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This paper is devoted to the study of a class of high-order iterativemethods for nonlinear equations
on Banach spaces. An analysis of the convergence under Kantorovich-type conditions is proposed.
Some numerical experiments, where the analyzed methods present better behavior than some
classical schemes, are presented. These applications include the approximation of some quadratic
and integral equations.

1. Introduction

This paper deals with the approximation of nonlinear equations as follows

F(x) = 0, (1.1)

where F : Ω ⊆ X → Y is a nonlinear operator between Banach spaces, using the following
family of high-order iterative methods:

&yn = xn − F ′(xn)−1F(xn),

&xn+1 = yn −
(
I + LF(xn) + LF(xn)2GF(xn)

)
F ′(xn)−1F

(
yn
)
,

(1.2)
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where I is the identity operator on X and for each x ∈ X, LF(x) is the linear operator on
Ω ⊆ X defined by the following

LF(x) = F ′(x)−1F ′′(x)F ′(x)−1F(x), (1.3)

assuming that F ′(x)−1 exists and GF : Ω ⊆ X → L(X,X) is a given nonlinear operator
(usually depending on the operator F and its derivatives), here L(X,X) denotes the space of
bounded linear operators from X to X.

The second step can be interpreted as an acceleration of the initial one (in our case
Newton’s method). Indeed, this family was introduced for scalar equations f(t) = 0 in [1],
for any initial scheme, Traub’s theorem reads:

Theorem 1.1. For all sufficiently smooth function gf(x), the following iterative method

yn = Φ(xn),

xn+1 = yn −
(
1 + Lf(xn) + Lf(xn)2gf(xn)

)f(yn
)

f ′(xn)
,

(1.4)

has order of convergencemin{p + 2, 2p}, where p is the order of Φ(x).

In this paper, we consider as the function Φ(x) the classical Newton method. We have
mainly three reasons. First, because we can recover many well-known high-order iterative
methods. Second, because the domain of convergence of Newton’s method is bigger than
high order schemes [2]. Finally, since in practice it is a good strategy to start with a simple
method when we are not sufficiently close to the solution [3].

On the other hand, conditions are imposed on x0 and on F in order to assure
the convergence of {xn}n to a solution x∗ of F(x) = 0. This analysis, usually known as
Kantorovich type, are based on a relationship between the problem in a Banach space and
a single nonlinear scalar equation which leads the behavior of the problem. A priori error
estimates, depending only on the initial conditions, and, hence, the order of convergence can
be obtained by using Kantorovich type theorems.

A review to the amount of literature on high-order iterative methods in the two last
decades (see for instance [4] and its references, or this incomplete list of recent papers [5–
16]) may reveal the importance of high-order schemes. The main practical difficulty related
to the classical third-order iterative methods is the evaluation of the second-order derivative.
For a nonlinear system of m equations and m unknowns, the first Fréchet derivative is a
matrix with m2 entries, while the second Fréchet derivative has m3 entries. This implies a
huge amount of operations in order to evaluate every iteration. However, in some cases, the
second derivative is easy to evaluate. Some clear examples of this case are the approximation
of Hammerstein equations where the second Fréchet derivative is diagonal by blocks or
quadratic equations where it is constant.

The structure of this paper is as follows: in Section 2 we present some particular
examples of methods included in the family and in Section 3, we assert convergence
and uniqueness theorems (Kantorovich type). Finally, some numerical experiments are
presented in Section 4. These applications include quadratic (Riccati) equations and integral
(Hammerstein) equations. In all these problems the proposed methods seem more efficient
than second-order methods.
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2. A Family of High-Order Iterative Methods

As was indicated in the introduction, we are interested in the study of the family of iterative
methods as follows

yn = xn −
f(xn)
f ′(xn)

,

xn+1 = yn −
(
1 + Lf(xn) + Lf(xn)2gf(xn)

)f(yn
)

f ′(xn)
.

