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This paper is concerned with the existence of mild solutions for the fractional integrodifferential
equations with finite delay and almost sectorial operators in a separable Banach spaceX. We obtain
existence theorem for mild solutions to the above-mentioned equations, by means of measure of
noncompactness and the resolvent operators associated with almost sectorial operators. As an
application, the existence of mild solutions for some integrodifferential equation is obtained.

1. Introduction

Fractional differential and integrodifferential equations have received increasing attention
during recent years and have been studied extensively (see, e.g., [1–15] and references
therein) since they are playing an increasingly important role in engineering, physics,
electrolysis chemical, fractional biological neurons, condensate physics, statistical mechanics,
and so on.

Moreover, the Cauchy problem for various delay equations in Banach spaces has been
receiving more and more attention during the past decades (see, e.g., [3, 4, 9, 10, 14, 16–20]
and references therein).

We mention that much of the previous research on the fractional equations was done
provided that the operator in the linear part is the infinitesimal generator of a strongly
continuous operator semigroup, a compact semigroup, or an analytic semigroup, or is a
Hille-Yosida operator (see, e.g., [1–4, 8–10, 12–14]). However, as presented in [15, Examples
1.1 and 1.2], for which the resolvent operators do not satisfy the required estimate to
be a sectorial operator. Von Wahl in [21] first introduced examples of almost sectorial
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operators which are not sectorial. Recently, the study of evolution equations involving almost
sectorial operators has been investigated extensively. However, much less is known about
the fractional evolution equations with almost sectorial operators (see [15] and the references
therein).

In this paper, we are concerned with the following fractional integrodifferential
equations:

cDqu(t) = Au(t) + f(t, ut) +
∫ t
0
g(t, s, us)ds, t ∈ (0, T],

u(t) = φ(t), t ∈ [−r, 0],
(1.1)

where T > 0, 0 < q < 1, and 0 < r < ∞. The fractional derivative is understood here in
the Caputo sense. X is a separable Banach space. A is an almost sectorial operator to be
introduced later. Here f : [0, T] × C([−r, 0], X) → X, g : Λ × C([−r, 0], X) → X(Λ =
{(t, s) ∈ [0, T] × [0, T] : t ≥ s}), φ ∈ C([−r, 0], X), where C([a, b], X) denotes the space
of all continuous functions from [a, b] to X.

For any continuous function v defined on [−r, T] and any t ∈ [0, T], we denote by ut
the element of C([−r, 0], X) defined by ut(θ) = u(t + θ), θ ∈ [−r, 0].

Our paper is organized as follows. In Section 2, we give out some preliminaries about
fractional order operator, measure of noncompactness, and almost sectorial operators. The
existence result will be established in Section 3. In Section 4, an example is given to show the
application of the abstract result.

2. Preliminaries

Throughout this paper, we denote by X a separable Banach space with norm ‖ · ‖. For a linear
operator A, we denote by D(A) the domain of A, by ρ(A) the resolvent set of A, and by
R(z;A) = (zI − A)−1, z ∈ ρ(A) the resolvent of A. Moreover, we denote by L(X) the Banach
space of all linear and bounded operators on X and by C([a, b], X) the space of all X-valued
continuous functions on [a, b]with the supremum norm as follows:

‖x‖[a,b] = ‖x‖C([a,b],X) = sup{‖x(t)‖ : t ∈ [a, b]}, for any x ∈ C([a, b], X). (2.1)

Moreover, we abbreviate ‖u‖Lp([0,T],R+) with ‖u‖Lp for any u ∈ Lp([0, T],R+).
Let us recall the following known definitions. For more details, see [7, 11].

Definition 2.1 (see [11]). The fractional integral of order q with the lower limit zero for a
function f ∈ AC[0,∞) is defined as

Iqf(t) =
1

Γ
(
q
)
∫ t
0
(t − s)q−1f(s)ds, t > 0, 0 < q < 1 (2.2)

provided that the right side is pointwise defined on [0,∞), where Γ(·) is the gamma function.
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Definition 2.2 (see [11]). The Riemann-Liouville derivative of order q with the lower limit
zero for a function f ∈ AC[0,∞) can be written as

LDqf(t) =
1

Γ
(
1 − q)

d

dt

∫ t
0
(t − s)−qf(s)ds, t > 0, 0 < q < 1. (2.3)

Definition 2.3 (see [11]). The Caputo derivative of order q for a function f ∈ AC[0,∞) can be
written as

cDqf(t) = LD
q(
f(t) − f(0)), t > 0, 0 < q < 1. (2.4)

Remark 2.4. (1) If f(t) ∈ C1[0,∞), then

cDqf(t) =
1

Γ
(
1 − q)

∫ t
0
(t − s)−qf ′(s)ds = I1−qf ′(t), t > 0, 0 < q < 1; (2.5)

(2) the Caputo derivative of a constant is equal to zero.

We will need the following facts from the theory of measures of noncompactness and
condensing maps (see, e.g., [22, 23]).

Definition 2.5. Let E be a Banach space, 2E the family of all nonempty subsets of E, (A,≥) a
partially ordered set and ν : 2E → A. If for every Ω ∈ 2E:

ν(co(Ω)) = ν(Ω), (2.6)

then we say that ν is a measure of noncompactness (MNC) in E.
A MNC ν is called:

(i) monotone if Ω0,Ω1 ∈ 2E, Ω0 ⊂ Ω1 implies ν(Ω0) ≤ ν(Ω1);

(ii) nonsingular if ν({a0} ∪Ω) = ν(Ω) for every a0 ∈ E, Ω ∈ 2E;

(iii) invariant with respect to union with compact sets if ν({D} ∪ Ω) = ν(Ω) for every
relatively compact set D ⊂ E, Ω ∈ 2E.

IfA is a cone in a normed space, we say that the MNC ν is;

(iv) algebraically semiadditive if ν(Ω0 + Ω1) ≤ ν(Ω0) + ν(Ω1) for each Ω0,Ω1 ∈ 2E;

(v) regular if ν(Ω) = 0 is equivalent to the relative compactness of Ω;

(vi) real ifA is [0,+∞)with the natural order.

