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We explore the dynamics of a class of mutualism-competition-predator interaction models with
Beddington-DeAngelis functional responses and impulsive perturbations. Sufficient conditions
for existence of positive periodic solution are established by using a continuation theorem in
coincidence degree theory, which have been extensively applied in studying existence problems
in differential equations and difference equations. In addition, sufficient criteria are given for the
global stability and the globally exponential stability of system by employing comparison principle
and Lyapunov method.

1. Introduction

The ecological predator-prey systems and impulsive functional differential equations have
been studied extensively by many authors [1–7]. A predator’s per capita feeding rate on
prey, or its functional response, provides a foundation for predator-prey theory. Since 1959,
Holling’s prey-dependent type II functional response, a model that is a function of prey
abundance only, has served as the basis for a large literature on predator-prey theory. The
traditional Kolmogorov type predator-prey model with Holling’s type II functional response:

x′ = rx
(
1 − x

K

)
− cy
(

x
m + x

)
, y′ = −dy + fy

(
x

m + x

)
, (1.1)
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and its various generalized forms have received great attention from both theoretical and
mathematical biologists and have been well studied [1, 8, 9]. In (1.1), x and y represent
the densities of prey specie and predator specie at time t, respectively. Predator-prey model
with Holling’s type II functional response assumes that predators do not interfere with one
another’s activities; thus competition among predators for food occurs only via the depletion
of prey. However, when predators have to search for food (and therefore, have to share or
compete for food), the functional response in a prey-predator model should be predator-
dependent. The predator-prey system with the Beddington-DeAngelis functional response:

x′ = rx
(
1 − x

K

)
− αxy
a + bx + cy

, y′ = −dy +
βxy

a + bx + cy
(1.2)

was originally introduced by Beddington [10] and DeAngelis et al. [11], independently,
where x and y represent the densities of prey specie and predator specie at time t, respectively.
The main difference of this functional response from Holling’s type II functional response
is that it contains an extra term presenting mutual interference by predators. In this model,
individuals from a population of two ormore predators not only allocate time to searching for
and processing prey, but also spend some time engaging in encounters with other predators,
the Beddington-DeAngelis type can provide better descriptions of predator feeding over a
range of predator-prey abundances.

On the other hand, differential equations with impulsive effects form a wide set of
different problems. During the last three decades those problems were intensively studied.
Some authors devote themselves to the study of impulsive differential equation [12–22]. The
main definitions and results of the theory of systems of ordinary differential equations with
impulse effects were given in [12, 13, 15]. Similarity and differentiality of such problems of
applied mathematics with corresponding problems of ordinary differential equations (and
without the conditions of impulsive effects) were demonstrated, and general characteristics
of these systems were described. Periodic and almost-periodic solutions of differential
equations with impulsive effects were studied in [18]. De La Sen investigated time-varying
systems with nonnecessarily bounded everywhere continuous time-differentiable time-
varying point delays [19]. The delay-free and delayed dynamics are assumed to be time-
varying and impulsive, the constructed solution trajectories of both the unforced and forced
systems are obtained from different (input-state space/output space and state space to output
space) operators. The system stability and the compactness of the operators describing the
solution trajectories are well investigated. De La Sen and Luo also obtain sufficiency-type
stability results for time-delay linear systems with constant point delays under impulsive
inputs of impulses of state-dependent amplitudes occurring separately through time. They
proved that the amplitudes of the impulses and the time intervals between impulses may
be chosen sufficiently large if the delay-free dynamics is sufficiently stable compared to
the delayed one [20]. Xu and Sun investigated the problem of finite-time stability of linear
time-varying singular systems with impulses at fixed times, they have proposed a sufficient
condition for linear singular impulsive systems to be finite-time stable in terms of a set of
coupled matrix inequalities [21]. Zhang and Sun also considered the stability of impulsive
linear differential equations with time delay. By using Lyapunov functions and analysis
technique, they get some results for the stability of impulsive linear differential equations
with time delay [22].
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Some impulsive factors have also great impact on the growth of a population. For
example, we notice that the births of many species are not continuous but happen at some
regular time (e.g., the births of some wildlife are seasonal). Moreover, the human beings
have been harvesting or stocking species at some time, then the species is affected by another
type of impulse. If we incorporate these impulsive factors into the models of population
interactions, the models must be governed by impulsive ordinary differential equations.

Population communities are embedded in periodically varying environments. There-
fore, this study should take into account the biological and environmental periodicity (e.g.,
seasonal effects of weather, food supplies, and mating habits), we focus on the existence
of periodic solution with strictly positive components. In real world, any biological or
environmental parameters are naturally subject to fluctuation in time, so it is reasonable to
study the corresponding nonautonomous system.

The first author investigated the existence of positive periodic solutions of a
nonautonomous competitive Lotka-Volterra system with impulse and Holling type III
functional response [23]. An N-dimensional Lotka-Volterra system with fixed moments of
impulsive perturbations is given in [24] by Ahmad and Stamova. By means of piecewise
continuous functions which are modifications of classical Lyapunov’ functions they give
sufficient conditions for asymptotic stability of the solutions. Inspired by [23, 24], in this
paper, we focus our attention on the existence of periodic solution and globally asymptotic
stability of solutions for multispecies mutualism-competition-predator systemwith impulses
in which the competition among predator species and the mutualism among prey species are
simultaneously considered. In general, mutualism is relevant to two species [25, 26], thus we
focus on two prey species and assume that there exists the relation of mutualism between
two prey species. The primary approach is based on the coincidence degree and its related
continuation theorem [27], which has been widely used in dealing with the existence of
periodic solutions of differential equations.Wewill investigate the following nonautonomous
system:

ẋ1(t) = x1(t)

(
b1(t) − a1(t)x1(t) − x1(t)

μ1(t) +ω1(t)x2(t)

−
n∑
k=1

c1k(t)yk(t)
α1k(t) + β1k(t)x1(t) + γ1k(t)yk(t)

)
,

ẋ2(t) = x2(t)

(
b2(t) − a2(t)x2(t) − x2(t)

μ2(t) +ω2(t)x1(t)

−
n∑
k=1

c2k(t)yk(t)
α2k(t) + β2k(t)x2(t) + γ2k(t)yk(t)

)
,

ẏj(t) = yj(t)

(
− rj(t) +

2∑
k=1

djk(t)xk(t)
αjk(t) + βjk(t)xk(t) + γjk(t)yj(t)

−
n∑
k=1

δjk(t)yk(t)

)
,
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t /= tk, (k ∈ Z
+), j = 1, . . . , n,

Δxi(t) = xi(t+) − xi
(
t−
)
= bikxi(t),

Δyj(t) = yj(t+) − yj
(
t−
)
= b̃jkyj(t),

t = tk, (k ∈ Z
+), i = 1, 2, j = 1, . . . , n,

(1.3)

where

(i) xi(t) (i = 1, 2) denote the densities of prey species at time t, respectively;

(ii) yj(t) (j = 1, . . . , n) denote the density of predator species at time t, respectively;

(iii) bik represent the sum of the birth rate and the harvesting (or stocking) rate of xi(t)
at time t, respectively;

(iv) b̃jk represent the sum of the birth rate and the harvesting (or stocking) rate of yj(t)
at time t, respectively;

(v) xi(t+) and xi(t−) represent the right and left limit of xi(t) at t, yj(t+) and yj(t−)
represent the right and left limit of yj(t) at t.

Let g(t) be a bounded continuous function on R. Define

g� = inf
t∈R

g(t), gu = sup
t∈R

g(t). (1.4)

Particularly, if g(t) are T -periodic functions with respect to t, we denote

g =
1
T

∫T
0
g(t)dt. (1.5)

The range of the indices i ∈ {1, 2} and j, k ∈ {1, . . . , n} are used in this paper unless otherwise
stated.

Throughout the paper, we give the hypotheses as follows

(A1) for any t ∈ R, bi(t), ai(t), rj(t), μi(t), ωi(t), dji(t), δjk(t), cik(t), αik, βik, γik are
nonnegative continuous T -periodic functions and αij = αji, βij = βji, γij = γji;

(A2) bik, b̃jk > 0, 1+bik > 0, 1+b̃jk > 0, bik, b̃jk(k ∈ Z
+) are constants. There exists a positive

integer q, such that tk+q = tk + T, bi(k+q) = bik, b̃j(k+q) = b̃jk, (k ∈ Z
+). Without loss of

generality, we also suppose that tk /= 0 and [0, T]∩{tk : k ∈ Z
+} = {t1, t2, . . . , ts}, then

it follows that q = s;

(A3) xi(t), yj(t) is left-continuous at tk, that is, the following relations are satisfied:

xi
(
t−k
)
= xi(tk), xi

(
t+k
)
= (1 + bik)xi(tk), k ∈ Z

+,

yj
(
t−k
)
= yj(tk), yj

(
t+k
)
=
(
1 + b̃jk

)
yj(tk), k ∈ Z

+;
(1.6)
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(A4) t1 < t2 < · · · and limk→∞tk = ∞;

(A5) xi(t+0 ) > 0, yj(t+0 ) > 0.

