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An epidemic model with infectious force in infected and immune period and treatment rate of
infectious individuals is proposed to understand the effect of the capacity for treatment of infective
on the disease spread. It is assumed that treatment rate is proportional to the number of infective
below the capacity and is constant when the number of infective is greater than the capacity. It is
proved that the existence and stability of equilibria for the model is not only related to the basic
reproduction number but also the capacity for treatment of infective. It is found that a backward
bifurcation occurs if the capacity is small. It is also found that there exist bistable endemic equilibria
if the capacity is low.

1. Introduction

Recently, mathematical models describing the dynamics of human infectious diseases have
played an important role in the disease control in epidemiology. Researchers have proposed
many epidemic models to understand the mechanism of disease transmission. We assume
that a susceptible individual first goes through a latent period after infection before becoming
infectious. The resulting models are of SEI, SEIR, or SEIRS type, respectively. Zhang and Ma
[1] studied the global stability of an SEI model with general contact rate. Yuan et al. [2]
considered the local stability of the model having infectious force in both latent period and
infected period. Li and Jin [3–5] studied the global stability of the epidemic model having
infectious force in both latent period and infected period. Usually, these classical epidemic
models have only one endemic equilibrium when the basic reproduction number R0 > 1, and
the disease-free equilibrium is always stable when R0 < 1 and unstable when R0 > 1. So the
bifurcation leading from a disease-free equilibrium to an endemic equilibrium is forward.



2 Abstract and Applied Analysis

But in recent years, the phenomenon of the backward bifurcations has arisen the interests
in disease control (see [6–15]). In this case, the basic reproduction number cannot describe
the necessary disease elimination effort any more. Thus, it is important to identify backward
bifurcations and establish thresholds for the control of diseases.

In classical epidemic models, the treatment rate of the infective is assumed to be
proportional to the number of the infective. Because the resources of treatment should be
limited, every community should have a suitable capacity for treatment. This hypothesis is
satisfactory when the number of the infective is small and the resources of treatment are
enough and unsatisfactory when the number of the infective is large and the resources of
treatment are limited. Thus, it is important to determine a suitable capacity for the treatment
of a disease. A constant treatment rate of disease is adopted in [16]. Note that a constant
treatment rate is suitable when the number of infective is large. In [17], the treatment rate of
the disease is modified into

T(I) =

{
rI if 0 � I � I0,

k if I > I0,
(1.1)

where k = rI0, r and I0 are positive constant. This means that the treatment rate of disease is
proportional to the number of the infective when the capacity of treatment is not reached and,
otherwise, takes themaximal capacity. This improves the classical proportional treatment and
the constant treatment in [16].

In this paper, we study the backward bifurcation and global dynamics of an epidemic
model with infectious force in infected and immune period and treatment function. To
formulate our model, we will consider a population that is divided into three types: sus-
ceptible, infective, and recovered. Let S(t), I(t), and R(t) denote the numbers of susceptible,
infective, recovered individuals at time t, respectively. The total population size at time t is
denoted by N(t).

The basic assumptions in the paper are as the follows.

(i) There is a positive constant recruitment rate of the population A.

(ii) Positive constant d is the nature death rate of population.

(iii) β1, β2 are the rate of the efficient contact in the infected and recovered period,
respectively.

(iv) Positive constant γ is the natural recovery rate of infective individuals.

(v) Positive constant ε is the disease-related death rate.

(vi) The treatment of a disease is T(I) in (1.1).

Under the assumptions above, an epidemic model to be studied takes the following
form:

dS

dt
= A − dS − β1SI − β2SR,

dI

dt
= β1SI + β2SR − (d + γ + ε

)
I − T(I),

dR

dt
= γI + T(I) − dR,

(1.2)
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where S(t) + I(t) + R(t) = N(t). It is easy to verify that R3
+ is positive invariant for system

(1.2).
According to S(t) + I(t) + R(t) = N(t) and (1.1),N(t) satisfies the following equation:

dN

dt
= A − dN − εI. (1.3)

Then system (1.2) is equivalent to

dN

dt
= A − dN − εI,

dI

dt
=
(
β1I + β2R

)
(N − I − R) − (d + γ + ε

)
I − T(I),

dR

dt
= γI + T(I) − dR.

(1.4)

It is easy to verify that all solutions of system (1.4) initiating in set {(N, I, R) | N >
0, I � 0, R � 0, I + R � N} eventually enter the set Ω = {(N, I, R) | 0 < N � A/d, I � 0, R �
0, I +R � N}. Therefore, Ω is positively invariant for system (1.4). We consider the solutions
of system (1.4) in Ω below.

