then we have

p(Txn+1, Txn) ≤ ψ
(
p(Txn, Txn+1)

)
< p(Txn, Txn+1), (2.4)

which is a contradiction. So, we conclude that the maximum is p(Txn, Txn−1). Now, we have
the following:

p(Txn+1, Txn) ≤ ψ
(
p(Txn, Txn−1)

)
< p(Txn, Txn−1). (2.5)

It follows from (2.5) that the sequence p(Txn+1, Txn) is monotone decreasing. According to
the properties of function ψ, it follows

p(Txn+1, Txn) ≤ ψ
(
p(Txn, Txn−1)

)

≤ ψ2(p(Txn−1, Txn−2)
) ≤ · · · ≤ ψn(p(Tx1, Tx0)

) −→ 0,
(2.6)

when n → +∞. Therefore, limn→+∞p(Txn+1, Txn) = 0.
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Next, we prove that {Txn} is a 0-Cauchy sequence in the space (X, p). It is sufficient to
show that {Tx2n} is a 0-Cauchy sequence. Assume the opposite. Then using Lemma 1.4 we
get that there exist ε > 0 and two sequences {m(k)} and {n(k)} of positive integers and
sequences

p
(
y2mk , y2nk

)
, p
(
y2mk , y2nk+1

)
, p
(
y2mk−1, y2nk

)
, p
(
y2mk−1, y2nk+1

)
, (2.7)

all tend to ε+ when k → +∞. Applying condition (2.1) to elements x = x2m(k) and y = x2n(k)+1
and putting yn = Txn = fxn+1 for each n ≥ 0, we get that

p
(
Tx2m(k), Tx2n(k)+1

)

= p
(
y2m(k), y2n(k)+1

)

≤ ψ
(

max

{

p
(
fx2m(k), fx2n(k)+1

)
, p
(
fx2m(k), Tx2m(k)

)
, p
(
fx2n(k)+1, Tx2n(k)+1

)
,

p
(
fx2m(k), Tx2n(k)+1

)
+ p
(
fx2n(k)+1, Tx2m(k)

)

2

})

= ψ

(

max

{

p
(
y2m(k)−1, y2n(k)

)
, p
(
y2m(k)−1, y2m(k)

)
, p
(
y2n(k), y2n(k)+1

)
,

p
(
y2m(k)−1, y2n(k)+1

)
+ p
(
y2n(k), y2m(k)

)

2

})

.

(2.8)

When k → +∞, we have

max

{

p
(
y2m(k)−1, y2n(k)

)
, p
(
y2m(k)−1, y2m(k)

)
, p
(
y2n(k), y2n(k)+1

)
,

p
(
y2m(k)−1, y2n(k)+1

)
+ p
(
y2n(k), y2m(k)

)

2

}

−→ max
{
ε+, 0, 0,

1
2
(ε+ + ε+)

}
= ε+.

(2.9)

Using properties of ψ, we obtain a contradiction ε ≤ ψ(ε) < ε, since ε > 0.
This shows that {Tx2n} is a 0-Cauchy sequence in the space (X, p) and hence {Txn} is

a 0-Cauchy sequence in (X, p). If we suppose that TX is a 0-complete subspace of (X, p), then
there exists y ∈ TX ⊂ fX such that

p
(
y, y
)
= lim

n→+∞
p
(
Txn, y

)
= lim

n→+∞
p
(
fxn, y

)
= lim

n,m→+∞
p(Txn, Txm) = 0. (2.10)

If fX is a 0-complete subspace of (X, p)with y ∈ fX, (2.10) also holds.
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Let u ∈ X and y = fu. We show that y is a point of coincidence of T and f . Suppose
that p(Tu, fu) > 0. We have

p(Txn, Tu) ≤ ψ
(

max

{

p
(
fxn, fu

)
, p
(
fxn, Txn

)
, p
(
fu, Tu

)
,
p
(
fxn, Tu

)
+ p
(
fu, Txn

)

2

})

.

(2.11)

As n → +∞, we have p(fxn, fu) → 0, p(fxn, Txn) → 0 and by Remark 1.3 (2)
(p(fxn, Tu) + p(fu, Txn))/2 → p(fu, Tu)/2. Since p(fu, Tu) > 0, there exists n0 ∈ N such
that for every n > n0 we have p(fxn, fu) < (1/2)p(fu, Tu) and p(fxn, Txn) < (1/2)p(fu, Tu).
Now, for n > n0, we obtain

p
(
fu, Tu

) ≤ p(fu, fxn+1
)
+ p(Txn, Tu) ≤ p

(
fu, fxn+1

)
+ ψ
(
p
(
fu, Tu

))
(2.12)

or

p
(
fu, Tu

) ≤ p(fu, fxn+1
)
+ ψ
(
p
(
fu, Tu

))
. (2.13)

As n → +∞we have a contradiction:

p
(
fu, Tu

) ≤ ψ(p(fu, Tu)) < p(fu, Tu). (2.14)

This implies p(Tu, fu) = 0, that is, Tu = fu. Hence, T and f have a (unique) point of coin-
cidence. From Lemma 1.6 follows that this is a unique common fixed point of T and f .