A brief description of the organization of this paper is as follows. The basic concepts
and lemmas are given in Section 2. The main results in this paper are stated in Theorems 3.1,
4.5, and 4.6.

2. Basic Concepts and Lemma

Let ϕ : [0, T] ⊂ J → R be a piecewise continuous function with points of discontinuity
t1, . . . , ts, we denote

PCT =
{
ϕ : ϕ(0) = ϕ(T)

}
, PC1

T =
{
ϕ ∈ PCT :

(
dϕ

dt

)
∈ PCT

}
. (2.1)

Suppose

∥∥ϕ∥∥PCT
= sup

t∈[0,T]

∣∣ϕ(t)∣∣, ∥∥ϕ∥∥PC1
T
= max

{∥∥ϕ∥∥PCT
,
∥∥ϕ̇∥∥PCT

}
. (2.2)

It can be easily proved that PCT and PC1
T are Banach spaces under the condition endowed

the above norms.
Make the change of variables xi(t) = exp{ui(t)}, yj(t) = exp{vj(t)}, then (1.1) can be

reformulated as

u̇1(t) = b1(t) − a1(t) exp{u1(t)} −
exp{u1(t)}

μ1(t) +ω1(t) exp{u2(t)}

−
n∑
k=1

c1k(t) exp{vk(t)}
α1k(t) + β1k(t) exp{u1(t)} + γ1k(t) exp{vk(t)} ,

u̇2(t) = b2(t) − a2(t) exp{u2(t)} −
exp{u2(t)}

μ1(t) +ω1(t) exp{u1(t)}

−
n∑
k=1

c2k(t) exp{vk(t)}
α2k(t) + β2k(t) exp{u2(t)} + γ2k(t) exp{vk(t)} ,

ẏj(t) = −rj(t) +
2∑
k=1

djk(t) exp{uk(t)}
αjk(t) + βjk(t) exp{uk(t)} + γjk(t) exp

{
vj(t)
}

−
n∑
k=1

δjk(t) exp{vk(t)},
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t /= tk, (k ∈ Z
+), j = 1, . . . , n,

Δui(t) = ui(t+) − ui
(
t−
)
= ln(1 + bik),

Δvj(t) = vj(t+) − vj
(
t−
)
= ln
(
1 + b̃jk

)
,

t = tk (k ∈ Z
+), i = 1, 2, j = 1, . . . , n.

(2.3)

For (1.3) and (2.3), we have similar lemma and definitions. So we only relate such results for
(1.3).

Definition 2.1. The mapping x : [0, T] → R
n+2, x(t) = (x1(t), x2(t), y1(t), . . . , yn(t)) is called a

solution of system (1.1) in [0, T], if

(1) x(t) is piecewise continuous in [0, T] and [0, T] ∩ {tk : k ∈ Z
+} are discontinuous

points of the first kind of x(t), and x(t) are left continuous at [0, T] ∩ {tk : k ∈ Z
+};

(2) x(t) satisfies system in [0, T].

Definition 2.2. The mapping x : J → R
n+2 is called a T -periodic solution of system (1.1) if

(1) x(t) = (x1(t), x2(t), y1(t), . . . , yn(t)) is a solution of system (1.1);

(2) x(t) satisfies x(t + T − 0) = x(t − 0), t ∈ R.

Obviously, if x(t) is a solution of (1.1) satisfying x(0) = x(T) in [0, T], then from the
periodicity of the vector field of (1.1), we know that

x∗(t) =

{
x(t − �T), t ∈ [�T, (� + 1)T] \ {tk : k ∈ Z

+}, � ∈ N,

x∗, (t) is left countious at tk
(2.4)

is an T -periodic solution for (1.1). Thus, the problemwhich discusses the existence of solution
of (1.1) will be transformed to discuss the existence of periodic solution for (1.1) in [0, T]
satisfying x(0) = x(T). In order to explore the existence of positive periodic solutions of (1.1),
we recall some concepts and results on coincidence degree from [27, pages 39-40], borrowing
notations there.

Let X,Z be normed vector spaces, L : DomL ⊆ X → Z a linear mapping, and N :
X → Z a continuous mapping. If dimkerL = comdim Im L < +∞ and ImL is a closed in
Z, then the mapping L will be called a Fredholm mapping of index zero. If L is a Fredholm
mapping of index zero, there exists continuous projects P : X → X and Q : Z → Z such that
ImP = KerL, ImL = KerQ = Im(I − Q). It follows that L|DomL∩KerP : (I − P)X → ImL has
an inverse which is denoted byKp. IfΩ be an open bounded subset of X, the mappingNwill
be called L-compact on Ω provided that QN(Ω) is bounded, and Kp(I − Q)N : Ω → X is
compact. Since ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ → KerL.

The following continuation theorem is due to Gaines and Mawhin [27].

Lemma 2.3 (Continuation Theorem in [27]). Let L a Fredholm mapping of index zero and N be
L-compact on Ω. Suppose that
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(a) for each λ ∈ (0, 1), every solution x of Lx = λNx such that x /∈ ∂Ω;

(b) QNx/= 0 for each x ∈ Ker L ∩ ∂Ω and deg{JQN,Ω ∩ KerL, 0}/= 0.

Then the operator equation Lx = Nx has at least one solution lying in DomL ∩Ω.

We can show that the solution of (1.1) with positive initial value remains positive too,
that is, the following Lemma 2.4 holds.

Lemma 2.4. Suppose the hypotheses (A1)–(A5) hold. xi(t), yj(t) is a solution of (1.1), then

xi(t), yj(t) > 0, t ∈ J. (2.5)

Proof. By integrating of (1.1) in the interval (t0, t1], we have

x1(t) = xi
(
t+0
)
exp

{∫ t
t0

(
b1(t) − a1(t)x1(t) − x1(t)

μ1(t) +ω1(t)x2(t)

−
n∑
k=1

c1k(t)yk(t)
α1k(t) + β1k(t)x1(t) + γ1k(t)yk(t)

)
dt

}
,

x2(t) = xi
(
t+0
)
exp

{∫ t
t0

(
b2(t) − a2(t)x2(t) − x2(t)

μ2(t) +ω2(t)x1(t)

−
n∑
k=1

c2k(t)yk(t)
α2k(t) + β2k(t)x2(t) + γ2k(t)yk(t)

)
dt

}
,

yj(t) = yj
(
t+0
)
exp

{∫ t
t0

(
− rj(t) +

2∑
k=1

djk(t)xk(t)
αjk(t) + βjk(t)xk(t) + γjk(t)yj(t)

−
n∑
k=1

δjk(t)yk(t)

)
dt

}
,

(2.6)

for t ∈ (t0, t1].
There does not exist point of discontinuity of xi(t), yj(t) in the interval (t0, t1], it is

obvious that xi(t) > 0, yj(t) > 0 for t ∈ (t0, t1], hence x(t1) > 0. We have from (1.1) that

xi
(
t+1
)
= (1 + bik)xi(t1), yj

(
t+1
)
=
(
1 + b̃jk

)
yj(t1). (2.7)

It follows from (A2) that

xi
(
t+1
)
= (1 + bik)xi(t1) > 0, yj

(
t+1
)
=
(
1 + b̃jk

)
yj(t1) > 0. (2.8)
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We now integrate (1.1) in the interval (t1, t2], and we have

x1(t) = xi
(
t+1
)
exp

{∫ t
t0

(
b1(t) − a1(t)x1(t) − x1(t)

μ1(t) +ω1(t)x2(t)

−
n∑
k=1

c1k(t)yk(t)
α1k(t) + β1k(t)x1(t) + γ1k(t)yk(t)

)
dt

}
,

x2(t) = xi
(
t+1
)
exp

{∫ t
t0

(
b2(t) − a2(t)x2(t) − x2(t)

μ2(t) +ω2(t)x1(t)

−
n∑
k=1

c2k(t)yk(t)
α2k(t) + β2k(t)x2(t) + γ2k(t)yk(t)

)
dt

}
,

yj(t) = yj
(
t+1
)
exp

{∫ t
t0

(
− rj(t) +

2∑
k=1

djk(t)xk(t)
αjk(t) + βjk(t)xk(t) + γjk(t)yj(t)

−
n∑
k=1

δjk(t)yk(t)

)
dt

}
,

(2.9)

for t ∈ (t1, t2]. From the above relation it follows that xi(t) > 0 for t ∈ (t1, t2].
By similar arguments, we can obtain that

x1(t) = xi
(
t+k
)
exp

{∫ t
t0

(
b1(t) − a1(t)x1(t) − x1(t)

μ1(t) +ω1(t)x2(t)