(2.1)

Note that the method (2.1) is equivalent to iterate the function Mf given by the
following

Mf(x) = x − f(x)
f ′(x)

−
(
1 + Lf(x) + Lf(x)2gf(x)

)f(x − f(x)/f ′(x)
)

f ′(x)
, (2.2)

that is,

xn+1 =Mf(xn). (2.3)

Particular examples of schemes included in the family with nonsmooth functions gf(x)
are

(1) Halley

xn+1 = xn −
(

1
1 + (1/2)Lf(xn)

)
f(xn)
f ′(xn)

, (2.4)

(2) Super-Halley

xn+1 = xn −
(
1 +

Lf(xn)

2
(
1 − Lf(xn)

)
)
f(xn)
f ′(xn)

, (2.5)

(3) Chebyshev

xn+1 = xn −
(
1 +

1
2
Lf(xn)

)
f(xn)
f ′(xn)

, (2.6)

(4) Chebyshev like methods. For 0 ≤ α ≤ 2, we consider the following α-methods

xn+1 = xn −
(
1 +

1
2
Lf(xn) + αLf(xn)2

)
f(xn)
f ′(xn)

, (2.7)
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(5) Two-step

yn = xn −
f(xn)
f ′(xn)

,

xn+1 = yn −
f
(
yn
)

f ′(xn)
.

(2.8)

These methods have order of convergence three that is small than the estimate 4 =
min{2 + 2, 2 · 2} in Traub’s theorem (since gf(x) is nonsmooth). For instance the above two-
step method admits gf(x) = −1/Lf(x). Indeed, all these methods have the function f in the
denominator.

On the other hand, considering different smooth functions gf(x), the following schemes
are also particular examples in the family.

(1) The two-step method (gf(x) = 0)

M4 :

⎧
⎪⎪⎨
⎪⎪⎩

yn = xn −
f(xn)
f ′(xn)

,

xn+1 = yn −
(
1 + Lf(xn)

)f(yn
)

f ′(xn)
,

(2.9)

has order four.

(2) The two-step method (gf(x) = (1/2)((5/2) − Lf ′(x)))

M5 :

⎧
⎪⎪⎨
⎪⎪⎩

yn = xn −
f(xn)
f ′(xn)

,

xn+1 = yn −
(
1 + Lf(xn) +

1
2

(
5
2
− Lf ′(xn)

)
Lf(xn)2

)
f
(
yn
)

f ′(xn)
.

(2.10)

has order five.

(3) We should start with other iterative functions Φ(x) and develop a similar analysis.
For instance, starting with Chebyshev’s method we can consider the method
(gf(x) = (1/2)(3 − Lf ′(xn)))

M6 :

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

yn = xn −
(
1 +

1
2
Lf(xn)

)
f(xn)
f ′(xn)

,

xn+1 = yn −
(
1 + Lf(xn) +

1
2
(
3 − Lf ′(xn)

)
Lf(xn)2

)
f
(
yn
)

f ′(xn)

(2.11)

that has order six [3]. We use this scheme only in the numerical section.
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3. Semilocal Convergence

Several techniques are usually considered to study the convergence of iterative methods, as
we can see in the following papers [4, 17–20]. Among these, the two most common are the
based on the majorant principle and on recurrence relations.

In this section, we analyze the semilocal convergence of the introduced family (1.2)
under a generalization of Kantorovich conditions.

Namely, we assume that:

(C1) Let x0 ∈ Ω such that Γ0 = F ′(x0)
−1 exists and ‖Γ0‖ ≤ β.

(C2) ‖Γ0F(x0)‖ ≤ η.
(C3) ‖F ′′(x)‖ ≤M for all x ∈ Ω.

(C4) ‖F ′′(x) − F ′′(y)‖ ≤ K‖x − y‖, K > 0, x, y ∈ Ω.

Under these hypotheses it is possible to find a cubic polynomial in an interval [a, b]
such that p(a) > 0 > p(b), p′(t) < 0, p′′(t) > 0 and p′′′(t) > 0 in [a, t∗], with t∗ the unique simple
solution of p(t) = 0, and verifying the following hypotheses:

For t0 ∈ [a, b] and p(t0) > 0.

(H1) ‖Γ0‖ ≤ −1/p′(t0),
(H2) ‖Γ0F(x0)‖ ≤ −p(t0)/p′(t0),
(H3) ‖F ′′(x)‖ ≤ p′′(t) for all x ∈ Ω, ‖x − x0‖ ≤ t − t0 ≤ t∗ − t0,
(H4) ‖F ′′(x) − F ′′(y)‖ ≤ |p′′(u) − p′′(v)|, with ‖x − y‖ ≤ |u − v|, x, y ∈ Ω and u, v ∈ [a, t∗].