As an example of the MNC possessing all these properties, we may consider the
Hausdorff MNC:

χ(Ω) = inf{ε > 0 : Ω has a finite ε-net}. (2.7)

Now, let G : [0, h] → 2E be a multifunction. It is called:

(i) integrable, if it admits a Bochner integrable selection g : [0, h] → E, g(t) ∈ G(t) for
a.e. t ∈ [0, h];
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(ii) integrably bounded, if there exists a function � ∈ L1([0, h], E) such that

‖G(t)‖ := sup{‖g‖ : g ∈ G(t)} ≤ �(t) a.e. t ∈ [0, h]. (2.8)

We present the following assertion about χ-estimates for a multivalued integral [23,
Theorem 4.2.3].

Proposition 2.6. For an integrable, integrably bounded multifunction G : [0, h] → 2X , where X is
a separable Banach space, let

χ(G(t)) ≤ q(t), for a.e. t ∈ [0, h], (2.9)

where q ∈ L1
+([0, h]). Then, χ(

∫ t
0G(s)ds) ≤

∫ t
0 q(s)ds for all t ∈ [0, h].

Let E be a Banach space, ν a monotone nonsingular MNC in E.

Definition 2.7. A continuous map F : Y ⊆ E → E is called condensing with respect to a MNC
ν (or ν-condensing) if for every bounded set Ω ⊆ Y which is not relatively compact, we have

ν(F(Ω))/≥ ν(Ω). (2.10)

The following fixed point principle (see, e.g., [22, 23])will be used later.

Theorem 2.8. Let M be a bounded convex closed subset of E and F : M → M a ν-condensing map.
Then, Fix F = {x : x = F(x)} is nonempty.

Theorem 2.9. Let V ⊂ E be a bounded open neighborhood of zero and F : V → E a ν-condensing
map satisfying the boundary condition:

x /=λF(x), (2.11)

for all x ∈ ∂V and 0 < λ ≤ 1. Then, FixF is a nonempty compact set.

To prove the main result, we will need the following generalization of Gronwall’s
lemma for singular kernels [24, Lemma 7.1.1].

Lemma 2.10. Let x, y : [0, T] → [0,+∞) be continuous functions. If y(·) is nondecreasing and
there are constants a > 0 and 0 < ϑ < 1 such that

x(t) ≤ y(t) + a

∫ t
0
(t − s)−ϑx(s)ds, (2.12)

then there exists a constant κ = κ(ϑ) such that

x(t) ≤ y(t) + κa

∫ t
0
(t − s)−ϑy(s)ds, for each t ∈ [0, T]. (2.13)
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Next, we recall the knowledge of almost sectorial operator, for more details, we refer
to [25, 26].

Let −1 < γ < 0 and S0
μ with 0 < μ < π be the open sector:

{
z ∈ C \ {0} :

∣∣arg z∣∣ < μ}, (2.14)

and Sμ its closure, that is,

Sμ =
{
z ∈ C \ {0} :

∣∣arg z∣∣ ≤ μ} ∪ {0}. (2.15)

Let us recall the following definition.

Definition 2.11. Let −1 < γ < 0 and 0 < ω < π/2. By Θγ
ω(X), we denote the family of all linear

closed operators A : D(A) ⊂ X → X which satisfy:

(1) σ(A) ⊂ Sω = {z ∈ C \ {0} : | arg z| ≤ ω} ∪ {0};
(2) for every ω < μ < π , there exists a constant Cμ such that

‖R(z;A)‖L(X) ≤ Cμ|z|γ , for all z ∈ C \ Sμ. (2.16)

A linear operator Awill be called an almost sectorial operator on X if A ∈ Θγ
ω(X).

Remark 2.12. Let A ∈ Θγ
ω(X), then the definition implies that 0 ∈ ρ(A).

Remark 2.13 (see [15]). From [26], note in particular that if A ∈ Θγ
ω(X), then A generates a

semigroup T(t)with a singular behavior at t = 0 in a sense, called semigroup of growth 1 + γ .
Moreover, the semigroup T(t) is analytic in an open sector of the complex plane C, but the
strong continuity fails at t = 0 for data which are not sufficiently smooth.

We denote the semigroup associated with A by T(t). For t ∈ S0
π/2−ω,

T(t) = e−tz(A) =
1

2πi

∫
Γθ
e−tzR(z;A)dz (2.17)

forms an analytic semigroup of growth order 1 + γ , where ω < θ < μ < π/2 − | arg t|, the
integral contour Γθ := {R+eiθ} ∪ {R+e−iθ} is oriented counter-clockwise ([15, 26]).

We have the following proposition on T(t) [26, Theorem 3.9].

Proposition 2.14. LetA ∈ Θγ
ω(X) with −1 < γ < 0 and 0 < ω < π/2. Then the following properties

remain true:

(i) T(t) is analytic in S0
π/2−ω and

dn

dtn
T(t) = (−A)nT(t), for all t ∈ S0

π/2−ω; (2.18)
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(ii) the functional equation T(s + t) = T(s)T(t) for all s, t ∈ S0
π/2−ω holds;

(iii) there exists a constant C0 = C0(γ) > 0 such that

‖T(t)‖L(X) ≤ C0t
−γ−1, for all t > 0; (2.19)

(iv) if β > 1 + γ , then D(Aβ) ⊂ ΣT = {x ∈ X : limt→ 0; t>0T(t)x = x}.

Clearly, we note that the condition (ii) of the Proposition 2.14 does not satisfy for t = 0
or s = 0.

The relation between the resolvent operators of A and the semigroup T(t) is
characterized by.

Proposition 2.15 (see [26, Theorem 3.13]). Let A ∈ Θγ
ω(X) with −1 < γ < 0 and 0 < ω < π/2.