−
n∑
k=1

c1k(t)yk(t)
α1k(t) + β1k(t)x1(t) + γ1k(t)yk(t)

)
dt

}
,

x2(t) = xi
(
t+k
)
exp

{∫ t
t0

(
b2(t) − a2(t)x2(t) − x2(t)

μ2(t) +ω2(t)x1(t)

−
n∑
k=1

c2k(t)yk(t)
α2k(t) + β2k(t)x2(t) + γ2k(t)yk(t)

)
dt

}
,

yj(t) = yj
(
t+k
)
exp

{∫ t
t0

(
−rj(t) +

2∑
k=1

djk(t)xk(t)
αjk(t) + βjk(t)xk(t) + γjk(t)yj(t)

−
n∑
k=1

δjk(t)yk(t)

)
dt

}
,

(2.10)

for t ∈ (tk, tk+1]. So xi(t) > 0, yj(t) > 0 for t ∈ J .
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3. Existence of Positive Periodic Solution

We denote

Δi = bi +
1
T

q∑
k=1

ln(1 + bik), Δ̃j =
1
T

q∑
k=1

ln
(
1 + b̃jk

)
− rj ,

B =

(
ai∗j∗ 0
0 δi′j ′

)
, Δ =

(
Δi

Δ̃j

)
,

(3.1)

where i∗, j∗ ∈ {1, . . . , n}, i′, j ′ ∈ {1, . . . , n}. We also denote Bk(k ∈ {1, . . . , n + 2}) the matrix
obtained by replacing the kth column of B with Δ.

Theorem 3.1. If system (2.3) satisfies (A1)–(A5) and following conditions

(A6) Δ1 > ((exp{H1}/K2)(1/ω1) −∑n
k=1(c1k/γ1k))/a1, Δ2 > ((exp{H2}/K1)(1/ω2) −∑n

k=1(c2k/γ2k))/a2, Δ̃j >
∑n

k=1,k /= j δjk exp{H̃k}/δjj , where

Hi = max
{
ln
(
Δi

aii

)}
+ 2

q∑
k=1

ln(1 + bik),

H̃j = max

⎧
⎨
⎩ln

Δ̃j +
∑n

k=1

(
djk/βjk

)

δjj

⎫
⎬
⎭ + 2

q∑
k=1

ln
(
1 + bjk

)
,

(3.2)

(A7) B > 0, Bk > 0, k ∈ {1, . . . , n + 2}.

Then system (1.1) has at least one positive T -periodic solution.

Proof. Let X = PC1
T × PC1

T × · · · × PC1
T be the Cartesian production of (n + 2)-tuples, Z =

X × R
(n+2)q, where R

(n+2)q is (n + 2)q-dimensional Euclidean space. It is clear that x(0) = x(T)
for any x ∈ X.

We define

‖x‖ =
2∑
i=1

‖xi‖PC1
T
+

n∑
j=1

∥∥yj
∥∥
PC1

T
=

2∑
i=1

sup
[0,T]

|xi(t)| +
n∑
j=1

sup
[0,T]

∣∣yj(t)
∣∣,

‖z‖
Z
= ‖x‖ + ‖c‖∗,

(3.3)

for any x = (x1, x2, y1, . . . , yn) ∈ X, c = (c1, . . . , c(n+2)q) ∈ R
(n+2)q, and z = (x, c) ∈ Z, where ‖ · ‖

is the norm of X, and ‖ · ‖∗ is any norm of R
(n+2)q. Then it is trivial to check that X,Z are both

Banach spaces when they are endowed with the above norms ‖ · ‖ and ‖ · ‖Z, respectively.
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Let

L : DomL ⊂ X → Z,

(
ui(t)
vj(t)

)
−→
((

u̇i(t)
v̇j(t)

)
,

{(
Δui(tk)
Δvj(tk)

)}q

k=1

)
,

N : X → Z,N
(
ui(t)
vj(t)

)
=

((
u̇i(t)
v̇j(t)

)
,

{(
Δui(tk)
Δvj(tk)

)}q

k=1

)
.

(3.4)

Then

KerL =

⎧
⎪⎨
⎪⎩

(
ui(t)
vj(t)

)
:
(
ui(t)
vj(t)

)
=

⎛
⎜⎝

c1
...

cn+2

⎞
⎟⎠ ∈ R

n+2

⎫
⎪⎬
⎪⎭
,

ImL =

{
z =

((
fi
f̃j

)
,

{(
lik
l̃jk

)}q

k=1

)
∈ Z :

∫T
0
fidt +

q∑
k=1

lik = 0,
∫T
0
f̃jdt +

q∑
k=1

l̃jk = 0

}
,

dim Ker L = n + 2 = codim Im L.

(3.5)

Since ImL is closed in Z,L is a Fredholm mapping of index zero. We respectively define P
and Q in the following:

P
(
ui(t)
vj(t)

)
=

1
T

⎛
⎜⎜⎜⎝

∫T
0
ui(t)dt

∫T
0
vj(t)dt

⎞
⎟⎟⎟⎠,

Qz = Q
((

fi
f̃j

)
,

{(
lik
l̃jk

)}q

k=1

)
=

⎛
⎜⎜⎜⎜⎝

1
T

⎛
⎜⎜⎜⎜⎝

∫T
0
fidt +

q∑
k=1

lik

∫T
0
f̃jdt +

q∑
k=1

l̃j,k

⎞
⎟⎟⎟⎟⎠
,

⎧
⎪⎨
⎪⎩

⎛
⎜⎝

0
...
0

⎞
⎟⎠

⎫
⎪⎬
⎪⎭

q

k=1

⎞
⎟⎟⎟⎟⎠
.

(3.6)

It is easy to show that P, Q are continuous projectors such that ImL = KerQ = Im(I − Q).
Furthermore, the generalized inverse (L)Kp : ImL → DomL⋂KerP exists. That follows
one will calculate Kp.

Let

z =

((
fi
f̃j

)
,

{(
lik
l̃jk

)}q

k=1

)
∈ ImL, (3.7)

then

(
u̇i(t)
v̇j(t)

)
=

(
fi(t)
f̃j(t)

)

t /= tk

,

(
Δui(t)
Δvj(t)

)

t=tk

=

(
lik
l̃jk

)
, (3.8)
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that is,

(
ui(t)
vj(t)

)
=

⎛
⎜⎜⎜⎜⎝

∫ t
0
fi(s)ds +

∑
t>tk

lik + ui(0)
∫ t
0
f̃j(s)ds +

∑
t>tk

l̃jk + vj(0)

⎞
⎟⎟⎟⎟⎠
. (3.9)

Note that

(
ui(t)
vj(t)

)
∈ KerP, that is,

⎛
⎜⎜⎜⎝

1
T

∫T
0
ui(s)ds

1
T

∫T
0
vj(s)ds

⎞
⎟⎟⎟⎠ =

(
0
0

)
. (3.10)

From(3.9), we obtain

⎛
⎜⎜⎜⎜⎝

1
T

∫T
0

∫ t
0
ui(s)dsdt +

∫T
0

∑
t>tk

likdt + Tui(0)

1
T

∫T
0

∫ t
0
vj(s)dsdt +

∫T
0

∑
t>tk

l̃jkdt + Tvj(0)

⎞
⎟⎟⎟⎟⎠

=
(
0
0

)
, (3.11)

and hence,

(
ui(t)
vj(t)

)
=

⎛
⎜⎜⎜⎜⎝

∫ t
0
ui(s)ds +

∑
t>tk

lik − 1
T

∫T
0

∫ t
0
ui(s)dsdt −

q∑
k=1

lik +
1
T

q∑
k=1

liktk

∫ t
0
vj(s)ds +

∑
t>tk

l̃jk − 1
T

∫T
0

∫ t
0
vj(s)dsdt −

q∑
k=1

l̃jk +
1
T

q∑
k=1

l̃jktk

⎞
⎟⎟⎟⎟⎠
, (3.12)

that is,

Kpz =

⎛
⎜⎜⎜⎜⎝

∫ t
0
fi(s)ds +

∑
t>tk

lik − 1
T

∫T
0

∫ t
0
fi(s)dsdt −

q∑
k=1

lik

∫ t
0
f̃j(s)ds +

∑
t>tk

l̃jk − 1
T

∫T
0

∫ t
0
f̃j(s)dsdt −

q∑
k=1

l̃jk

⎞
⎟⎟⎟⎟⎠
. (3.13)

Thus

QN =
(
ui(t)
vj(t)

)
=

((
hi
h̃j

)
,

{(
0
0

)}q

k=1

)
, (3.14)
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where

h1 = Δ1 − 1
T

∫T
0

(
a1(t) exp{u1(t)} +

exp{u1(t)}
μ1(t) +ω1(t) exp{u2(t)}

+
n∑
k=1

c1k(t) exp{vk(t)}
α1k(t) + β1k(t) exp{u1(t)} + γ1k(t) exp{vk(t)}

)
dt,

h2 = Δ2 − 1
T

∫T
0

(
a2(t) exp{u2(t)} +

exp{u2(t)}
μ1(t) +ω1(t) exp{u1(t)}

+
n∑
k=1

c2k(t) exp{vk(t)}
α2k(t) + β2k(t) exp{u2(t)} + γ2k(t) exp{vk(t)}

)
dt,

h̃j = Δ̃j +
1
T

∫T
0

(
2∑
k=1

djk(t) exp{uk(t)}
αjk(t) + βjk(t) exp{uk(t)} + γjk(t) exp

{
vj(t)
}

−
n∑
k=1

δjk(t) exp{vk(t)}
)
dt.