When 0 � I � I0, system (1.4) becomes

dN

dt
= A − dN − εI,

dI

dt
=
(
β1I + β2R

)
(N − I − R) − (d + γ + ε + r

)
I,

dR

dt
=
(
γ + r

)
I − dR.

(1.5)

When I > I0, system (1.4) becomes

dN

dt
= A − dN − εI,

dI

dt
=
(
β1I + β2R

)
(N − I − R) − (d + γ + ε

)
I − k,

dR

dt
= γI + k − dR.

(1.6)

The purpose of this paper is to show that system (1.4) has a backward bifurcation
if the capacity for treatment is small. We obtain the sufficient conditions that the disease-
free equilibrium and endemic equilibria of system (1.4) are stable. It is shown that (1.4)
has bistable endemic equilibria if the capacity is small. The organization of this paper is as
follows. In next section, we study the existence and bifurcations of equilibria for (1.4). We
analyze the stability of equilibria for (1.4) and present the numerical simulations in Section 3.
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2. The Existence of Equilibria

In this section, we consider the equilibria of system (1.4). Obviously, E0(A/d, 0, 0) is the
disease-free equilibrium of (1.4). For the endemic equilibrium E(N, I, R) of (1.4), N, I and
R satisfy

A − dN − εI = 0,(
β1I + β2R

)
(N − I − R) − (d + γ + ε

)
I − T(I) = 0,

γI + T(I) − dR = 0.

(2.1)

When 0 � I � I0, system (2.1) becomes

A − dN − εI = 0,(
β1I + β2R

)
(N − I − R) − (d + γ + ε + r

)
I = 0,(

γ + r
)
I − dR = 0.

(2.2)

When I > I0, system (2.1) becomes

A − dN − εI = 0,(
β1I + β2R

)
(N − I − R) − (d + γ + ε

)
I − k = 0,

γI + k − dR = 0.

(2.3)

Form (2.2), I satisfies the following equation:

(
β1 + β2

γ + r

d

)
A − (d + ε + γ + r

)
I

d
= d + ε + γ + r. (2.4)

Therefore, we obtain

I =
A − d

(
d + ε + γ + r

)
/
(
β1 + β2

((
γ + r

)
/d
))

d + ε + γ + r
. (2.5)

Let

R0 =
A
(
β1 + β2

((
γ + r

)
/d
))

d
(
d + ε + γ + r

) . (2.6)
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Then R0 is a basic reproduction number of (1.4). If R0 > 1, then I > 0; (2.2) admits a unique
positive solution E∗ = (N∗, I∗, R∗), where

N∗ =
A − εI∗

d
,

I∗ =
A − d

(
d + ε + γ + r

)
/
(
β1 + β2

((
γ + r

)
/d
))

d + ε + γ + r
,

R∗ =

(
γ + r

)
I∗

d
.

(2.7)

Clearly, E∗ is an endemic equilibrium of (1.4) if and only if

1 < R0 � 1 +
β1 + β2

((
γ + r

)
/d
)

d
I0. (2.8)

According to (2.3), I satisfies the following equation:

a0I
2 + a1I + a2 = 0, (2.9)

where a0 = (β1 + β2(γ/d))(d + ε + γ),

a1 = d
(
d + ε + γ

)
+ β2

k

d

(
d + ε + γ

) − (β1 + β2
γ

d

)
(A − k),

a2 = dk − β2
k

d
(A − k).

(2.10)

We only consider the case of a2 > 0. If a1 � 0, it is clear that (2.9) does not have positive
real root. Let us suppose a1 < 0 below. Note that a1 < 0 is equivalent to

R0 � 1 +
β2(k/d)

(
d + ε + γ

)
+ β2(r/d)A +

(
β1 + β2

(
γ/d
))
k − dr

d
(
d + ε + γ + r

) =: p∗. (2.11)

It is easy that

Δ = a2
1 − 4a0a2 = R2

0d
2(d + ε + γ + r

)2
− 2R0d

(
d + ε + γ + r

)[(
d + β2

k

d

)(
d + ε + γ

)
+ β2

r

d
A +

(
β1 + β2

γ

d

)
k

]

+
[(

d + β2
k

d

)(
d + ε + γ

)
+ β2

r

d
A +

(
β1 + β2

γ

d

)
k

]2

− 4
(
β1 + β2

γ

d

)(
d + ε + γ

)(
dk − β2

k

d
(A − k)

)
.