Then for every λ ∈ C with Reλ > 0, one has

R(λ;A) =
∫∞

0
e−λtT(t)dt. (2.20)

Based on the work in [15], we define operator families {Sq(t)}|t∈S0
π/2−ω

and
{Pq(t)}|t∈S0

π/2−ω
by

Sq(t)x =
∫∞

0
Ψq(σ)T(σtq)xdσ, t ∈ S0

π/2−ω, x ∈ X,

Pq(t)x =
∫∞

0
qσΨq(σ)T(σtq)xdσ, t ∈ S0

π/2−ω, x ∈ X,
(2.21)

where Ψq(z) with 0 < q < 1 is a function of Wright-type (cf. e.g., [15]) as follows:

Ψq(z) :=
∞∑
n=0

(−z)n
n!Γ
(−qn + 1 − q) =

1
π

∞∑
n=1

(−z)n
(n − 1)!

Γ
(
nq
)
sin
(
nπq

)
, z ∈ C. (2.22)

We collect some basic properties onΨq(z). For more details, we refer to ([7, 11, 15, 25]).

Proposition 2.16. For −1 < r̃ <∞, λ > 0, the following results hold:

(1) Ψq(t) ≥ 0, t > 0;

(2)
∫∞
0 q/tq+1Ψq(1/tq)e−λtdt = e−λ

q
;

(3)
∫∞
0 Ψq(t)tr̃dt = Γ(1 + r̃)/Γ(1 + qr̃).

Theorem 2.17 (see [15, Theorem 3.1]). For each fixed t ∈ S0
π/2−ω, Sq(t) and Pq(t) are linear and

bounded operators on X. Moreover, for all t > 0, −1 < γ < 0, 0 < q < 1,

∥∥Sq(t)x
∥∥ ≤ C0Γ

(−γ)
Γ
(
1 − q(1 + γ)) t

−q(1+γ)‖x‖, x ∈ X,

∥∥Pq(t)x
∥∥ ≤ qC0Γ

(
1 − γ)

Γ
(
1 − qγ) t−q(1+γ)‖x‖, x ∈ X.

(2.23)
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Theorem 2.18 (see [15, Theorem 3.2]). For t > 0, Sq(t) and Pq(t) are continuous in the uniform
operator topology. Moreover, for every r̃ > 0, the continuity is uniform on [r̃,∞).

Remark 2.19 (see [15, Theorem 3.4]). Let β > 1 + γ . Then for all x ∈ D(Aβ),

lim
t→ 0; t>0

Sq(t)x = x. (2.24)

Next, we will present the definition of mild solution of problem (1.1).
According to Definitions 2.1–2.3, we can rewrite problem (1.1) in the equivalent

integral equation:

u(t) = φ(0) +
1

Γ
(
q
)
∫ t
0
(t − s)q−1[Au(s) + f(s, us) + a(u)(s)]ds, t ∈ (0, T],

u(t) = φ(t), t ∈ [−r, 0]
(2.25)

provided that the integral in (2.25) exists, where

a(u)(t) =
∫ t
0
g(t, s, us)ds. (2.26)

Set

û(λ) =
∫∞

0
e−λtu(t)dt, f̂(λ) =

∫∞

0
e−λtf(t, ut)dt, ĝ(λ) =

∫∞

0
e−λta(u)(t)dt, (2.27)

formally applying the Laplace transform to (2.25), we get

û(λ) =
1
λ
φ(0) +

1
λq
Aû(λ) +

1
λq

[
f̂(λ) + ĝ(λ)

]
, (2.28)

then

(λq −A)û(λ) = λq−1φ(0) +
[
f̂(λ) + ĝ(λ)

]
, (2.29)

thus

û(λ) = λq−1(λq −A)−1φ(0) + (λq −A)−1
[
f̂(λ) + ĝ(λ)

]

= λq−1
∫∞

0
e−λ

qsT(s)φ(0)ds +
∫∞

0
e−λ

qsT(s)
[
f̂(λ) + ĝ(λ)

]
ds

(2.30)

provided that the integral in (2.30) exists.
Then, using Proposition 2.16 (2), we have

λq−1
∫∞

0
e−λ

qsT(s)φ(0)ds = q

∫∞

0
(λt)q−1e−(λt)

q

T(tq)φ(0)dt

= − 1
λ

∫∞

0

(
d

dt
e−(λt)

q
)
T(tq)φ(0)dt
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=
∫∞

0

∫∞

0

q

σq
Ψq

(
1
σq

)
e−λtσT(tq)φ(0)dσdt

=
∫∞

0
e−λt

[∫∞

0

q

σq+1
Ψq

(
1
σq

)
T

(
tq

σq

)
φ(0)dσ

]
dt

=
∫∞

0
e−λt

[∫∞

0
Ψq(τ)T(tqτ)φ(0)dτ

]
dt,

∫∞

0
e−λ

qsT(s)f̂(λ)ds =
∫∞

0
e−(λτ)

q

qτq−1T(τq)
(∫∞

0
e−λtf(t, ut)dt

)
dτ

=
∫∞

0

∫∞

0
e−λτσ

q

σq+1
Ψq

(
1
σq

)
qτq−1T(τq)

(∫∞

0
e−λtf(t, ut)dt

)
dσdτ

= q2
∫∞

0

∫∞

0
e−λθ

θq−1

σ2q+1
Ψq

(
1
σq

)
T

(
θq

σq

)(∫∞

0
e−λtf(t, ut)dt

)
dθdσ

= q2
∫∞

0

(∫∞

0

∫∞

t

e−λτ
(τ − t)q−1
σ2q+1

Ψq

(
1
σq

)
T

(
(τ − t)q
σq

)
f(t, ut)dτdt

)
dσ

= q2
∫∞

0

(∫∞

0

∫ τ
0
e−λτ

(τ − t)q−1
σ2q+1

Ψq

(
1
σq

)
T

(
(τ − t)q
σq

)
f(t, ut)dtdτ

)
dσ

=
∫∞

0
e−λt

[
q

∫ t
0

∫∞

0
(t − s)q−1σΨq(σ)T

(
(t − s)qσ)f(s, us) dσds

]
dt.