(3.15)

Clearly,QN andKp(I−Q)N are continuous. Using the Arzela-Ascoli theorem, it is not diffcult

to show thatKp(I − Q)N(Ω) is compact for any open bounded set Ω ⊂ X. Moreover, QN(Ω)
is bounded. Thus, N is L-compact on Ω with any open bounded set Ω ⊂ X. A isomorphism
J of ImQ onto KerL can be chosen to be the identity mapping; since ImQ = KerL, there
exists an isomorphism J : ImQ → X given by

J : ImQ −→ X,

⎛
⎜⎜⎝

⎛
⎜⎝

g1
...

gn+2

⎞
⎟⎠,

⎧
⎪⎨
⎪⎩

⎛
⎜⎝

0
...
0

⎞
⎟⎠

⎫
⎪⎬
⎪⎭

q

k=1

⎞
⎟⎟⎠ −→

⎛
⎜⎝

g1
...

gn+2

⎞
⎟⎠. (3.16)

Corresponding to operator equation Lu = λNu,u(t) = (u1(t), u2(t), v1(t), . . . , vn(t))
T , λ ∈

(0, 1), we have

u̇1(t) = λ

(
b1(t) − a1(t) exp{u1(t)} −

exp{u1(t)}
μ1(t) +ω1(t) exp{u2(t)}

−
n∑
k=1

c1k(t) exp{vk(t)}
α1k(t) + β1k(t) exp{u1(t)} + γ1k(t) exp{vk(t)}

)
,
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u̇2(t) = λ

(
b2(t) − a2(t) exp{u2(t)} −

exp{u2(t)}
μ1(t) +ω1(t) exp{u1(t)}

−
n∑
k=1

c2k(t) exp{vk(t)}
α2k(t) + β2k(t) exp{u2(t)} + γ2k(t) exp{vk(t)}

)
,

v̇j(t) = λ

(
−rj(t) +

2∑
k=1

djk(t) exp{uk(t)}
αjk(t) + βjk(t) exp{uk(t)} + γjk(t) exp

{
vj(t)
}

−
n∑
k=1

δjk(t) exp{vk(t)}
)
,

t /= tk, (k ∈N+),

Δui(t) = ui(t+) − ui
(
t−
)
= λ ln(1 + bik),

Δvj(t) = vj(t+) − vj
(
t−
)
= λ ln

(
1 + b̃jk

)
,

t = tk, (k ∈N+).

(3.17)

Suppose that u(t) = (u1(t), u2(t), v1(t), . . . , vn(t))
T is a solution of system (3.17) for a

fixed λ ∈ (0, 1). Integrating on both sides of (3.17) from 0 to T , we obtain

∫T
0

(
− b1(t) + a1(t) exp{u1(t)} +

exp{u1(t)}
μ1(t) +ω1(t) exp{u2(t)}

+
n∑
k=1

c1k(t) exp{vk(t)}
α1k(t) + β1k(t) exp{u1(t)} + γ1k(t) exp{vk(t)}

)
dt

=
q∑
k=1

ln(1 + b1k),

∫T
0

(
− b2(t) + a2(t) exp{u2(t)} +

exp{u2(t)}
μ2(t) +ω2(t) exp{u1(t)}

+
n∑
k=1

c2k(t) exp{vk(t)}
α2k(t) + β2k(t) exp{u2(t)} + γ2k(t) exp{vk(t)}

)
dt

=
q∑
k=1

ln(1 + b2k),
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∫T
0

(
rj(t) −

2∑
k=1

djk(t) exp{uk(t)}
αjk(t) + βjk(t) exp{uk(t)} + γjk(t) exp

{
vj(t)
}

+
n∑
k=1

δjk(t) exp{vk(t)}
)
dt =

q∑
k=1

ln
(
1 + b̃jk

)
.

(3.18)

Since u ∈ X, there exist ξi, ξj ∈ [0, T] such that

ui(ξi) = min
t∈[0,T]

ui(t), vj
(
ξj
)
= min

t∈[0,T]
vj(t). (3.19)

On the other hand, note that there exist ζ+i , ζ
+
j ∈ [0, T] such that

ui
(
ζ+i
)
= sup

t∈[0,T]
ui(t), vj

(
ζ+j

)
= sup

t∈[0,T]
vj(t). (3.20)

If ζi /= tk, then ui(ζ+i ) = ui(ζi), vj(ζ+j ) = vj(ζj). While if ζj = tk, we have ui(ζ+i ) = ui(t+k), vj(ζ
+
j ) =

vj(t+k). Thus we can obtain from (3.18) and (3.19) that

∫T
0
ai(t) exp{ui(ξi)}dt �

∫T
0
ai(t)eui(t)dt

�
q∑
k=1

ln(1 + bik) +
∫T
0
bi(t)dt,

∫T
0
δjj(t) exp

{
vj
(
ξj
)}
dt �

∫T
0
δjj(t) exp

{
vj(t)
}
dt

�
q∑
k=1

ln
(
1 + b̃jk

)
−
∫T
0
rj(t)dt +

n∑
k=1

∫T
0

djk(t)
βjk(t)

dt.

(3.21)

It follows that

ui(ξi) � max
{
ln

Δi

ai

}
:= p, vj

(
ξj
)

� max

⎧
⎨
⎩ln

Δ̃j +
∑n

k=1

(
djk/βjk

)

δjj

⎫
⎬
⎭ := g. (3.22)

From (3.17) and (3.18), we obtain

∫T
0
|u̇i(t)|dt � 2

q∑
k=1

ln(1 + bik),
∫T
0

∣∣v̇j(t)
∣∣dt � 2

q∑
k=1

ln
(
1 + b̃jk

)
. (3.23)
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By (3.22) and (3.23), we have that

ui(t) � ui(ξi) +
∫T
0
|u̇i(t)|dt � p + 2

q∑
k=1

ln(1 + bik) := Hi,

vj(t) � vj
(
ξj
)
+
∫T
0

∣∣v̇j(t)
∣∣dt � g + 2

q∑
k=1

ln
(
1 + b̃jk

)
:= H̃j .

(3.24)

On the other hand, by (3.18) and (3.20), we also have

∫T
0
δjj(t) exp

{
vj
(
ζ+j

)}
dt �

∫T
0
δjj(t) exp

{
vj(t)
}
dt

�
q∑
k=1

ln
(
1 + b̃jk

)
−
∫T
0
rj(t)dt −

n∑
k=1,k /= j

∫T
0
δjk(t) exp

{
H̃k

}
dt,

vj
(
ζ+j

)
� ln

⎛
⎜⎝

Δ̃j −
∑n

k=1,k /= j δjk exp
{
H̃k

}

δjj

⎞
⎟⎠,

(3.25)

and hence,

vj(t) � vj
(
ζ+j

)
−
∫T
0

∣∣v̇j(t)
∣∣dt

� ln

⎛
⎜⎝

Δ̃j −
∑n

k=1,k /= j δjk exp
{
H̃k

}

δjj

⎞
⎟⎠ − 2

q∑
k=1

ln
(
1 + b̃jk

)
:= M̃j .

(3.26)

By (3.18), we have

∫T
0
a1(t) exp

{
u1
(
ζ+1
)}
dt �

∫T
0
a1(t) exp{u1(t)}dt

�
q∑
k=1

ln(1 + b1k) +
∫T
0
b1(t)dt −

∫T
0

exp{u1(t)}
μ1(t) +ω1(t) exp{u2(t)}dt

−
n∑
k=1

∫T
0

c1k(t) exp{vk(t)}
α1k(t) + β1k(t) exp{u1(t)} + γ1k(t) exp{vk(t)}dt

�
q∑
k=1

ln(1 + b1k) +
∫T
0
b1(t)dt −

exp{H1}
K2

∫T
0

1
ω1(t)

dt

−
n∑
k=1

∫T
0

c1k(t)
γ1k(t)

dt,
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∫T
0
a2(t) exp

{
u2
(
ζ+2
)}
dt �

∫T
0
a2(t) exp{u2(t)}dt

�
q∑
k=1

ln(1 + b2k) +
∫T
0
b2(t)dt −

∫T
0

exp{u2(t)}
μ2(t) +ω2(t) exp{u1(t)}dt

−
n∑
k=1

∫T
0

c2k(t) exp{vk(t)}
α2k(t) + β1k(t) exp{u2(t)} + γ2k(t) exp{vk(t)}dt

�
q∑
k=1

ln(1 + b2k) +
∫T
0
b2(t)dt −

exp{H2}
K1

∫T
0

1
ω2(t)

dt

−
n∑
k=1

∫T
0

c2k(t)
γ2k(t)

dt,

(3.27)

where Ki is a positive number satisfied exp{ui(t)} � Ki for t ∈ [0, T]; therefore,

u1
(
ζ+1
)

� ln

⎛
⎜⎝

Δ1 −
(
exp{H1}/K2

)(
1/ω1

)
−∑n

k=1

(
c1k/γ1k

)

a1

⎞
⎟⎠,

u2
(
ζ+2
)

� ln

⎛
⎜⎝

Δ2 −
(
exp{H2}/K1

)(
1/ω2

)
−∑n

k=1

(
c2k/γ2k

)

a2

⎞
⎟⎠.