(2.12)
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It follows that Δ � 0 is equivalent to

R0 � p∗ +
2
√(

β1 + β2
(
γ/d
))(

d + ε + γ
)[
dk − β2(k/d)(A − k)

]
d
(
d + ε + γ + r

) =: p0, (2.13)

or

R0 � p∗ −
2
√(

β1 + β2
(
γ/d
))(

d + ε + γ
)[
dk − β2(k/d)(A − k)

]
d
(
d + ε + γ + r

) . (2.14)

Thus a1 < 0 and Δ � 0 if and only if (2.13) holds. Let us suppose that (2.13) holds. Then (2.9)
has two positive solutions I1 and I2 where

I1 =
−a1 −

√
Δ

2a0
, I2 =

−a1 +
√
Δ

2a0
. (2.15)

Set Ni = (A − εIi)/d, Ri = (γIi + k)/d and Ei(Ni, Ii, Ri) (i = 1, 2). If Ii > I0 (i = 1, 2), then Ei is
an endemic equilibrium of (1.6).

By the definition of I1, we notice that I1 > I0 is equivalent to

−
√
Δ > 2a0I0 + a1. (2.16)

This implies that 2a0I0 + a1 < 0. By immediate calculation, 2a0I0 + a1 < 0 is equivalent to

R0 > p∗ +
2
(
β1 + β2

(
γ/d
))(

d + ε + γ
)
I0

d
(
d + ε + γ + r

) =: p1. (2.17)

Further, I1 > I0 demands that

(2a0I0 + a1)2 > Δ. (2.18)

By immediate calculation,

R0 < 1 +
β1 + β2

((
γ + r

)
/d
)

d
I0 =: p2. (2.19)

Therefore, I1 > I0 holds if and only if R0 > p1 and R0 < p2.
By similar discussions as previously mentioned, we have that I2 > I0 holds if and only

if either R0 > p1, or R0 > p2, R0 < p1.
Summarizing the discussions above, we have the following conclusion.
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Figure 1: The figure of infective sizes at equilibria versus R0 when I0 = 30, A = 80, β1 = 0.01, β2 = 0.01,
γ = 0.01, d = 0.9, ε = 0.01, r = 1, p0 = 1.6782, p1 = 1.541, p2 = 1.7074, where (i) of Theorem 2.2 holds.
The bifurcation from the disease-free equilibrium at R0 = 1 is forward, and there is a backward bifurcation
from an endemic equilibrium at R0 = 1, which leads to the existence of multiple endemic equilibria.

Theorem 2.1. E0(A/d, 0, 0) is always the disease-free equilibrium of (1.5). E∗(N∗, I∗, R∗) is an
endemic equilibrium of system (1.4) if and only if 1 < R0 � p2. Furthermore, E∗ is the unique
equilibrium of system (1.4) if 1 < R0 � p2, and one of the following conditions is satisfied:

(i) R0 < p0,

(ii) p0 � R0 < p1.

By calculation, we have p2 − p1 = [d − β2(A − k)/d]r − (β1 + β2((γ + r)/d))I0(d + ε + γ).
Note that [d − β2(A − k)/d]r > (β1 + β2(γ/d))(d + ε + γ)I0 is equivalent to that p1 < p2.

Theorem 2.2. Endemic equilibria E1 and E2 do not exist if R0 < p0. Further, if R0 � p0, we have the
following:

(i) if [d − β2(A − k)/d]r > (β1 + β2(γ/d))(d + ε + γ)I0, then both E1 and E2 exist when
p1 < R0 < p2,

(ii) if [d − β2(A − k)/d]r > (β1 + β2(γ/d))(d + ε + γ)I0, then E1 does not exist but E2 exists
if R0 � p2,

(iii) letting [d−β2(A−k)/d]r � (β1 +β2(γ/d))(d+ ε+ γ)I0, then E1 does not exist. Further,
E2 exists when R0 > p2, and E2 does not exist when R0 � p2.