(2.31)

Similarly, we have

∫∞

0
e−λ

qsT(s)ĝ(λ)ds =
∫∞

0
e−λt

[
q

∫ t
0

∫∞

0
(t − s)q−1σΨq(σ)T

(
(t − s)qσ)a(u)(s)dσ ds

]
dt.

(2.32)

Thus, from (2.30)–(2.32), we obtain

û(λ) =
∫∞

0
e−λt

[∫∞

0
Ψq(τ)T(tqτ)φ(0)dτ

+ q
∫ t
0

∫∞

0
(t − s)q−1σΨq(σ)T

(
(t − s)qσ)f(s, us) dσ ds

+q
∫ t
0

∫∞

0
(t − s)q−1σΨq(σ)T

(
(t − s)qσ)a(u)(s)dσ ds

]
dt.

(2.33)



Abstract and Applied Analysis 9

We invert the last Laplace transform to obtain

u(t) =
∫∞

0
Ψq(τ)T(tqτ)φ(0)dτ

+ q
∫ t
0

∫∞

0
(t − s)q−1σΨq(σ)T

(
(t − s)qσ)f(s, us)dσ ds

+ q
∫ t
0

∫∞

0
(t − s)q−1σΨq(σ)T

(
(t − s)qσ)a(u)(s)dσ ds

= Sq(t)φ(0) +
∫ t
0
(t − s)q−1Pq(t − s)f(s, us)ds

+
∫ t
0
(t − s)q−1Pq(t − s)a(u)(s)ds.

(2.34)

Then from the above induction, when φ(0) ∈ D(Aβ) with β > 1 + γ , we can give the
following definition of the mild solution of (1.1).

Definition 2.20. A continuous function u : [−r, T] → X satisfying the equation:

u(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ(t), t ∈ [−r, 0],
Sq(t)φ(0) +

∫ t
0
(t − s)q−1Pq(t − s)f(s, us)ds

+
∫ t
0
(t − s)q−1Pq(t − s)a(u)(s)ds, t ∈ [0, T]

(2.35)

is called a mild solution of (1.1).

Remark 2.21 (see [15], Remark 4.1). (1) In general, since the operator Sq(t) is singular at t = 0,
solutions to problem (1.1) are assumed to have the same kind of singularity at t = 0 as the
operator Sq(t).

(2) When φ(0) ∈ D(Aβ) with β > 1 + γ , it follows from Remark 2.19 that the mild
solution is continuous at t = 0.

3. Main Result

Throughout this section, let A be an operator in the class Θγ
ω(X) and −1 < γ < 0, 0 < ω <

π/2. Moreover, we require the following assumptions:

(Hf) (1) f : [0, T] × C([−r, 0], X) → X satisfies f(·, y) : [0, T] → X is measurable for all
y ∈ C([−r, 0], X) and f(t, ·) : C([−r, 0], X) → X is continuous for a.e. t ∈ [0, T], and
there exists a positive function μ(·) ∈ Lp([0, T],R+)(p > −1/(qγ) > 1/q > 1) such
that

∥∥f(t, y)∥∥ ≤ μ(t)∥∥y∥∥[−r,0], (3.1)

for almost all t ∈ [0, T];
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(2) there exists a nondecreasing function η ∈ Lp([0, T],R+) such that for any
bounded set D ⊂ C([−r, 0], X):

χ
(
f(t,D)

) ≤ η(t) sup
θ∈[−r,0]

χ(D(θ)), a.e. t ∈ [0, T]. (3.2)

(Hg) (1) g : Λ × C([−r, 0], X) → X and g(t, s, ·) : C([−r, 0], X) → X is continuous
for a.e. (t, s) ∈ Λ, and for each y ∈ C([−r, 0], X), the function g(·, ·, y) :
Λ → X is measurable. Moreover, there exists a function m : Λ → R+ with
supt∈[0,T]

∫ t
0m(t, s)ds := m∗ <∞ such that

∥∥g(t, s, y)∥∥ ≤ m(t, s)
∥∥y∥∥[−r,0], (3.3)

for almost all (t, s) ∈ Λ;

(2) for any bounded set D ⊂ C([−r, 0], X), there exists a function ξ : Λ → R+ such
that

χ
(
g(t, s,D)

) ≤ ξ(t, s) sup
θ∈[−r,0]

χ(D(θ)), (3.4)

where supt∈[0,T]
∫ t
0 ξ(t, s)ds := ξ

∗ <∞.

Theorem 3.1. Let A ∈ Θγ
ω(X) with −1 < γ < 0, 0 < ω < π/2. Assume that (Hf) and (Hg) are

satisfied. Then for every φ(0) ∈ D(Aβ) with β > 1 + γ , the mild solution set of problem (1.1) is a
nonempty compact subset of the space C([−r, T], X), provided that

M

(
lp,qT

−(1+pqγ)/p∥∥μ∥∥Lp + −m∗T−qγ

qγ

)
< 1, (3.5)

whereM := (qC0Γ(1 − γ))/Γ(1 − qγ) and lp,q := ((p − 1)/(−pqγ − 1))(p−1)/p.

Proof. We define the operator F : C([−r, T], X) → C([−r, T], X) in the following way:

(Fu)(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ(t), t ∈ [−r, 0],
Sq(t)φ(0) +

∫ t
0
(t − s)q−1Pq(t − s)f(s, us)ds

+
∫ t
0
(t − s)q−1Pq(t − s)a(u)(s)ds, t ∈ [0, T].

(3.6)

It is clear that the operator F is well defined.
We define

φ̂(t) =

{
φ(t), t ∈ [−r, 0],
Sq(t)φ(0), t ∈ [0, T].