(3.28)

So

u1(t) � u1
(
ζ+1
) −
∫T
0
|u̇1(t)|dt

� ln

⎛
⎜⎝

Δ1 −
(
exp{H1}/K2

)(
1/ω1

)
−∑n

k=1

(
c1k/γ1k

)

a1

⎞
⎟⎠ − 2

q∑
k=1

ln(1 + b1k) :=N1,

u2(t) � u2
(
ζ+2
) −
∫T
0
|u̇2(t)|dt

� ln

⎛
⎜⎝

Δ2 −
(
exp{H2}/K1

)(
1/ω2

)
−∑n

k=1

(
c2k/γ2k

)

a2

⎞
⎟⎠ − 2

q∑
k=1

ln(1 + b2k) :=N2.

(3.29)



Abstract and Applied Analysis 17

TakeMi = min{Ki,Ni}. By (3.24)–(3.29), we have

|ui(t)| < max{|Mi|, |Hi|} := Gi,
∣∣vj(t)

∣∣ < max
{∣∣∣M̃j

∣∣∣,
∣∣∣H̃j

∣∣∣
}
:= G̃j . (3.30)

Here, Gi, G̃j are independent of the choice of λ.
Let u = (u1(t), u2(t), v1(t), . . . , vn(t))

T ∈ R
n+2, set G = ‖u‖ + G0, where G0 is taken

sufficiently large, such that the solution u∗ = (u∗1, u
∗
2, v

∗
1, . . . , v

∗
n)
T of the equation

b1 − a1 exp{u1(t)} − 1
T

∫T
0

exp{u1(t)}dt
μ1(t) +ω1(t) exp{u2(t)}

− 1
T

n∑
k=1

∫T
0

c1k(t) exp{vk(t)}dt
α1k(t) + β1k(t) exp{u1(t)} + γ1k(t) exp{vk(t)}

+
1
T

q∑
k=1

ln(1 + b1k) = 0,

b2 − a2 exp{u2(t)} − 1
T

∫T
0

exp{u2(t)}dt
μ2(t) +ω2(t) exp{u1(t)}

− 1
T

n∑
k=1

∫T
0

c2k(t) exp{vk(t)}dt
α2k(t) + β2k(t) exp{u2(t)} + γ2k(t) exp{vk(t)}

+
1
T

q∑
k=1

ln(1 + b2k) = 0,

−rj + 1
T

2∑
k=1

∫T
0

djk(t) exp{uk(t)}dt
αjk(t) + βjk(t) exp{uk(t)} + γjk(t) exp

{
vj(t)
}

−
n∑
k=1

δjk exp{vk(t)} + 1
T

q∑
k=1

ln
(
1 + b̃jk

)
= 0

(3.31)

satisfies

∥∥∥(u∗1, u∗2, v∗
1, . . . , v

∗
n

)T∥∥∥ < G0,

‖u∗(tk + 0)‖ < G, (k = 1, 2, . . . , q
)
.

(3.32)

Let Ω = {u = (u1, u2, v1, . . . , vn)
T ∈ X | ‖(u1, u2, v1, . . . , vn)T‖ < G}. Then it is clear that

Ω satisfies the requirement (a) of Lemma 2.3.
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When u ∈ ∂Ω ∩ KerL = ∂Ω ∩ R
n+2, u is a constant vector in R

n+2 with ‖u‖ = G, then
QNu/= 0, we check QNu and according to mean value theorem, there exist θ1, θ2, θ̃j , η1, η2 ∈
[0, T] such that

QNu =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δ1 − a1 exp{u1(t)} −
exp{u1(t)}

μ1(θ1) +ω1(θ1) exp{u2(t)}
−

n∑
k=1

c1k exp{vk(t)}
α1k
(
η1
)
+ β1k

(
η1
)
exp{u1(t)} + γ1k

(
η1
)
exp{vk(t)}

Δ2 − a2 exp{u2(t)} −
exp{u2(t)}

μ2(θ2) +ω2(θ2) exp{u1(t)}
−

n∑
k=1

c2k exp{vk(t)}
α2k
(
η2
)
+ β2k

(
η2
)
exp{u2(t)} + γ2k

(
η2
)
exp{vk(t)}

Δ̃j +
2∑
k=1

djk exp{uk(t)}
αjk
(
θ̃j
)
+ βjk
(
θ̃j
)
exp{uk(t)} + γjk

(
θ̃j
)
exp
{
vj(t)
}

−
n∑
k=1

δjk exp{vk(t)}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧
⎪⎨
⎪⎩

⎛
⎜⎝

0
...
0

⎞
⎟⎠

⎫
⎪⎬
⎪⎭

q

k=1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.33)

For any u ∈ Ω ∩ KerL, we have

JQNu =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δ1 − a1 exp{u1(t)} −
exp{u1(t)}

μ1(θ1) +ω1(θ1) exp{u2(t)}
−

n∑
k=1

c1k exp{vk(t)}
α1k
(
η1
)
+ β1k

(
η1
)
exp{u1(t)} + γ1k

(
η1
)
exp{vk(t)}

Δ2 − a2 exp{u2(t)} −
exp{u2(t)}

μ2(θ2) +ω2(θ2) exp{u1(t)}
−

n∑
k=1

c2k exp{vk(t)}
α2k
(
η2
)
+ β2k

(
η2
)
exp{u2(t)} + γ2k

(
η2
)
exp{vk(t)}

Δ̃j +
2∑
k=1

djk exp{uk(t)}
αjk
(
θ̃j
)
+ βjk
(
θ̃j
)
exp{uk(t)} + γjk

(
θ̃j
)
exp
{
vj(t)
}

−
n∑
k=1

δjk exp{vk(t)}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.34)

Define the map ψ : (Ω ∩ R
n+2) × [0, 1] → R

n+2 by

ψ

⎛
⎝
u1
u2
vj

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Δ1 − a1 exp{u1(t)}

Δ2 − a2 exp{u2(t)}

Δ̃j −
n∑
k=1

δjk exp{vk(t)}

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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− μ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

exp{u1(t)}
μ1(θ1) +ω1(θ1) exp{u2(t)}
+

n∑
k=1

c1k exp{vk(t)}
α1k
(
η1
)
+ β1k

(
η1
)
exp{u1(t)} + γ1k

(
η1
)
exp{vk(t)}

exp{u2(t)}
μ2(θ2) +ω2(θ2) exp{u1(t)}
+

n∑
k=1

c2k exp{vk(t)}
α2k
(
η2
)
+ β2k

(
η2
)
exp{u2(t)} + γ2k

(
η2
)
exp{vk(t)}

−
2∑
k=1

djk exp{uk(t)}
αjk
(
θ̃j
)
+ βjk
(
θ̃j
)
exp{uk(t)} + γjk

(
θ̃j
)
exp
{
vj(t)
}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(3.35)

where (u1, u2, v1, . . . , vn) ∈ R
n+2, μ ∈ [0, 1]. We can show that

ψ
(
u1, u2, v1, . . . , vn, μ

)
/= 0, (3.36)

for any u = (u1, u2, v1, . . . , vn)
T ∈ ∂Ω ∩ R

n+2, μ ∈ [0, 1]. Otherwise, it is similar to
above mentioned discussion, we obtain that the solution u = (u1, u2, v1, . . . , vn)

T of
ψ(u1, u2, v1, . . . , vn, μ) = 0 satisfies ‖u‖ < G; therefore, this contradicts the fact that u ∈
∂Ω ∩ R

n+2.
Since ψ(u1, u2, v1, . . . , vn, μ) is a homotopic mapping and topological degree is

invariant under homotopic mapping, thus we can show the topological degree as folows:

deg
((

JQN,Ω ∩ KerL, (0, . . . , 0)T
))

= deg
((
ψμ=1,Ω ∩ KerL, (0, . . . , 0)T

))

= deg
((
ψμ=0,Ω ∩ KerL, (0, . . . , 0)T

))
.