We consider p0 > 1. If [d−β2(A−k)/d]r > (β1+β2(γ/d))(d+ε+γ)I0, a typical bifurcation
diagram is illustrated in Figure 1, where the bifurcation from the disease-free equilibrium at
R0 = 1 is forward and there is a backward bifurcation from an endemic equilibrium at R0 =
1.71, which gives rise to the existence of multiple endemic equilibria. Further, if [d − β2(A −
k)/d]r � (β1 + β2(γ/d))(d + ε + γ)I0, a typical bifurcation diagram is illustrated in Figure 2,
where the bifurcation at R0 = 1 is forward, and (1.4) has one unique endemic equilibrium for
all R0 > 1.
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Figure 2: The diagram of I∗, I2 versus R0 when I0 = 30, A = 100, β1 = 0.01, β2 = 0.01, γ = 0.01, d = 0.9,
ε = 0.01, r = 1, p0 = 1.6889, p1 = 1.7882, p2 = 1.7074, where (iii) of Theorem 2.2 holds. The bifurcation at
R0 = 1 is forward, and (1.4) has a unique endemic equilibrium for R0 > 1.

Note that a backward bifurcation with endemic equilibria when R0 < 1 is very
interesting in applications. We present the following corollary to give conditions for such
a backward bifurcation to occur.

Corollary 2.3. Equation (1.4) has a backward bifurcation with endemic equilibria when R0 < 1 if
[d − β2(A − k)/d]r > (β1 + β2(γ/d))(d + ε + γ)I0 and p0 < 1.

Example 2.4. Fix I0 = 10, A = 60, β1 = 0.01, β2 = 0.005, γ = 0.1, d = 1, ε = 0.1, and r = 3. Then
p1 ≈ 0.6779, p0 ≈ 0.8878, p2 ≈ 1.225 and [d − β2(A − k)/d]r − (β1 + β2γ/d)I0(d + ε + γ) = 2.424.
Thus, (1.4) has a backward bifurcation with endemic equilibria when R0 < 1 in this case (see
Figure 3).

As I0 (the capacity of treatment resources) increases, by the definition we see that
p0 increases. When I0 is so large that p0 > 1, it follows from Theorem 2.2 that there is no
backward bifurcation with endemic equilibria when R0 < 1. If we increase I0 to R0 < p0, (1.4)
does not have a backward bifurcation because endemic equilibria E1 and E2 do not exist. This
means that an insufficient capacity for treatment is a source of the backward bifurcation.

3. The Stability of Equilibria

We first determine the stability of the disease-free equilibrium E0(A/d, 0, 0). The Jacobian
matrix of (1.4) at E0(A/d, 0, 0) is

⎛
⎜⎜⎝

−d −ε 0

0 β1
A

d
− (d + ε + γ + r

)
β2

A

d
0 γ + r −d

⎞
⎟⎟⎠. (3.1)
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Figure 3: The figure of I∗, I1 and I2 versus R0 that shows a backward bifurcation with endemic equilibrium
when R0 < 1, where Corollary 2.3 holds.

Its characteristic equation is

(λ + d)
[
λ2 +

(
d − β1

A

d
+
(
d + ε + γ + r

))
λ + d

(
d + ε + γ + r

)
β1

A

d
− β2

A

d

(
γ + r

)]
= 0. (3.2)

We obtain

λ1 = −d < 0,

d

[(
d + ε + γ + r

) − β1
A

d

]
− β2

A

d

(
γ + r

)
= d
(
d + ε + γ + r

)
(1 − R0).

(3.3)

Therefore, we get the following theorem.

Theorem 3.1. The disease-free equilibrium E0(A/d, 0, 0) is locally asymptotically stable if R0 < 1
and unstable if R0 > 1.

Next, the stability of endemic equilibrium E∗(N∗, I∗, R∗) is analyzed. The Jacobian
matrix of (1.4) at E∗(N∗, I∗, R∗) is

J∗ =

⎛
⎝−d −ε 0

b1 β1b2 − a1 −
(
d + ε + γ + r

)
β2b2 − b1

0 γ + r −d

⎞
⎠, (3.4)

where c0 = β1I∗ + β2R∗, b0 = N∗ − I∗ − R∗.
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Making use of (2.2), the characteristic equation of J∗ is simplified into

(λ + d)
[
λ2 +

(
d + c0 +

(
d + ε + γ + r

) − β1b0
)
λ

+ d
(
c0 + d + ε + γ + r − β1b0

)
+
(
c0 − β2b0

)(
γ + r

)
+ c0ε

]
= 0,

(3.5)

where

d + c0 +
(
d + ε + γ + r

) − β1b0

= d +
(
β1 + β2

γ + r

d

)
I∗ +

(
d + ε + γ + r

)(
1 − β1

β1 + β2
((
γ + r

)
/d
)
)

> 0,

d
(
c0 + d + ε + γ + r − β1b0

)
+
(
c0 − β2b0

)(
γ + r

)
+ c0ε

=
(
β1 + β2

γ + r

d

)
I∗
(
d + ε + γ + r

)
> 0.