(3.7)
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Let u(t) = v(t) + φ̂(t). It is easy to see that v satisfies v0 = 0 and

v(t) =
∫ t
0
(t − s)q−1Pq(t − s)f

(
s, vs + φ̂s

)
ds +

∫ t
0
(t − s)q−1Pq(t − s)a

(
v + φ̂

)
(s)ds, t ∈ [0, T]

(3.8)

if and only if u satisfies

u(t) = Sq(t)φ(0) +
∫ t
0
(t − s)q−1Pq(t − s)f(s, us)ds +

∫ t
0
(t − s)q−1Pq(t − s)a(u)(s)ds, t ∈ [0, T]

(3.9)

and u(t) = φ(t), t ∈ [−r, 0].
Let F̂ : C([−r, T], X) → C([−r, T], X) be an operator defined by (F̂v)(t) = 0 for t ∈

[−r, 0] and

(
F̂v
)
(t) =

∫ t
0
(t − s)q−1Pq(t − s)f

(
s, vs + φ̂s

)
ds

+
∫ t
0
(t − s)q−1Pq(t − s)a

(
v + φ̂

)
(s)ds, t ∈ [0, T].

(3.10)

Clearly the operator F̂ has a fixed point is equivalent to F having one.
We define C := {v ∈ C([−r, T], X) : v0 = 0} ⊂ C([−r, T], X). Next we will prove that F̂

has a fixed point on C.
Let {vn}n∈N be a sequence such that vn → v in C as n → ∞. Since f satisfies (Hf)(1)

and g satisfies (Hg)(1), for almost every t ∈ [0, T] and (t, s) ∈ Λ, we get

f
(
t, vnt + φ̂t

)
−→ f

(
t, vt + φ̂t

)
, as n −→ ∞,

g
(
t, s, vns + φ̂s

)
−→ g

(
t, s, vs + φ̂s

)
, as n −→ ∞.

(3.11)

Noting that

∥∥∥vt + φ̂t
∥∥∥
[−r,0]

≤ sup
t∈[−r,0]

‖v(t)‖ + sup
t∈[0,T]

‖v(t)‖ + sup
t∈[−r,0]

∥∥∥φ̂(t)
∥∥∥ + sup

t∈[0,T]

∥∥∥φ̂(t)
∥∥∥

= sup
t∈[0,T]

‖v(t)‖ + sup
t∈[−r,0]

∥∥φ(t)∥∥ + sup
t∈[0,T]

∥∥Sq(t)φ(0)
∥∥ := α.

(3.12)

Therefore,

∥∥∥f(t, vt + φ̂t
)∥∥∥ ≤ μ(t)

∥∥∥vt + φ̂t
∥∥∥
[−r,0]

≤ αμ(t), (3.13)

∥∥∥a(v + φ̂
)
(t)
∥∥∥ ≤

∫ t
0

∥∥∥g(t, s, vs + φ̂s
)∥∥∥ds ≤

∫ t
0
m(t, s)

∥∥∥vs + φ̂s
∥∥∥
[−r,0]

ds ≤ m∗α. (3.14)
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Since vn → v in C, it follows that there exists ε > 0 such that ‖vn − v‖[0,T] ≤ ε for n
sufficiently large. Moreover, noting that ‖vnt − vt‖[−r,0] ≤ ‖vn − v‖[0,T], we have

∥∥∥f(t, vnt + φ̂t
)
− f
(
t, vt + φ̂t

)∥∥∥ ≤ μ(t)
∥∥∥vnt + φ̂t

∥∥∥
[−r,0]

+ αμ(t)

≤ μ(t)
∥∥vnt − vt∥∥[−r,0] + 2αμ(t) ≤ (ε + 2α)μ(t).

(3.15)

Similarly,

∥∥∥g(t, s, vns + φ̂s
)
− g
(
t, s, vs + φ̂s

)∥∥∥ ≤ (ε + 2α)m(t, s),
∥∥∥∥∥
∫ t
0
g
(
t, s, vns + φ̂s

)
ds −

∫ t
0
g
(
t, s, vs + φ̂s

)
ds

∥∥∥∥∥ ≤ m∗(ε + 2α).
(3.16)

It follows from the Lebesgue’s Dominated Convergence Theorem that

∥∥∥∥∥
∫ t
0
g
(
t, s, vns + φ̂s

)
ds −

∫ t
0
g
(
t, s, vs + φ̂s

)
ds

∥∥∥∥∥ −→ 0, as n −→ ∞, (3.17)

and from (2.23), we have

∥∥∥∥∥
∫ t
0
(t − s)q−1Pq(t − s)

[
f
(
s, vns + φ̂s

)
− f
(
s, vs + φ̂s

)]
ds

∥∥∥∥∥

+

∥∥∥∥∥
∫ t
0
(t − s)q−1Pq(t − s)

[∫s
0
g
(
s, τ, vnτ + φ̂τ

)
dτ −

∫ s
0
g
(
s, τ, vτ + φ̂τ

)
dτ

]
ds

∥∥∥∥∥

≤M
∫ t
0
(t − s)−qγ−1

[∥∥∥f(s, vns + φ̂s
)
− f
(
s, vs + φ̂s

)∥∥∥

+
∥∥∥∥
∫s
0
g
(
s, τ, vnτ + φ̂τ

)
dτ −

∫ s
0
g
(
s, τ, vτ + φ̂τ

)
dτ

∥∥∥∥
]
ds −→ 0,

as n −→ ∞.

(3.18)

Therefore, we obtain that

lim
n→∞

∥∥∥F̂vn − F̂v
∥∥∥
[0,T]

= 0, (3.19)

then we see that F̂ is continuous.
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Let us consider the MNC ν in the space C with values in the cone R3
+ of the following

way: for every bounded subset Ω ⊂ C,

ν(Ω) =

(
sup
t∈[−r,0]

χ(Ω(t)),Φ(Ω),modc(Ω)

)
, (3.20)

where modc(Ω) is the module of equicontinuity of Ω given by

modc(Ω) = lim
δ→ 0

sup
v∈Ω

max
|t1−t2|≤δ

‖v(t1) − v(t2)‖,

Φ(Ω) = sup
t∈[0,T]

(
e−Lt sup

s∈[0,t]
χ(Ω(s))

)
,

(3.21)

where L > 0 is a constant chosen so that

M sup
t∈[0,T]

∫ t
0
(t − s)−qγ−1η(s)e−L(t−s)ds = L1 < 1, (3.22)