(3.37)

On the other hand, the differential equations

bi − aix∗
k +

1
T

q∑
k=1

ln(1 + bik) = 0,

−rj −
n∑
k=1

δjky
∗
k +

1
T

q∑
k=1

ln
(
1 + b̃jk

)
= 0

(3.38)
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satisfies condition (A7), by the law of Crammer, one can easily obtain that (3.38) has unique
solution

(
x̃∗
1, x̃

∗
2, ỹ

∗
1, . . . , ỹ

∗
n

)
, (3.39)

where x̃∗
i = det(Bi)/det(B), ỹ∗

j = det(Bi)/det(B). Therefore, one can check

deg
(
JQN,Ω ∩ KerL, (0, . . . , 0)T

)
= deg

(
ψμ=0,Ω ∩ KerL, (0, . . . , 0)T

)

= sgn

⎛
⎝(−1)n+2x∗

1x
∗
2

n∏
j=1

y∗
j det(B)

⎞
⎠ /= 0.

(3.40)

By now we have proved that Ω satisfies all requirements of Lemma 2.3, then Lx = Nx
has at least one solution in DomL ∩ Ω, that is, (2.3) has at least one T -periodic solution
in DomL ∩ Ω and denote û = (û1, û2, v̂1, . . . , v̂n)

T by the solution of system (2.3). Set
x̂i = exp{ûi}, ŷj = exp{v̂j}, then x̂ = (x̂1, x̂2, ŷ1, . . . , ŷn)

T is one positive T -periodic solution
of system (1.3). The proof is complete.

4. Global Stability and Globally Exponential Stability of Solutions

Let x0 = (x10, x20, y1,0, . . . , yn,0) and xi0, yj0 ∈ R+. We denote by

x(t) = x(t; t0, x0) =
(
x1(t), x2(t), y1(t), . . . , yn(t)

)
(4.1)

the solution of system (1.3) satisfying the initial conditions:

x(t0 + 0; t0, x0) = x0 (4.2)

and by J = J(t0, x0) the maximal interval of type [t0, η) in which the solution x(t; t0, x0) is
defined.

Let x(t; t0, x0),x(t) = (x1(t), x2(t), y1(t), . . . , yn(t)) and x∗(t; t0, x∗
0), x

∗(t) = (x∗
1(t), x

∗
2(t),

y∗
1(t), . . . , y

∗
n(t)) be any two solutions of (1.1)with initial conditions:

x(t0 + 0; t0, x0) = x0, x∗
(
t0 + 0; t0, x∗

0
)
= x∗0, t0 ∈ R+. (4.3)

We introduce the following notations:

Gk = (tk−1, tk) × R
n+2
+ , k ∈ Z

+, G =
∞⋃
k=1

Gk. (4.4)

We put forward two definitions in [24, 28].
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Definition 4.1 (Ahmad and Stamova [24]). The system (1.3) is said to be

(a) globally stable if for all ε > 0, there exists δ = δ(ε, t0) > 0 such that if x(t), x∗(t) ∈ R
n+2
+ ,

with ‖x0 − x∗0‖ � δ then for all t � t0‖x(t; t0, x0) − x∗(t; t0, x∗
0)‖ < ε;

(b) globally asymptotically stable if it is globally stable and

lim
t→∞
∥∥x(t; t0, x0) − x∗

(
t; t0, x∗

0
)∥∥ = 0; (4.5)

(c) globally exponentially stable if for all α > 0, there exists γ = γ(α) > 0 such that
x(t), x∗(t) ∈ R

n+2
+ , with ‖x0 − x∗0‖ � α, then for all t � t0

∥∥x(t; t0, x0) − x∗
(
t; t0, x∗

0
)∥∥ < γ∥∥x0 − x∗0

∥∥ exp{−ϕ(t − t0)
}
. (4.6)

Definition 4.2 (Ahmad and Stamova [24, 28]). We say that the function V (t, x), V : [t0,∞) ×
R
n+2
+ belongs to the class V0 if the following conditions are satisfied:

(1) the function V is continuous in
⋃∞
i=1Gi, and V (t, 0) = 0 for t ∈ [t0,∞);

(2) the function V satisfies locally the Lipschitz condition with respect to x on each of
the sets Gi;

(3) for each k ∈ Z
+, there exist the finite limits:

V (tk − 0, x) = lim
t→ tk ,t<tk

V (t, x), V (tk + 0, x) = lim
t→ tk ,t>tk

V (t, x); (4.7)

(4) for each k ∈ Z
+, the following equalities are valid:

V (tk−1, x) = V (tk, x). (4.8)

In the proofs of the main theorems, we will use the following comparison results.

Lemma 4.3. Suppose the hypotheses (A1)–(A5) hold. There exist functions Pi,Qi, P̃j , Q̃j ∈ R
n+2 such

that Pi(t) � xi(t) � Qi(t), P̃j(t) � yj(t) � Q̃j(t) for all t � t0.

Proof. First we will prove that

xi(t) � Qi(t), yj(t) � Q̃j(t), (4.9)
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for all t � t0, where (Qi(t), Q̃j(t)) = (q1(t), q2(t), q̃1(t), . . . , q̃n(t)) is the maximal solution of the
system:

q̇i(t) = qi(t)
(
bi(t) − ai(t)qi(t)

)
,

˙̃qj(t) = q̃j(t)

(
−rj(t) +

2∑
k=1

djk(t)q̃k(t)
αjk(t) + βjk(t)q̃k(t) + γjk(t)q̃j(t)

)
,

t /= tk, (k ∈ Z
+),

qi
(
t+0
)
= qi0 > 0, q̃j

(
t+0
)
= q̃j0 > 0,

qi
(
t+k
)
= (1 + bik)qi(tk),

q̃j
(
t+k
)
=
(
1 + b̃jk

)
q̃j(tk),

t = tk, (k ∈ Z
+).

(4.10)

The maximal solution

Qi(t) = Qi

(
t; t0, q0

)
, Q̃j(t) = Qi

(
t; t0, q0

)
, q0 =

(
q10, q20, q̃30, . . . , q̃(n+2)0

)
(4.11)

of (4.10) is defined by the equality:

Qi

(
t; t0, q0

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Q0
i

(
t; t0, Q0

i + 0
)
, t0 < t � t1,

Q1
i

(
t; t1, Q1

i + 0
)
, t1 < t � t2,

. . . ,

Qk
i

(
t; tk,Qk

i + 0
)
, tk < t � tk+1,

. . . ,

Q̃j

(
t; t0, q0

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q̃0
j

(
t; t0, Q̃0

j + 0
)
, t0 < t � t1,

Q̃1
j

(
t; t1, Q̃1

j + 0
)
, t1 < t � t2,

. . . ,

Q̃k
j

(
t; tk, Q̃k

j + 0
)
, tk < t � tk+1,

. . . ,

(4.12)

where Qi
k
(t; tk,Qk

i + 0), Q̃j

k
(t; tk, Q̃k

j + 0) is the solution of the equation without impulses

q̇i(t) = qi(t)
(
bi(t) − ai(t)qi(t)

)
,

˙̃qj(t) = q̃j(t)

(
−rj(t) +

2∑
k=1

djk(t)qk(t)
αjk(t) + βjk(t)qk(t) + γjk(t)q̃j(t)

) (4.13)
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in the interval (tk, tk+1], k ∈ Z
+, for whichQk

i +0 = (1+bik)Qk
i (tk; tk−1, Q

k−1
i +0), Q̃k

j +0 = (1+b̃jk),

Q̃k
j (tk; tk−1, Q̃

k−1
j + 0), k ∈ Z

+, and Q0
i + 0 = qi0, Q̃0

j + 0 = q̃j0.
We note that the solutions xi(t), yj(t) of (1.1) are functions which for t /= tk, k ∈ Z

+

satisfy

ẋ1(t) = x1(t)

(
b1(t) − a1(t)x1(t) − x1(t)

μ1(t) +ω1(t)x2(t)

−
n∑
k=1

c1k(t)yk(t)
α1k(t) + β1k(t)x1(t) + γ1k(t)yk(t)

)
,

ẋ2(t) = x2(t)

(
b2(t) − a2(t)x2(t) − x2(t)

μ2(t) +ω2(t)x1(t)

−
n∑
k=1

c2k(t)yk(t)
α2k(t) + β2k(t)x2(t) + γ2k(t)yk(t)

)
,

ẏj(t) = yj(t)

(
−rj(t) +

2∑
k=1

djk(t)xk(t)
αjk(t) + βjk(t)xk(t) + γjk(t)yj(t)

−
n∑
k=1

δjk(t)yk(t)

)
,

(4.14)

and for t = tk, k ∈ Z
+, satisfying the conditions xi(t+k) = (1 + bik)xi(tk), yj(t+k) = (1 + b̃jk)yj(tk),

By hypothesis (A1), it follows from (1.1) that

ẋi(t) � xi(t)(bi(t) − ai(t)xi(t)),

ẏj(t) � yj(t)

(
−rj(t) +

2∑
k=1

djk(t)qk(t)
αjk(t) + βjk(t)qk(t) + γjk(t)q̃j(t)

)
,

(4.15)

for t /= tk. The elementary differential inequality (4.15) yields that

xi(t) � Qi(t), yj(t) � Q̃j(t), (4.16)

for all t ∈ (t0, t1], that is, the inequality (4.9) is valid for t ∈ (t0, t1]. Suppose that (4.9) is
satisfied for t ∈ (tk−1, tk], k > 1. Then using hypotheses (A2)–(A4) and the fact that (4.9) is
satisfied for t = tk, we obtain

xi
(
t+k
)
= (1 + bik)xi(tk) � (1 + bik)Qi(tk) = Qi

(
t+k
)
,

yj
(
t+k
)
=
(
1 + b̃jk

)
yj(tk) �

(
1 + b̃jk

)
Q̃j(tk) = Q̃j

(
t+k
)
.