(3.6)

Therefore, the real part of the all eigenvalues of J∗ is negative when 1 < R0 � p2.

Theorem 3.2. If 1 < R0 � p2, then the endemic equilibrium E∗ of (1.4) is locally asymptotically
stable.

Afterwards, we study the stability of endemic equilibrium E1(N1, I1, R1). The charact-
eristic equation of Jacobian matrix of (1.4) at E1(N1, I1, R1) is

(λ + d)
[
λ2 +

(
d + c1 +

(
d + ε + γ

) − β1b1
)
λ + d

(
c1 + d + ε + γ − β1b1

)
+ γ
(
c1 − β2b1

)
+ c1ε

]
= 0,

(3.7)

where c1 = β1I1 + β2R1, b1 = N1 − I1 − R1. After some calculations, we obtain

d
(
c1 + d + ε + γ − β1b1

)
+ γ
(
c1 − β2b1

)
+ c1ε = 2a0I1 + a1 = −

√
Δ < 0. (3.8)

Therefore, (3.7) has positive real part eigenvalues. Thus E1(N1, I1, R1) is unstable.

Theorem 3.3. If the endemic equilibrium E1(N1, I1, R1) of system (1.4) exists, then it is unstable.

Finally, we analyze the stability of endemic equilibriumE2(N2, I2, R2). Its characteristic
equation is

(λ + d)
[
λ2 +

(
d + c2 +

(
d + ε + γ

) − β1b2
)
λ + d

(
c2 + d + ε + γ − β1b2

)
+ γ
(
c2 − β2b2

)
+ c2ε

]
= 0,

(3.9)
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where c2 = β1I2 + β2R2, b2 = N2 − I2 − R2. By some calculations, we obtain

d
(
c2 + d + ε + γ − β1b2

)
+ γ
(
c2 − β2b2

)
+ c2ε

= 2a0I2 + a1 =
√
Δ > 0,

d + c2 +
(
d + ε + γ

) − β1b2

= d +
(
β1 + β2

γ

d

)
I2 +

(
d + ε + γ

)
+
β2k

d
+
β1
(
d + ε + γ

)
I2

d
+
β1(k −A)

d
.

(3.10)

It follows that d + c2 + (d + ε + γ) − β1b2 > 0 is equivalent to

√
Δ > a1 +

−2a0
[
d + β2k/d +

(
d + γ + ε

) − β1((A − k)/d)
]

β1 + β2
(
γ/d
)
+ β1
((
d + γ + ε

)
/d
) . (3.11)

If

a1

[
β1 + β2

γ

d
+ β1

d + γ + ε

d

]
− 2a0

[
d +

β2k

d
+
(
d + γ + ε

) − β1
A − k

d

]
< 0, (3.12)

then d + c2 + (d + ε + γ) − β1b2 > 0. Thus E2(N2, I2, R2) is locally asymptotically stable.
By complicated calculation, if a1[β1 + β2(γ/d) + β1((d + γ + ε)/d)] − 2a0[d + β2k/d +

(d + γ + ε) − β1((A − k)/d)] > 0, then (3.11) is equivalent to

a2

[
β1 + β2

γ

d
+ β1

d + γ + ε

d

]2
< a1

[
β1 + β2

γ

d
+ β1

d + γ + ε

d

][
d +

β2k

d
+
(
d + γ + ε

) − β1
A − k

d

]

− a0

[
d +

β2k

d
+
(
d + γ + ε

) − β1
A − k

d

]2
.

(3.13)

Theorem 3.4. Suppose the endemic equilibrium E2(N2, I2, R2) of system (1.4) exists; if either

a1

[
β1 + β2

γ

d
+ β1

d + γ + ε

d

]
− 2a0

[
d +

β2k

d
+
(
d + γ + ε

) − β1
A − k

d

]
< 0, (3.14)

or

a1

[
β1 + β2

γ

d
+ β1

d + γ + ε

d

]
− 2a0

[
d +

β2k

d
+
(
d + γ + ε

) − β1
A − k

d

]
> 0,

a2

[
β1+β2

γ

d
+ β1

d + γ + ε

d

]2
< a1

[
β1 + β2

γ

d
+ β1

d + γ + ε

d

][
d +

β2k

d
+
(
d + γ + ε

) − β1
A − k

d

]

− a0

[
d +

β2k

d
+
(
d + γ + ε

) − β1
A − k

d

]2
,

(3.15)

then it is locally asymptotically stable.