Mξ∗ sup
t∈[0,T]

∫ t
0
(t − s)−qγ−1e−L(t−s)ds = L2 < 1. (3.23)

Noting that for any ψ ∈ L1([0, T], X), we have

lim
L→+∞

sup
t∈[0,T]

∫ t
0
e−L(t−s)ψ(s)ds = 0, (3.24)

so, we can take the appropriate L to satisfy (3.22) and (3.23).
Next, we show that the operator F̂ is ν-condensing on every bounded subset of C.
Let Ω ⊂ C be a nonempty, bounded set for which

ν
(
F̂(Ω)

)
≥ ν(Ω). (3.25)

Noting that

sup
t∈[−r,0]

χ
(
F̂(Ω)(t)

)
= 0 (3.26)

and (3.25), we can see that supt∈[−r,0]χ(Ω(t)) = 0.
Next, we estimate Φ(Ω). For any t ∈ [0, T], we set

F̂1(Ω)(t) =

{∫ t
0
(t − s)q−1Pq(t − s)f

(
s, vs + φ̂s

)
ds : v ∈ Ω

}
. (3.27)
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We consider the multifunction s ∈ [0, t] � H(s):

H(s) =
{
(t − s)q−1Pq(t − s)f

(
s, vs + φ̂s

)
: v ∈ Ω

}
. (3.28)

Obviously,H is integrable, and from (2.23), (Hf)(1), and (3.13), it follows thatH is integrably
bounded. Moreover, noting that (Hf)(2), we have the following estimate for a.e. s ∈ [0, t]:

χ(H(s)) = χ
({

(t − s)q−1Pq(t − s)f
(
s, vs + φ̂s

)
: v ∈ Ω

})

= χ
(
(t − s)q−1Pq(t − s)f

(
s,Ωs + φ̂s

))

≤ M(t − s)−qγ−1η(s) sup
τ∈[0,s]

χ(Ω(τ))

= M(t − s)−qγ−1η(s)eLse−Ls sup
τ∈[0,s]

χ(Ω(τ))

≤ M(t − s)−qγ−1η(s)eLsΦ(Ω).

(3.29)

Applying Proposition 2.6, we have

χ
(
F̂1(Ω)(t)

)
= χ

(∫ t
0
H(s)ds

)
≤M

∫ t
0
(t − s)−qγ−1η(s)eLsds ·Φ(Ω). (3.30)

Therefore, from (3.22), we have

sup
t∈[0,T]

(
e−Lt sup

s∈[0,t]
χ
(
F̂1(Ω)(s)

))
≤ M sup

t∈[0,T]

∫ t
0
(t − s)−qγ−1η(s)e−L(t−s)ds ·Φ(Ω)

= L1Φ(Ω).

(3.31)

Similarly, if we set

F̂2(Ω)(t) =

{∫ t
0
(t − s)q−1Pq(t − s)a

(
v + φ̂

)
(s)ds : v ∈ Ω

}
, (3.32)

then we can see that the multifunction s ∈ [0, t] � H̃(s),

H̃(s) =
{
(t − s)q−1Pq(t − s)a

(
v + φ̂

)
(s) : v ∈ Ω

}
(3.33)
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is integrable, and from (2.23), (Hg)(1), and (3.14), it follows that H̃ is integrably bounded.
Moreover, noting that (Hg)(2), Proposition 2.6, and (3.23), we have the following estimate
for a.e. s ∈ [0, t]:

χ
(
H̃(s)

)
≤Mξ∗(t − s)−qγ−1eLsΦ(Ω),

sup
t∈[0,T]

(
e−Lt sup

s∈[0,t]
χ
(
F̂2(Ω)(s)

))
≤ Mξ∗ sup

t∈[0,T]

∫ t
0
(t − s)−qγ−1e−L(t−s)ds ·Φ(Ω)

= L2Φ(Ω).

(3.34)

Now, from (3.31) and (3.34), L > 0 can be chosen so that

Φ
(
F̂(Ω)

)
≤ (L1 + L2)Φ(Ω) = L̃Φ(Ω), (3.35)

where 0 < L̃ < 1.
From (3.25), we have Φ(Ω) = 0. Next, we will prove that modc(Ω) = 0.
Let δ > 0, t1, t2 ∈ (0, T] such that 0 < t2 − t1 ≤ δ and v ∈ Ω, noting that (Hf)(1) and

(Hg)(1), we obtain

∥∥∥∥∥
∫ t1
0
(t1 − s)q−1Pq(t1 − s)

[
f
(
s, vs + φ̂s

)
+ a
(
v + φ̂

)
(s)
]
ds

−
∫ t2
0
(t2 − s)q−1Pq(t2 − s)

[
f
(
s, vs + φ̂s

)
+ a
(
v + φ̂

)
(s)
]
ds

∥∥∥∥∥

≤
∥∥∥∥∥
∫ t1
0

[
(t2 − s)q−1 − (t1 − s)q−1

]
Pq(t2 − s)

[
f
(
s, vs + φ̂s

)
+ a
(
v + φ̂

)
(s)
]
ds

∥∥∥∥∥

+

∥∥∥∥∥
∫ t2
t1

(t2 − s)q−1Pq(t2 − s)
[
f
(
s, vs + φ̂s

)
+ a
(
v + φ̂

)
(s)
]
ds

∥∥∥∥∥

+

∥∥∥∥∥
∫ t1
0
(t1 − s)q−1

[Pq(t2 − s) − Pq(t1 − s)
][
f
(
s, vs + φ̂s

)
+ a
(
v + φ̂

)
(s)
]
ds

∥∥∥∥∥
= I1 + I2 + I3.