(4.17)
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We apply again the comparison result (4.15) in the interval (tk, tk+1] and obtain

xi(t; t0, xi0) � Qk
i

(
t; tk,Qk

i + 0
)
= Qi

(
t; t0, q0

)
,

yj
(
t; t0, yj0

)
� Q̃k

j

(
t; tk, Q̃k

j + 0
)
= Q̃j

(
t; t0, q0

)
,

(4.18)

that is, the inequality (4.9) is valid for (tk, tk+1]. The proof of (4.9) is completed by induction.
Further, by analogous arguments, using (A1)–(A4), we obtain from (1.1) and (4.15) the
following:

ẋ1(t) � x1(t)

(
b1(t) − a1(t)x1(t) − Q1(t)

μ1(t) +ω1(t)x2(t)

−
n∑
k=1

c1k(t)Q̃k(t)
α1k(t) + β1k(t)x1(t) + γ1k(t)yk(t)

)
,

ẋ2(t) � x2(t)

(
b2(t) − a2(t)x2(t) − Q2(t)

μ2(t) +ω2(t)x1(t)

−
n∑
k=1

c2k(t)Q̃k(t)
α2k(t) + β2k(t)x1(t) + γ2k(t)yk(t)

)
,

ẏj(t) � yj(t)

(
−rj(t) +

2∑
k=1

djk(t)xk(t)
αjk(t) + βjk(t)xk(t) + γjk(t)yj(t)

−
n∑
k=1

δjk(t)Q̃k(t)

)
,

t /= tk, (k ∈ Z
+),

xi
(
t+k
)
= (1 + bik)xi(tk),

yj
(
t+k
)
=
(
1 + b̃jk

)
yj(tk),

t = tk, (k ∈ Z
+),

(4.19)

and hence

xi(t) � Pi(t), yj(t) � P̃j(t), (4.20)
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for all t � t0, where (Pi(t), P̃j(t)) = (p1(t), p2(t), p̃1(t), . . . , p̃n(t)) is the minimal solution of the
system:

ṗ1(t) = p1(t)
(
b1(t) − a1(t)x1(t) − Q1(t)

μ1(t) +ω1(t)x2(t)

−
n∑
k=1

c1k(t)Q̃k(t)
α1k(t) + β1k(t)x1(t) + γ1k(t)yk(t)

)
,

ṗ2(t) = p2(t)
(
b2(t) − a2(t)x2(t) − Q2(t)

μ2(t) +ω2(t)x1(t)

−
n∑
k=1

c2k(t)Q̃k(t)
α2k(t) + β2k(t)x1(t) + γ2k(t)yk(t)

)
,

˙̃pj(t) = p̃j(t)

(
−rj(t) +

2∑
k=1

djk(t)pk(t)
αjk(t) + βjk(t)pk(t) + γjk(t)p̃j(t)

−
n∑
k=1

δjk(t)Q̃k(t)

)
,

t /= tk, (k ∈ Z
+),

pi
(
t+0
)
= pi0 > 0, p̃j

(
t+0
)
= p̃j0 > 0,

pi
(
t+k
)
= (1 + bik)pi(tk),

p̃j
(
t+k
)
=
(
1 + b̃jk

)
p̃j(tk),

t = tk, (k ∈ Z
+).

(4.21)

Thus, the proof follows from (4.9) and (4.20).

Lemma 4.4. Suppose the hypotheses (A1)–(A5) hold. x(t) = x(t; t0, x0) =
(x1(t), x2(t), y1(t), . . . , yn(t)) is a solution of (1.1), then there exist positive constants: αi, βi, α̃j , and
β̃j such that

αi � xi(t) � βi, α̃j � yj(t) � β̃j , (4.22)

for all t ∈ (tk−1, tk], k ∈ Z
+ and if in addition

0 < 1 + bik � 1, 0 < 1 + b̃jk � 1, (4.23)

then

αi � xi(t) � βi, α̃j � yj(t) � β̃j , (4.24)

for all t ∈ J .



26 Abstract and Applied Analysis

Proof. From Lemma 4.3, we have Pi(t) � xi(t) � Qi(t), P̃j(t) � yj(t) � Q̃j(t) for all t � t0,
where Pi(t), P̃j(t) is the minimal solution of the system (4.21), and Qi(t), Q̃j(t) is the maximal
solution of the system (4.10). Under the conditions of Lemma 4.4 for the solutions of (4.10)
and (4.21)with initial functions, it is valid that

αi � Pi(t), Qi(t) � βi, α̃j � P̃j(t), Q̃j(t) � β̃j , (4.25)

αi, α̃j > 0, 0 < βi, β̃j <∞, for all t � t0, t ∈ (tk−1, tk], k ∈ Z
+, then αi � xi(t) � βi, α̃j � yj(t) � β̃j ,

for all t � t0, t ∈ (tk−1, tk], k ∈ Z
+. If in addition 0 < 1 + bik � 1, 0 < 1 + b̃jk � 1, then from the

left continuity of xi(t) at the points tk, we have

αi = (1 + bik)αi − (bik)αi � (1 + bik)xi(t) − (bik)xi(t)

� (1 + bik)βi − (bik)βi = βi,

α̃j =
(
1 + b̃jk

)
α̃j −
(
b̃jk
)
α̃j �

(
1 + b̃jk

)
yj(t) −

(
b̃jk
)
yj(t)

�
(
1 + b̃jk

)
β̃j −
(
b̃jk
)
β̃j = β̃j ,

(4.26)

that is,

αi � xj
(
t+k
)

� βi, α̃j � yj
(
t+k
)

� β̃j , (4.27)

hence

αi � xi(t) � βi, α̃j � yj(t) � β̃j , (4.28)

for all t � t0.

Let V ∈ V0, for any (t, x) ∈ [tk−1, tk)×R
n+2
+ , the right-hand derivativeD+V (t, x(t)) along

the solution x(t, t0, x0) of (1.1) is defined by

D+V (t, x(t)) = lim
h→ 0+

inf
1
h
[V (t + h, x(t + h)) − V (t, x(t))]. (4.29)

Define

m(t) =
2∑
i=1

∣∣xi(t) − x∗
i (t)
∣∣ +

n∑
j=1

∣∣∣yj(t) − y∗
j (t)
∣∣∣ (4.30)

and consider a Lyapunov function:

V (x(t), x∗(t)) =
n+2∑
i=1

Vi(t) =
2∑
i=1

∣∣∣∣∣ln
xi(t)
x∗
i (t)

∣∣∣∣∣ +
n∑
j=1

∣∣∣∣∣ln
yj(t)
y∗
j (t)

∣∣∣∣∣. (4.31)
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Theorem 4.5. Let the following conditions hold:

(1) the hypotheses (A1)–(A5) hold;

(2) there exist nonnegative continuous functions δi(t), and δj(t) such that

(A8)

a�1 +
μ�1 +ω

�
1α

∗
2(

μu1 +ω
u
1β2
)(
μu1 +ω

u
1β

∗
2

)

>
n∑
k=1

cu1kβ
u
1kβ̃k(

α�1k + β
�
1kα1 + γ

�
1kα̃k
)(
α�1k + β

�
1kα

∗
1 + γ

�
1kα̃

∗
k

) +
ωu

2β
∗
1(

μ�2 +ω
�
2α1
)(
μ�2 +ω

�
2α

∗
1

)

+
n∑
j=1

duj1

(
αuj1 + γ

u
j1β̃j
)

(
α�j1 + β

�
j1α1 + γ

�
j1α̃j
)(
α�j1 + β

�
j1α

∗
1 + γ

�
j1α̃

∗
j

) ,

a�2 +
μ�2 +ω

�
2α

∗
1(

μu2 +ω
u
1β1
)(
μu2 +ω

u
2β

∗
1

)

>
n∑
k=1

cu2kβ
u
2kβ̃k(

α�2k + β
�
2kα2 + γ

�
2kα̃k
)(
α�2k + β

�
2kα

∗
2 + γ

�
2kα̃

∗
k

) +
ωu

1β
∗
2(

μ�1 +ω
�
1α2
)(
μ�1 +ω

�
1α

∗
2

)

+
n∑
j=1

duj2

(
αuj2 + γ

u
j2β̃j
)

(
α�j2 + β

�
j2α2 + γ

�
j2α̃j
)(
α�j2 + β

�
j2α

∗
2 + γ

�
j2α̃

∗
j

) ,

δ�jj +
2∑
k=1

d�
jk
γ�
jk
αk(

αu
jk
+ βu

jk
βk + γujkβ̃j

)(
αu
jk
+ βu

jk
β∗
k
+ γu

jk
β̃∗j
)

>
n∑

k=1,k /= j

δujk +
2∑
i=1

cuij

(
αuij + β

u
ijβi
)

(
α�ij + β

�
ijαi + γ

�
ij α̃j
)(
α�ij + β

�
ijα

∗
i + γ

�
ij α̃

∗
j

) ;

(4.32)

(3) 0 < 1 + bik � 1, 0 < 1 + b̃jk � 1.