12 Abstract and Applied Analysis

0

0

50
100

150

10
20

30
40

50

0

10

20

30

40

50

N
I

R

E0

E2

E1

Figure 4: The phase diagram of system (1.4) when I0 = 5, A = 80, β1 = 0.015, β2 = 0.001, γ = 0.01, d = 0.8,
ε = 0.01, r = 1, p0 = 0.8607, p1 = 0.6589, p2 = 1.1016, R0 = 0.8935.

Theorem 3.5. The disease-free equilibrium E0 of system (1.4) is globally asymptotically stable, if one
of the following conditions is satisfied:

(i) R0 < 1 and p0 > 1,

(ii) R0 < 1, p0 < 1 and p1 � 1.

Proof . R0 < 1 implies that E∗ does not exist. Suppose p0 � 1. It follows from the discussions
for Theorem 2.2 that E1 or E2 exists only if R0 > p0, which is impossible since we have R0 < 1.
Let us now suppose p0 < 1 and p1 � 1. If [d−β2(A−k)/d]r > (β1+β2(γ/d)I0(d+ε+γ), since p1 <
p2, it follows from the discussions for (i), (ii) of Theorem 2.2 thatE1 orE2 exists only ifR0 > p1,
which is impossible since we have R0 < 1. If [d−β2(A−k)/d]r > (β1+β2γ/d)I0(d+ε+γ), since
1 < p2, it follows from (iii) of Theorem 2.2 that E1 and E2 do not exist. In summary, endemic
equilibria do not exist under the assumptions.

4. The Simulation of Model

In this section, we give the numerical simulations of system (1.4) for the conclusions gained
previously.

Example 4.1. For system (1.4), if R0 < 1 and R0 > p0 and p1 < R0 < p2, then the equilibrium E∗
does not exist, and there are three equilibria E0, E1, and E2. Its phase diagram is illustrated in
Figure 4. Numerical calculations show that E0 and E2 are stable, but E1 is unstable.

Example 4.2. For system (1.4), if R0 > 1 and R0 < p0, there is the unique equilibrium E∗ which
is stable. Its phase diagram is illustrated in Figure 5. Numerical calculations show that the
unique equilibrium E∗ is globally stable.

Example 4.3. For system (1.4), if R0 > 1 and R0 > p0 and p1 < R0 < p2, the equilibria E2 and E∗
are stable, and E0 and E1 are unstable; its phase diagram is illustrated in Figure 6. Numerical
calculations show that the equilibria E2 and E∗ are stable, and E0 and E1 unstable. Thus, we
have bistable endemic equilibria.
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Figure 5: The phase diagram of system (1.4) when I0 = 40, A = 100, β1 = 0.02, β2 = 0.01, γ = 0.01, d = 0.9,
ε = 0.01, r = 1.5, p0 = 2.6340, p1 = 2.6606, p2 = 2.6346, R0 = 1.6886.
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Figure 6: The phase diagram of system (1.4)when I0 = 10,A = 100, β1 = 0.015, β2 = 0.001, γ = 0.01, d = 0.8,
ε = 0.01, r = 1, p0 = 1.0462, p1 = 0.8156, p2 = 1.2033, R0 = 1.1169.

5. Discussion

In this paper, we have proposed an epidemic model with infectious force in infected and
immune period and treatment rate of infectious individuals to understand the effect of
the capacity for treatment of infective on the disease transmission, which can occur when
patients have to be hospitalized but there are limited beds or medical establishments in
hospitals, or there is not enough medicine for treatment. We have shown in Theorem 2.2
and Corollary 2.3 that backward bifurcations occur because of the insufficient capacity for
treatment. We have also shown that system (1.4) has bistable endemic equilibria because
of the limited resources. This means that the basic reproduction number R0 < 1 and small
treatment rate are not enough to eradicate the disease, but the basic reproduction number
R0 < 1 and large treatment rate may eradicate the disease. The disease cannot be eradicated
for any treatment rate if the basic reproduction number R0 > 1. Therefore, the level of initial
infectious invasion must be lowered to a threshold so that the disease dies out or approaches
a lower endemic steady state for a range of parameters.

In Sections 2 and 3, when I > I0, with respect to the existence and the local stability of
the endemic equilibrium we only proved for the model (1.6) under the restriction a2 > 0. But
the case of a2 < 0 is an unsolved question.
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