(3.36)

Using (2.23), (3.13), and (3.14), we have

I1 ≤ αM
∫ t1
0

∣∣∣(t2 − s)q−1 − (t1 − s)q−1
∣∣∣(t2 − s)−q(1+γ)[μ(s) +m∗]ds. (3.37)

Clearly, I1 tends to zero as t2 → t1. Similarly, for I2, we have

I2 ≤ αM
∫ t2
t1

(t2 − s)−qγ−1
[
μ(s) +m∗]ds −→ 0, as t2 −→ t1. (3.38)
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For I3, for ε > 0 small enough, noting that (2.23), (3.13), and (3.14), we have

I3 ≤ α

∫ t1−ε
0

(t1 − s)q−1
∥∥Pq(t2 − s) − Pq(t1 − s)

∥∥
L(X)

[
μ(s) +m∗]ds

+ α
∫ t1
t1−ε

(t1 − s)q−1
∥∥Pq(t2 − s) − Pq(t1 − s)

∥∥
L(X)

[
μ(s) +m∗]ds

≤ α sup
s∈[0,t1−ε]

∥∥Pq(t2 − s) − Pq(t1 − s)
∥∥
L(X) ·

∫ t1−ε
0

(t1 − s)q−1
[
μ(s) +m∗]ds

+ αM
∫ t1
t1−ε

(
(t1 − s)q−1
(t1 − s)q(γ+1)

+
(t1 − s)q−1
(t2 − s)q(γ+1)

)[
μ(s) +m∗]ds,

(3.39)

it follows from Theorem 2.18 that I3 tends to zero as t2 → t1 and ε → 0.
For the case when 0 = t1 < t2 ≤ T , we can see

∥∥∥∥∥
∫ t2
0
(t2 − s)q−1Pq(t2 − s)

[
f
(
s, vs + φ̂s

)
+ a
(
v + φ̂

)
(s)
]
ds

∥∥∥∥∥

≤ αM
∫ t2
0
(t2 − s)−qγ−1

[
μ(s) +m∗]ds −→ 0, as t2 −→ 0.

(3.40)

Thus, the set {(F̂v)(·) : v ∈ Ω} is equicontinuous, then modc(F̂Ω) = 0. From (3.25),
we get that modc(Ω) = 0. Hence ν(Ω) = (0, 0, 0).

The regularity property of ν implies the relative compactness of Ω. Now, it follows
from Definition 2.7 that F̂ is ν-condensing.

Consider the set

Bρ =
{
v ∈ C : ‖v‖[0,T] ≤ ρ

}
. (3.41)

Next, we show that there exists some ρ > 0 such that F̂Bρ ⊂ Bρ. Suppose on the contrary that
for each ρ > 0 there exist vρ(·) ∈ Bρ and some t ∈ [0, T] such that ‖(F̂vρ)(t)‖[0,T] > ρ.

Noting the Hölder inequality, we have

∫ t
0
(t − s)−1−qγμ(s)ds ≤ t(−(1+pqγ))/plp,q

∥∥μ∥∥Lp ≤ T (−(1+pqγ))/plp,q
∥∥μ∥∥Lp . (3.42)
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By (2.23), (Hf)(1), (Hg)(1), and (3.42), we have

∥∥∥(F̂vρ)(t)
∥∥∥

=

∥∥∥∥∥
∫ t
0
(t − s)q−1Pq(t − s)

[
f
(
s, v

ρ
s + φ̂s

)
+ a
(
vρ + φ̂

)
(s)
]
ds

∥∥∥∥∥

≤M
[
‖vρ‖[0,T] + M̃

] ∫ t
0
(t − s)−qγ−1[μ(s) +m∗]ds

≤M
(
ρ + M̃

)
·
[
lp,qT

(−(1+pqγ))/p∥∥μ∥∥Lp + −m∗T−qγ

qγ

]
,

(3.43)

where M̃ = ‖φ‖[−r,0] + supt∈[0,T]‖Sq(t)φ(0)‖.
Then,

ρ <
∥∥∥(F̂vρ)(t)

∥∥∥
[0,T]

≤M
[
ρ + M̃

]
·
[
lp,qT

−(1+pqγ)/p∥∥μ∥∥Lp + −m∗T−qγ

qγ

]
. (3.44)

Dividing both sides of (3.44) by ρ, and taking ρ → ∞, we have

M

(
lp,qT

−(1+pqγ)/p∥∥μ∥∥Lp + −m∗T−qγ

qγ

)
≥ 1. (3.45)

This contradicts (3.5). Hence for some positive number ρ, F̂Bρ ⊂ Bρ. According to
Theorem 2.8, problem (1.1) has at least one mild solution.

Next, for c ∈ (0, 1], we consider the following one-parameter family of maps:

H : [0, 1] × C −→ C

(c, v) −→ H(c, v) = cF̂(v).
(3.46)

We will demonstrate that the fixed point set of the family H:

FixH = {v ∈ H(c, v) for some c ∈ (0, 1]} (3.47)
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is a priori bounded. In fact, let v ∈ FixH, for t ∈ [0, T], we have

‖v(t)‖ ≤
∫ t
0

∥∥∥(t − s)q−1Pq(t − s)
[
f
(
s, vs + φ̂s

)
+ a
(
v + φ̂

)
(s)
]∥∥∥ds

≤ M

∫ t
0
(t − s)−qγ−1[μ(s) +m∗] ·

[
sup
τ∈[0,s]

‖v(τ)‖ + M̃
]
ds

≤ M

[
sup
s∈[0,t]

‖v(s)‖
∫ t
0
(t − s)−qγ−1μ(s)ds +m∗

∫ t
0
(t − s)−qγ−1 sup

τ∈[0,s]
‖v(τ)‖ds

]
+ a1

≤ a1 + a2 sup
s∈[0,t]

‖v(s)‖ + a3
∫ t
0
(t − s)−qγ−1 sup

τ∈[0,s]
‖v(τ)‖ds,

(3.48)

where

a1 =MM̃ ·
(
lp,qT

−(1+pqγ)/p∥∥μ∥∥Lp + −m∗T−qγ

qγ

)
,

a2 =Mlp,qT
−(1+pqγ)/p∥∥μ∥∥Lp ,

a3 =Mm∗.