Some immediate properties of the polynomial may be obtained from the conditions
above imposed:

(1) p(t) is decreasing in the interval [a, t∗], since p′(t) < 0 in that interval.

(2) p(t) > 0 in [a, t∗[.

(3) p′(t) is increasing and p(t) is convex in [a, t∗], since we have p′′(t) > 0 in [a, t∗].

(4) p′′(t) is increasing in [a, t∗], since p′′′(t) > 0 in that interval.

From these properties it follows the next:

(a) The Newton map associate to p(t), Np(t) = t − (p(t)/p′(t)), is increasing in
[a, t∗[, Np(t∗) = t∗ andN ′

p(t
∗) = 0.

(b) The function Lp(t) = p(t)p′′(t)/p′(t)2 > 0 in [a, t∗[, since p(t) and p′′(t) are strictly
positive in that interval. Furthermore, Lp(t∗) = 0, since p(t∗) = 0 and p′(t∗)/= 0.

In this paper, as in [21, page 43], we consider as the function p(t) the following
polynomial:

p(t) :=
K

6
t3 +

M

2
t2 − 1

β
t +

η

β
, (3.1)

assuming

η ≤
4K +M2β −Mβ

√
M2 + 2Kβ

3βK
(
M +

√
M2 + 2Kβ

) . (3.2)
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If this last condition holds, then the cubic polynomial p(t) has two roots t∗ and t∗∗

(t∗ ≤ t∗∗). We can choose a and b such that 0 < a < t∗ and b > 2/(Mβ +
√
(M2β2 + 2Kβ)).

Moreover, we need some extra conditions associated to the operator GF and the
function gp. We assume:

(Hg1) ‖LF(x)2GF(x)‖ ≤ Lp(t)2Gp(t), for ‖x − x0‖ ≤ t − t0 ≤ t∗ − t0,

(Hg2) 1 + Lp(t) + Lp(t)
2gp(t) ≥ 0,

(Hg3) m′(t) > 0 in [a, t∗[, where

m(t) = t − p(t)
p′(t)

−
(
1 + Lp(t) + Lp(t)2gp(t)

)p(t − (p(t)/p′(t)))

p′(t)
. (3.3)

All the methods considered in the above section have associated functions gp that
verify the three last conditions. With the two last hypotheses on gp and the definition of p,
following [21, Corollary 2.2.2 in page 31], the next result holds.

Proposition 3.1. The sequence

sn = tn −
p(tn)
p′(tn)

,

tn+1 = sn −
(
1 + Lp(tn) + Lp(tn)2gp(tn)

) p(sn)
p′(tn)

,

(3.4)

starting from the above t0 converges monotonically to t∗ the real simple solution of p(t) = 0 in [a, b].

We are now ready to prove the desired semilocal convergence.

Theorem 3.2. Let us assume x0 ∈ Ω and t0 ∈ [a, t∗] verifying the hypotheses (H1)–(H4) and (Hg1)–
(Hg3) with

η ≤
4K +M2β −Mβ

√
M2 + 2Kβ

3βK
(
M +

√
M2 + 2Kβ

) . (3.5)

If B(x0, t∗ − t0) ⊂ Ω then the sequence (1.2) is well defined and converges to x∗ the unique
solution of F(x) = 0 in B(x0, t∗ − t0).

Moreover,

‖x∗ − xn‖ ≤ t∗ − tn, n ≥ 0, (3.6)
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where

sn = tn −
p(tn)
p′(tn)

,

tn+1 = sn −
(
1 + Lp(tn) + Lp(tn)2gp(tn)

) p(sn)
p′(tn)

.

(3.7)

Proof. By an induction process, it is possible to verify that

(i) ‖F ′(xn)
−1‖ ≤ −1/p′(tn),

(ii) ‖F(xn)‖ ≤ p(tn),
and then,

(iii) ‖LF(xn)‖ ≤ Lp(tn),
and

(iv) ‖xn+1 − xn‖ ≤ tn+1 − tn.