Remark 2.2. Assumption about right continuity of the function is only used in the proof that
{Txn} is a 0-Cauchy sequence.

In the following theorem we consider a weaker assumption for the function ψ. As a
compensation we assume a bit stronger contractive condition.

Theorem 2.3. Let (X, p) be a partial metric space and T, f be mappings onX with TX ⊂ fX. Assume
that

p
(
Tx, Ty

) ≤ ψ
(

max

{

p
(
fx, fy

)
, p
(
fx, Tx

)
, p
(
fy, Ty

)
,
p
(
fx, Ty

)

2

})

(2.15)

for all x, y ∈ X, where ψ ∈ Φ. If TX or fX is a 0-complete subspace of X, then T and f have a unique
point of coincidence. Moreover, if T and f are weakly compatible, then T and f have a unique common
fixed point.

Proof. We can prove that T and f have a unique point of coincidence in a similar way like in
Theorem 2.1. If we consider the sequence {xn} ⊂ X defined by x0 ∈ X and Txn = fxn+1, we
used Theorem 2.1 to show limn→+∞p(Txn+1, Txn) = 0.

Here, we only prove that {Txn} is a 0-Cauchy sequence in the space (X, p) by using
induction. Let us denote yn = Txn = fxn+1 for each n ≥ 0, We have p(yn, yn+1) → 0, as
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n → +∞. For ε > 0 there exists n(ε) such that for every n > n(ε)we have p(yn, yn+1) < ε−ψ(ε).
Assuming that for some n > n(ε) and k ∈ N it holds that p(yn, yn+k) < ε and we need to prove
that p(yn, yn+k+1) < ε.

We have

p
(
yn, yn+k+1

) ≤ p(yn, yn+1
)
+ p
(
yn+1, yn+k+1

)
,

p
(
yn+1, yn+k+1

)

= p(Txn+1, Txn+k+1)

≤ ψ
(

max

{

p
(
fxn+1, fxn+k+1

)
, p
(
fxn+1, Txn+1

)
, p
(
fxn+k+1, Txn+k+1

)
,
p
(
fxn+1, Txn+k+1

)

2

})

= ψ

(

max

{

p
(
yn, yn+k

)
, p
(
yn, yn+1

)
, p
(
yn+k, yn+k+1

)
,
p
(
yn, yn+k+1

)

2

})

≤ ψ
(

max

{

p
(
yn, yn+k

)
, p
(
yn, yn+1

)
, p
(
yn+k, yn+k+1

)
,
p
(
yn, yn+k

)
+ p
(
yn+k, yn+k+1

)

2

})

≤ ψ
(
max

{
ε, ε − ψ(ε), ε − ψ(ε), ε + ε − ψ(ε)

2

})
= ψ(ε).

(2.16)

Then (2.16) becomes p(yn, yn+k+1) ≤ p(yn, yn+1) + p(yn+1, yn+k+1) < ε − ψ(ε) + ψ(ε) =
ε. This shows that {Txn} is a 0-Cauchy sequence in (X, p). Further, proof is similar as in
Theorem 2.1, so we omit it.

Corollary 2.4. Let (X, p) be a partial metric space and let T : X → X be a map such that

p
(
Tx, Ty

) ≤ ψ
(

max

{

p
(
x, y
)
, p(x, Tx), p

(
y, Ty

)
,
p
(
x, Ty

)
+ p
(
y, Tx

)

2

})

(2.17)

for all x, y ∈ X, where ψ ∈ Ψ. If TX is a 0-complete subspace of X, then T has a unique fixed point.

Proof. It follows from Theorem 2.1 by taking f = iX (the identity map).

Corollary 2.5. Let (X, p) be a partial metric space and let T : X → X be a map such that

p
(
Tx, Ty

) ≤ ψ
(

max

{

p
(
x, y
)
, p(x, Tx), p

(
y, Ty

)
,
p
(
x, Ty

)

2

})

(2.18)

for all x, y ∈ X, where ψ ∈ Φ. If TX is a 0-complete subspace of X, then T has a unique fixed point.