(3.49)

We denote that x(t) := sups∈[0,t]‖v(s)‖. Let t̃ ∈ [0, t] such that x(t) = ‖v(t̃)‖. Then, by
(3.48), we can see

x(t) ≤ a1 + a2x(t) + a3
∫ t
0
(t − s)−qγ−1x(s)ds. (3.50)

By Lemma 2.10, there exists a constant κ such that

x(t) ≤ a1
1 − a2 +

κa1a3

(1 − a2)2
∫ t
0
(t − s)−qγ−1ds ≤ a1

1 − a2 − κa1a3T
−qγ

qγ(1 − a2)2
:= �. (3.51)

Hence, supt∈[0,T]‖v(t)‖ ≤ � .
Now, we consider a closed ball as follows:

BR =
{
v ∈ C : ‖v‖[0,T] ≤ R

}
⊂ C. (3.52)

We take the radius R > 0 large enough to contain the set FixH inside itself. Moreover,
from the proof above-mentioned, F̂ : BR → C is ν-condensing, and it remains to apply
Theorem 2.9.
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4. Application

Example 4.1. Let

Â = (−iΔ + σ)1/2, D
(
Â
)
=W1,3(R2) (

a Sobolev space
)

(4.1)

be as in [15, Example 6.3], in which, the authors demonstrate that Â ∈ Θγ
ω(L3(R2)) for some

0 < ω < π/2 and γ = −1/6. We denote the semigroup associated with Â by T(t) and ‖T(t)‖ ≤
C0t

−5/6(C0 is a constant).
Let X = L3(R2), we consider the following integrodifferential problem:

∂
q
t w(t, x) = Âw(t, x) +

1
2k
√
t

∫ t
0
(t − s)(1/(2k))−1

∫0

−r
ζ1(θ) · sin

(
|wt(θ, x)|sk

)
dθds

+
∫ t
0
(t − s)k

∫0

−r
ζ2(θ)ws(θ, x)dθds,

w(θ, x) = w0(θ, x), −r ≤ θ ≤ 0,

(4.2)

where ∂qt is the Caputo fractional partial derivative of order 0 < q < 1, t ∈ (0, 1], r > 0, x ∈ R2

and wt(θ, x) = w(t + θ, x). ζi : [−r, 0] → R(i = 1, 2), and
∫0
−r |ζi(θ)|dθ < ∞(i = 1, 2), k > 1 is a

constant.
For x ∈ R2 and ϕ ∈ C([−r, 0], X), we set

u(t)(x) = w(t, x),

φ(θ)(x) = w0(θ, x), θ ∈ [−r, 0],

f
(
t, ϕ
)
(x) =

1
2k
√
t

∫ t
0
(t − s)(1/(2k))−1

∫0

−r
ζ1(θ) · sin

(∣∣ϕ(θ)(x)∣∣sk)dθds,

g
(
t, s, ϕ

)
(x) = (t − s)k

∫0

−r
ζ2(θ)ϕ(θ)(x)dθ.

(4.3)

Then the above equation (4.2) can be reformulated as the abstract (1.1).
For t ∈ (0, 1], we can see that

∥∥f(t, ϕ)∥∥ ≤ 1
2k
√
t

(∫ t
0
(t − s)(1/(2k))−1skds ·

∫0

−r
|ζ1(θ)|dθ

)
· ∥∥ϕ∥∥[−r,0] := μ(t) ·

∥∥ϕ∥∥[−r,0], (4.4)

clearly, μ(t) = tkB(1/(2k), k + 1)
∫0
−r |ζ1(θ)|dθ ∈ Lp([0, 1],R+)(p > 6/q), where B(·, ·) is a beta

function.
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For any ϕ, ϕ̃ ∈ C([−r, 0], X),

∥∥f(t, ϕ)(x) − f(t, ϕ̃)(x)∥∥ ≤ 1
2k
√
t

∫ t
0
(t − s)(1/(2k))−1skds ·

∫0

−r
|ζ1(θ)|

∥∥ϕ(θ)(x) − ϕ̃(θ)(x)∥∥dθ.
(4.5)

Therefore, for any bounded set D ⊂ C([−r, 0], X), we have

χ
(
f(t,D)

) ≤ μ(t) sup
−r≤θ≤0

χ(D(θ)), a.e. t ∈ [0, 1]. (4.6)

Moreover, for almost all (t, s) ∈ Λ:

∥∥g(t, s, ϕ)(x)∥∥ =

∥∥∥∥∥(t − s)k
∫0

−r
ζ2(θ)ϕ(θ)(x)dθ

∥∥∥∥∥ ≤ m(t, s)
∥∥ϕ∥∥[−r,0], (4.7)

wherem(t, s) := (t − s)k ∫0−r |ζ2(θ)|dθ. Then, we obtain

m∗ = sup
t∈[0,1]

∫ t
0
m(t, s)ds =

∫0

−r
|ζ2(θ)|dθ · sup

t∈[0,1]

∫ t
0
(t − s)kds = 1

k + 1

∫0

−r
|ζ2(θ)|dθ,

∥∥g(t, s, ϕ)(x) − g(t, s, ϕ̃)(x)∥∥ ≤ (t − s)k
∫0

−r
|ζ2(θ)|

∥∥ϕ(θ)(x) − ϕ̃(θ)(x)∥∥dθ.
(4.8)

Hence, for any bounded set D ⊂ C([−r, 0], X), we have

χ
(
g(t, s,D)

) ≤ ξ(t, s) sup
−r≤θ≤0

χ(D(θ)), (4.9)

where ξ(t, s) := (t − s)k ∫0−r |ζ2(θ)|dθ, and sup
t∈[0,1]

∫ t
0 ξ(t, s)ds = 1/(k + 1)

∫0
−r |ζ2(θ)|dθ.

Suppose further that there exists constantM∗ ∈ (0, 1) such that

qC0Γ
(
1 − γ)

Γ
(
1 − qγ)

(
lp,q
∥∥μ∥∥Lp + −m∗

qγ

)
< M∗ < 1, (4.10)

then for φ(0) ∈ D(Âβ)(β > 5/6), problem (4.2) has at least a mild solution by Theorem 3.1.
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