The case n = 0 follows from the initial conditions on x0 and t0.
We now assume that the conditions are valid for n and we check them for n + 1.

(i)

F ′(xn+1) = F ′(xn)
{
I − F ′(xn)−1

(
F ′(xn) − F ′(xn+1)

)}
. (3.8)

Applying Taylor’s theorem:

∥∥∥F ′(xn)−1
(
F ′(xn) − F ′(xn+1)

)∥∥∥

≤
∥∥∥F ′(xn)−1

∥∥∥
(∥∥F ′′(xn)

∥∥ + 1
2
K‖xn − xn+1‖

)
· ‖xn − xn+1‖

≤ − 1
p′(tn)

(
p′′(tn) +

1
2
K(tn+1 − tn)

)
· (tn+1 − tn)

= − 1
p′(tn)

(
p′(tn+1) − p′(tn)

)

= 1 − p′(tn+1)
p′(tn)

< 1,

(3.9)

because p′(t) is increasing
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By applying the general invertibility criterion, F ′(xn+1) is invertible, and

∥∥∥F ′(xn+1)−1
∥∥∥ ≤
∥∥∥∥
(
I − F ′(xn)−1

(
F ′(xn) − F ′(xn+1)

))−1∥∥∥∥
∥∥∥F ′(xn)−1

∥∥∥

≤

∥∥∥F ′(xn)−1
∥∥∥

1 −
∥∥∥F ′(xn)−1(F ′(xn) − F ′(xn+1))

∥∥∥

≤ − 1
p′(tn)

[
1 − [1 − p′(tn+1 )/p′(tn)

]]

= − 1
p′(tn+1)

.

(3.10)

(ii) Using the following Taylor expansion

F
(
yn
)
= F(xn) + F ′(xn)

(
yn − xn

)
+

1
2!
F ′′(xn)

(
yn − xn

)2

+
∫yn
xn

(
F ′′(x) − F ′′(xn)

)(
yn − x

)
dx,

(3.11)

and by the definition of the method

F ′(xn)
(
yn − xn

)
= −F ′(xn)

(
F ′(xn)−1F(xn)

)
, (3.12)

we obtain that

F
(
yn
)
=

1
2!
F ′′(xn)

(
F ′(xn)−1F(xn)

)2

+
∫yn
xn

(
F ′′(x) − F ′′(xn)

)(
yn − x

)
dx,

(3.13)

and since

p(sn) =
1
2!
p′′(tn)

(
p′(tn)−1p(tn)

)2

+
∫sn
tn

(
p′′(x) − p′′(tn)

)
(sn − t)dt,

(3.14)

we conclude that

∥∥F(yn
)∥∥ ≤ p(sn). (3.15)



Abstract and Applied Analysis 9

Similarly from the following expansion

F(xn+1) = F(xn) + F ′(xn)(xn+1 − xn) + 1
2!
F ′′(xn)(xn+1 − xn)2

+
∫xn+1
xn

(
F ′′(x) − F ′′(xn)

)
(xn+1 − x)dx,

(3.16)

the definition of the method, the main hypotheses on GF and the induction process,
we zobtain, using that ‖F(yn)‖ ≤ p(sn) and that

F ′′(xn)(xn+1 − xn)2 = F ′′(xn)F ′(xn)−1F(xn)F ′(xn)−1F(xn)

+ F ′′(xn)F ′(xn)−1F(xn)
(
I + LF(xn) + LF(xn)2GF(xn)

)
F ′(xn)−1F

(
yn
)

+ F ′′(xn)F ′(xn)−1F(xn)
(
I + LF(xn) + LF(xn)2GF(xn)

)
F ′(xn)−1F

(
yn
)

+ F ′′(xn)
((
I + LF(xn) + LF(xn)2GF(xn)

)
F ′(xn)−1F

(
yn
))2

,

(3.17)

the desired inequality:

‖F(xn+1)‖ ≤ p(tn+1). (3.18)

In this situation, the theorem holds by applying the previous estimates directly to the
formulas that describe the methods, we refer [21, page 41-42] for more details.