Then, the solution x(t) of (1.1) is globally stable.



28 Abstract and Applied Analysis

Proof. Consider the upper right derivativeD+V (x(t), x∗(t)) along the solution of system (1.1).
For t � t0 and t /= tk, k ∈ Z

+, we derive the estimate as follows:

D+V (x(t), x∗(t))

=

(
−a1(t)

(
xk(t) − x∗

k(t)
) −

n∑
k=1

(
c1k(t)yk(t)

α1k(t) + β1k(t)x1(t) + γ1k(t)yk(t)

− c1k(t)y∗
k(t)

α1k(t) + β1k(t)x∗
1(t) + γ1k(t)y

∗
k(t)

)

−
(

x1(t)
μ1(t) +ω1(t)x2(t)

− x∗
1(t)

μ1(t) +ω1(t)x∗
2(t)

))

× sgn
(
x1 − x∗

1

)
+

(
− a2(t)

(
x2(t) − x∗

2(t)
)

−
n∑
k=1

(
c2k(t)yk(t)

α2k(t) + β2k(t)x2(t) + γ2k(t)yk(t)

− c2k(t)y∗
k(t)

α2k(t) + β2k(t)x∗
2(t) + γ2k(t)y

∗
k(t)

)

−
(

x2(t)
μ2(t) +ω2(t)x1(t)

− x∗
2(t)

μ2(t) +ω2(t)x∗
1(t)

))

× sgn
(
x2 − x∗

2
)

+
n∑
j=1

(
2∑
k=1

(
djk(t)xk(t)

αjk(t) + βjk(t)xk(t) + γjk(t)yj(t)
− djk(t)x∗

k(t)
αjk(t) + βjk(t)x∗

k(t) + γjk(t)y
∗
j (t)

)

−
n∑
k=1

δjk(t)
(
yk(t) − y∗

k(t)
))

sgn
(
yj − y∗

j

)
,

�
2∑
i=1

⎛
⎜⎝−a�i

∣∣xi(t)−x∗
i (t)
∣∣+

n∑
k=1

cu
ik
αu
ik(

α�ik+β
�
ikxi(t)+γ

�
ikyk(t)

)(
α�ik+β

�
ikx

∗
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�
iky

∗
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+
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)∣∣xi(t)−x∗

i (t)
∣∣

+
n∑
k=1

cu
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�
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�
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�
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⎞
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− μ�1 +ω
�
1x

∗
2(t)(

μu1+ω
u
1x2(t)

)(
μu1+ω

u
1x

∗
2(t)
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�
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�
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)(
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× ∣∣x2(t)−x∗
2(t)
∣∣

−
n∑
j=1

⎛
⎜⎝δ�jj +

2∑
k=1

d�
jk
γ�
jk
αk(

αu
jk
+ βu

jk
βk + γujkβ̃j

)(
αu
jk
+ βu

jk
β∗
k
+ γu

jk
β̃∗j
)

−
n∑

k=1,k /= j

δujk −
2∑
i=1

cuij

(
αuij + β

u
ijβi
)

(
α�ij + β

�
ijαi + γ

�
ij α̃j
)(
α�ij + β

�
ijα

∗
i + γ

�
ij α̃

∗
j

)

⎞
⎟⎠

×
∣∣∣yj(t) − y∗

j

∣∣∣.
(4.33)

Thus in view of hypothesis (A8), we obtain

D+V (x(t), x∗(t)) � −δ(t)m(t), t � t0, t /= tk, (k ∈ Z
+), (4.34)

where δ(t) = min{δi, δj}.
For t � t0, t = tk, (k ∈ Z

+), we have

V
(
x
(
t+k
)
, x∗
(
t+k
))

=
2∑
i=1

∣∣∣∣∣ln
xi
(
t+k
)

x∗
i

(
t+k
)
∣∣∣∣∣ +

n∑
j=1

∣∣∣∣∣ln
yj
(
t+k
)

y∗
j

(
t+k
)
∣∣∣∣∣

=
2∑
i=1

∣∣∣∣∣ln
(1 + bik)xi(tk)
(1 + bik)x∗

i (tk)

∣∣∣∣∣ +
n∑
j=1

∣∣∣∣∣∣∣
ln

(
1 + b̃jk

)
yj(tk)

(
1 + b̃jk

)
y∗
j (tk)

∣∣∣∣∣∣∣

= V (x(tk), x∗(tk)).

(4.35)

Then the inequality,

V (x(t), x∗(t)) � V
(
x
(
t+0
)
, x∗
(
t+0
)) −
∫ t
t0

δ(s)m(s)ds, t � t0 (4.36)

holds.
By Mean Value Theorem and by Lemma 4.4 it follows that for any closed interval

contained in t ∈ (tk−1, tk], k ∈ Z
+, there exist positive numbers r and R such that for every

i, j, r � xi(t), yj(t), x∗
i (t), y

∗
j (t) � R and

1
R

∣∣xi(t) − x∗
i (t)
∣∣ � ∣∣lnxi(t) − lnx∗

i (t)
∣∣ � 1

r

∣∣xi(t) − x∗
i (t)
∣∣,

1
R

∣∣∣yj(t) − y∗
j (t)
∣∣∣ �
∣∣∣lnyj(t) − lny∗

j (t)
∣∣∣ � 1

r

∣∣∣yj(t) − y∗
j (t)
∣∣∣.

(4.37)
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Hence, we obtain

V
(
x0, x∗0

)
=

2∑
i=1

∣∣lnxi
(
t+0
) − lnx∗

i

(
t+0
)∣∣ +

n∑
j=1

∣∣∣lnyj
(
t+0
) − lny∗

j

(
t+0
)∣∣∣

� 1
r

∥∥x0 − x∗0
∥∥.

(4.38)

Further, from (4.34) and (4.35)we have

D+V (x(t), x∗(t)) � 0, t � t0, t /= tk,

ΔV (x(tk), x∗(tk)) = 0,
(4.39)

and hence

V (x(t), x∗(t)) � V
(
x0, x∗0

)
, (4.40)

for all t � t0. Given 0 < ε < R, choose δ = εr/2R. Then from (4.37)–(4.40) it follows that

2∑
i=1

∣∣xi(t) − x∗
i (t)
∣∣ +

n∑
j=1

∣∣∣yj(t) − y∗
j (t)
∣∣∣ < ε, (4.41)

for all t � t0, whenever ‖x0−x∗0‖ � δ and t0 ∈ R+. Since t0 ∈ R+ is arbitrary, byDefinition 4.1(a),
the system (1.1) is globally stable. This proves the theorem.

Theorem 4.6. In addition to the assumptions of Theorem 4.5, suppose that there exists a constant c
such that

∫ t
t0

δ(s)ds = c(t − t0). (4.42)

Then the system (1.1) is globally exponentially stable.

Proof. We consider again the Lyapunov function (4.31). From (4.34) and (4.37), we obtain

D+V (x(t), x∗(t)) � −δ(t)m(t) � −rδ(t)V (x(t), x∗(t)). (4.43)

From the above mentioned estimate and (4.38), we have

V (x(t), x∗(t)) � V
(
x0, x∗0

)
exp

{
−r
∫ t
t0

δ(s)ds

}
, (4.44)
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for all t � t0. Then from (4.37),(4.40), (4.44), and (4.38), we deduce the inequality

2∑
i=1

∣∣xi(t) − x∗
i (t)
∣∣ +

n∑
j=1

∣∣∣yj(t) − y∗
j (t)
∣∣∣ � R

r

∥∥x0 − x∗0
∥∥e−rc(t−t0) (4.45)

for t � t0. This shows that the system (1.1) is globally exponentially stable. This proves the
theorem.
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