Proof. It follows from Theorem 2.3 by taking f = iX (the identity map).
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Corollary 2.6. Let (X, p) be a partial metric space and let T, f be mappings on X with TX ⊂ fX.
Assume that

p
(
Tx, Ty

) ≤ λmax

{

p
(
fx, fy

)
, p
(
fx, Tx

)
, p
(
fy, Ty

)
,
p
(
fx, Ty

)
+ p
(
fy, Tx

)

2

}

(2.19)

for all x, y ∈ X, where λ ∈ [0, 1). If TX or fX is a 0-complete subspace of X, then T and f have a
unique point of coincidence. Moreover, if T and f are weakly compatible, then T and f have a unique
fixed point.

Proof. It follows from Theorem 2.1 by taking ψ(t) = λt, where λ ∈ [0, 1).

Corollary 2.7. Let(X, p) be a partial metric space and let T, f be mappings on X with TX ⊂ fX.
Assume that

p
(
Tx, Ty

) ≤ a1p
(
fx, fy

)
+ a2p

(
fx, Tx

)
+ a3p

(
fy, Ty

)

+ a4
(
p
(
fx, Ty

)
+ p
(
fy, Tx

)) (2.20)

for all x, y ∈ X, where a1, a2, a3, a4 ≥ 0 and a1 + a2 + a3 + 2a4 ∈ [0, 1). If TX or fX is a 0-complete
subspace of X, then T and f have a unique point of coincidence. Moreover, if T and f are weakly
compatible, then T and f have a unique fixed point.

Proof. It follows from Corollary 2.6 by noting that

a1p
(
fx, fy

)
+ a2p

(
fx, Tx

)
+ a3p

(
fy, Ty

)
+ a4
(
p
(
fx, Ty

)
+ p
(
fy, Tx

))

≤ (a1 + a2 + a3 + 2a4)max

{

p
(
fx, fy

)
, p
(
fx, Tx

)
, p
(
fy, Ty

)
,
p
(
fx, Ty

)
+ p
(
fy, Tx

)

2

}

(2.21)

Corollary 2.8. Let (X, p) be a partial metric space and let T, f be mappings on X with TX ⊂ fX.
Assume that

p
(
Tx, Ty

) ≤ λp(fx, fy), (2.22)

for all x, y ∈ X, where λ ∈ [0, 1). If TX or fX is a 0-complete subspace of X, then T and f have a
unique point of coincidence. Moreover, if T and f are weakly compatible, then T and f have a unique
fixed point.

Proof . It follows from Corollary 2.7.

From Corollary 2.8 follows the theorem proved by Jungck [31], where we consider a
0-complete partial metric space instead of a complete metric space, under the assumption
that T and f are commuting mappings.
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Corollary 2.9. Let (X, p) be a 0-complete partial metric space and T : X → X be a map such that

p
(
Tx, Ty

) ≤ ψ(p(x, y)) (2.23)

for all x, y ∈ X, where ψ ∈ Φ. If TX is a closed subspace of X, then T has a unique fixed point.

Proof. It follows from Theorem 2.3 and Corollary 2.5. by taking f = iX (the identity map).

Under a weaker assumption for the function ψ, from Corollary 2.9 follows the theorem
proved by Boyd and Wong [32] where we consider a partial metric instead of a standard
metric.

From Corollary 2.7 we deduce the following corollaries, which are extensions of some
well-known theorems.

Corollary 2.10. Let (X, p) be a 0-complete partial metric space and let T : X → X be a map such
that

p
(
Tx, Ty

) ≤ λp(x, y) (2.24)

for all x, y ∈ X, where λ ∈ [0, 1). Then T has a unique fixed point.

This corollary is an extension of Banach contraction theorem on a 0-complete partial
metric space. This corollary is already mentioned in Matthews [2] for a complete partial
metric space, but is true for a 0-complete partial metric spaces.

Corollary 2.11. Let (X, p) be a 0-complete partial metric space and let T : X → X be a map such
that

p
(
Tx, Ty

) ≤ λ(p(x, Tx) + p(y, Ty)) (2.25)

for all x, y ∈ X, where λ ∈ [0, (1/2)). Then T has a unique fixed point.

This corollary is extension of Kannan theorem [33] (4) on a 0-complete partial metric
spaces.

Corollary 2.12. Let (X, p) be a 0-complete partial metric space and let T : X → X be a map such
that

p
(
Tx, Ty

) ≤ a1p
(
x, y
)
+ a2p(x, Tx) + a3p

(
y, Ty

)
(2.26)

for all x, y ∈ X, where a 1, a2, a3 ≥ and a1 + a2 + a2 ∈ [0, 1). Then T has a unique fixed point.