The estimates given in the present paper are optimal in the sense that the sequence
associated to p verifies the inequalities with equalities.

4. Numerical Experiments

We consider several problems where the presented high-order methods can be considered as
a good alternative to second-order methods.

4.1. Approximation of Riccati’s Equations

In this first example, we consider quadratic equations, therefore the second Fréchet derivative
is constant. Particular cases of this type of equations, that appear in many applications, are
Riccati’s equations [22–24]. For instance, if we consider the problem of calculating feedback
controls for systems modeled by partial differential or delay differential equations, a classical
controller design objective will be to find a control u(t) for the state x(t) such that the
following objective function

∫∞

0
〈Cx(t), Cx(t)〉 + u∗Ru(t)dt (4.1)
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is minimized, where R is a positive defined matrix and the observation C ∈ L(X,Rd). In
practice, the control is calculated through approximation. This leads to solving an algebraic
Riccati equation

A∗P + PA − PBR−1B∗P = −C∗C (4.2)

for a feedback operator

K = −R−1B∗P, (4.3)

see [25, 26] for more details.
In the general case, an algebraic Riccati’s equation is given by [27]

R(X) = XDX −XA −ATX − C = 0, (4.4)

where D,A,C ∈ R
n×n are given matrix, D symmetric and X ∈ R

n×n is the unknown.
In this case,

R′(X)Y =
(
XD −AT

)
Y + Y (DX −A),

R′′(X)YZ = YDZ + ZDY.
(4.5)

In particular, the second derivative is constant. In this case, the Kantorovich conditions
for Newton’s methods have the compact form

∥∥∥R−1(X0)R′′(X0)
∥∥∥
∥∥∥R−1(X0)R(X0)

∥∥∥ ≤ 1
2
. (4.6)

Moreover, this hypothesis also gives the convergence for the high-order methods [22].
Then, using a matricial norm

∥∥R′′(X)YZ
∥∥ ≤ 2‖D‖‖Y‖‖Z‖,

∥∥R′′(X)
∥∥ ≤ 2‖D‖.

(4.7)

Given a symmetric initial guess X0 ∈ R
n×n, to obtain R′(X0)

−1 we solve the equation

R′(X0)Y =
(
X0D −AT

)
Y + Y (DX0 −A) = Z. (4.8)

This equation has solution if DX0 −A is stable [27], that is, all its eigenvalues have negative
real part. In this following case

Y = R′(X0)−1Z = −
∫∞

0
exp
(
(DX0 −A)T t

)
Z exp((DX0 −A)t)dt. (4.9)
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Next, to illustrate the previous results, we consider the following algebraic Riccati
equation (4.4)with matrix

D =

⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠ = C, A =

⎛
⎝

0 0 1
0 1 0
1 0 0

⎞
⎠, (4.10)

and the starting point

X0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−3
2

0 1

0 0 0

1 0 −5
4

⎞
⎟⎟⎟⎟⎟⎟⎠
. (4.11)

In this case, the algebraic Riccati equation has exact solution

X∗ =

⎛
⎜⎝

−√2 0 1
0 1 − √

2 0
1 0 −√2

⎞
⎟⎠. (4.12)

Besides, from the aforesaid starting point it follows that DX0 −A is a stable matrix.
Now, considering the stopping criterion ‖Xn − X∗‖ < 10−50 in Table 1, we obtain the

errors ‖Xn −X∗‖. If we now analyze the following computational order of convergence [28]:

ρ ≈ ln
‖Xn+1 −X∗‖
‖Xn −X∗‖ / ln

‖Xn −X∗‖
‖Xn−1 −X∗‖ , n ∈ N, (4.13)

we observe that method M6 has computationally the order of convergence at least six. See
Table 2, where ρN , ρCH and ρM6 denote, respectively, the computational order of convergence
of the three last methods.

In comparison with the classical Newton’s method, the extra computational cost per
iteration of method M6, is only two new evaluations of the operator F, and two extra matrix-
vector multiplications. Moreover, the same as Newton’s method only a LU decomposition is
necessary. Thus, M6 is more efficient.

See [29] for more details.

4.2. Approximation of Hammerstein Equations

We consider an important special case of integral equation, the following Hammerstein
equation

u(s) = ψ(s) +
∫1

0
H(s, t)f(t, u(t))dt. (4.14)
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Table 1: Errors for the Newton, Chebyshev and M6 methods.

n Newton Chebyshev M6
1 8.57864 . . . · 10−2 3.92135 . . . · 10−2 8.63800 . . . · 10−3
2 2.45310 . . . · 10−3 1.60604 . . . · 10−5 7.95704 . . . · 10−14
3 2.12390 . . . · 10−6 1.03568 . . . · 10−15
4 1.59486 . . . · 10−12 2.77730 . . . · 10−46
5 8.99292 . . . · 10−25
6 2.85928 . . . · 10−49

Table 2: The computational order of convergence for the Newton, Chebyshev and M6 methods.

n ρN ρCH ρM6

1 2.25751 . . . 3.30896 . . . 6.56567 . . .
2 1.98391 . . . 3.00811 . . .
3 1.99975 . . . 3.00000 . . .
4 1.99999 . . .
5 1.99999 . . .

These equations are related with boundary value problems for differential equations. For
some of them, high-order methods using second derivatives are useful for their effective
(discretized) solution.

The discrete version of (4.14) is

xi = ψ(ti) +
m∑
j=0

γjH
(
ti, tj

)
f
(
tj , x

j
)
, i = 0, 1, . . . , m, (4.15)

where 0 ≤ t0 < t1 < · · · < tm ≤ 1 are the grid points of some quadrature formula
∫1
0 f(t)dt ≈∑m

j=0 γjf(tj), and x
i = x(ti).

The second Fréchet derivative of the associated discrete system is diagonal by blocks.
Let the following Hammerstein equation

x(s) = 1 − 1
4

∫1

0

s

t + s
1
x(t)

dt, s ∈ [0, 1]. (4.16)

The discretization of this equation verifies the Lipschitz condition of our Kantorovich
theorem [4].

We consider m = 20 in the quadrature trapezoidal formula and as exact solution the
obtained numerically by Newton method. In Table 3, we summarize the numerical results
for different methods in the family: Newton, Halley, and M4. We consider as initial guess
x0(s) = 1.5.

Since the second derivative is diagonal by blocks, its application has a computational
cost of order O(m2). Thus, the computational cost in each iteration of the three schemes is,
for m sufficiently big, of the same order (O(m3) due to the LU decomposition). Note that
we only have to do a factorization in each iteration of the three schemes. As conclusion, the
scheme M4 (order four) is the most efficient form sufficiently big.

See [30] for other-related problems.
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Table 3: Errors for the Newton, Halley, and M4 methods.

n Newton Halley M4
1 2.35786 . . . · 10−2 4.23125 . . . · 10−3 5.00638 . . . · 10−4
2 1.60604 . . . · 10−4 1.06034 . . . · 10−6 6.55602 . . . · 10−15
3 3.30548 . . . · 10−8 1.00158 . . . · 10−17 8.23560 . . . · 10−60
4 3.11276 . . . · 10−16 2.13492 . . . · 10−49
5 1.12645 . . . · 10−32
6 2.89613 . . . · 10−65

5. Conclusions

Summing up, in this paper we have studied a family of high-order iterative methods. Mainly,
the theoretical analysis we did allows to ensure convergence conditions for all these schemes.
We established priori error bounds for them and consequently their order. We have presented
different applications where wemay add that in these cases the analyzed high-order methods
are more efficient than simpler second-order methods.
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[6] J. Džunić, M. S. Petković, and L. D. Petković, “Three-point methods with and without memory for
solving nonlinear equations,” Applied Mathematics and Computation, vol. 218, no. 9, pp. 4917–4927,
2012.

[7] J. A. Ezquerro, M. Grau-Sánchez, A. Grau, M. A. Hernández, M. Noguera, and N. Romero, “On
iterative methods with accelerated convergence for solving systems of nonlinear equations,” Journal
of Optimization Theory and Applications, vol. 151, no. 1, pp. 163–174, 2011.

[8] L. Fang, “A cubically convergent iterative method for solving nonlinear equations,” Advances and
Applications in Mathematical Sciences, vol. 10, no. 2, pp. 117–119, 2011.
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