This corollary is extension of Reich theorem [33] (8) on a 0-complete partial metric
spaces.
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Corollary 2.13. Let (X, p) be a 0-complete partial metric space and let T : X → X be a map such
that

p
(
Tx, Ty

) ≤ λ(p(x, Ty) + p(y, Tx)) (2.27)

for all x, y ∈ X, where λ ∈ [0, (1/2)). Then T has a unique fixed point.

This corollary is extension of Chatterjea theorem [33] (11) on a 0-complete partial
metric spaces.

Corollary 2.14. Let (X, p) be a 0-complete partial metric space and let T : X → X be a map such
that at least one of the following is true

p
(
Tx, Ty

) ≤ a1p(x, Tx)
p
(
Tx, Ty

) ≤ a2
(
p(x, Tx) + p

(
y, Ty

))

p
(
Tx, Ty

) ≤ a3
(
p
(
x, Ty

)
+ p
(
y, Tx

))
(2.28)

for all x, y ∈ X, where a1 ∈ [0, 1), a2, a3 ∈ [0, (1/2)). Then T has a unique fixed point.

This corollary is extension of Zamfirescu theorem [33] (19) on a 0-complete partial
metric spaces.

We demonstrate the use of Theorem 2.1 with the help of the following example.

Example 2.15. Let (X, p) = (Q ∩ [0, 1), p), where Q denotes the set of rational numbers and p
is given by p(x, y) = max{x, y}. Then (X, p) is a 0-complete partial metric space which is not
complete. Suppose that T, f : X → X are such that Tx = x2/(1 + x), fx = x for all x ∈ X and

ψ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

t2, t >
1
5

1
5
t, t ≤ 1

5
.

(2.29)

Then ψ ∈ Ψ. Without loss of generality assume that x < y. Then x2/(1+x) < y/(1+y), x2/(1+
x) ≤ x and (y2/(1 + y)) ≤ y. From (2.1) follows

L = max

{
x2

1 + x
,
y2

1 + y

}

=
y2

1 + y
, (2.30)

R = ψ

(

max

{

p
(
x, y
)
, p

(

x,
x2

1 + x

)

, p

(

y,
y2

1 + y

)

,
p
(
x, y2/

(
1 + y

))
+ p
(
y, x2/(1 + x)

)

2

})

= ψ

(

max

{

y, x, y,
max

(
x, y2/

(
1 + y

))
+max

(
y, x2/(1 + x)

)

2

})

≤ ψ(y)

(2.31)
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and so y2/(1 + y) ≤ ψ(y). If y ≤ 1/5, then we have y2/(1 + y) ≤ y/5 (this is true because
y2/(1 + y) ≤ y2 ≤ y/5). If y > 1/5 then we have y2/(1 + y) ≤ y2, which is true. It follows that
T has a unique fixed point.

On the other hand, consider the same problem in the standard metric d(x, y) = |x − y|
and take x = 0.10, y = 0.30. Then, from (2.1) follows L = 0.009 − 0.069 = 0.06 and

R = ψ

(
max

{
0.10 − 0.30, 0.10 − 0.009, 0.30 − 0.069,

0.10 − 0.069 + 0.30 − 0.009
2

})

= ψ(0.231) = 0.053.

(2.32)

Hence L ≤ R does not hold and the existence of a unique fixed point cannot be obtained.

Remark 2.16. Note that Theorem 2.1 improves [12, Theorem 1 and Corollary 1], [25, Theorem
3, Corollaries 1 and 2 and Theorem 4], and [13, Corollary 2.3] since our assumptions are
weaker than the assumptions from [12, 13, 25] in several places.

Finally, it is worth to notice that all new results in recently papers [7, 10, 15, 20, 27] are
true if partial metric space (X, p) is 0-complete instead complete.

Acknowledgments

The authors are thankful to the referees for their remarks which helped to improve the
presentation of the paper. The authors (first and second) would like to acknowledge the
financial support received from Universiti Kebangsaan Malaysia under the research grant
OUP-UKM-FST-2012. The third and the fourth authors are thankful to the Ministry of Science
and Technological Development of Serbia.

References

[1] S. G. Matthews, “Partial metric topology,” in Proceedings of the 8th Summer Conference on General Topo-
logy and Applications, vol. 728, pp. 183–197, Annals of the New York Academy of Sciences.

[2] S. G. Matthews, “Partial metric topology,” Research Report 212, Department of Computer Science,
University of Warwick, 1992.

[3] S. Oltra and O. Valero, “Banach’s fixed point theorem for partial metric spaces,” Rendiconti dell’Istituto
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