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On the basis of reproducing kernel Hilbert spaces theory, an iterative algorithm for solving some
nonlinear differential-difference equations (NDDEs) is presented. The analytical solution is shown
in a series form in a reproducing kernel space, and the approximate solution un,m is constructed by
truncating the series to m terms. The convergence of un,m to the analytical solution is also proved.
Results obtained by the proposed method imply that it can be considered as a simple and accurate
method for solving such differential-difference problems.

1. Introduction

Differential-difference equations play a crucial role in modelling of much physical
phenomena such as particle vibrations in lattices, currents in electrical networks, pulses in
biological chains, discretization in solid state, quantum physics, textile engineering, stratified
hydrostatic flows, and so on. See, for example [1–14].

Recently, there have been lots of efforts in giving exact or approximate solutions of
NDDEs. For instance, Zhu [4] extended the Exp-function method for solving NDDEs. In
this method, exact solutions are sought in the form of an exponential type rational function
in which both the numerator and denominator are polynomials of exponential functions.
Mokhtari [5] applied the variational iteration method in which a correction functional is
established by a general Lagrange multiplier, which can be identified optimally via the
variational theory. The method gives rapidly convergent successive approximations of the
exact solution. Qian et al. [6] extended the multilinear variable separation approach to a
special differential-difference equation. Baldwin et al. [7] presented an algorithm to find exact
travelling wave solutions of differential-difference equations in terms of the tanh function
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and found kink-type solutions in many spatially discrete nonlinear models. Wu et al. [8] and
Wang et al. [9] extended the Adomian decompositionmethod to solve NDDEs. The technique
is based on a decomposition of the solution of NDDE in a series of functions. Each term of
the series is obtained from a polynomial generated from an expansion of an analytic function
into a power series. Many authors [10–14] applied the homotopy perturbation method to
solve NDDEs. The method, which is based on homotopy, constructs a continuous mapping
of an initial guess through an auxiliary linear operator, and an auxiliary parameter is used to
ensure the convergence of solution series.

The theory of reproducing kernels [15] was used for the first time at the beginning
of the 20th century by S. Zaremba in his work on boundary value problems for harmonic
and biharmonic functions. This theory has been successfully applied to fractal interpolation
[16], solving ordinary differential equations [17–20] and partial differential equations [21,
22]. The book [23] provides excellent overviews of the existing reproducing kernel methods
for solving various model problems such as integral and integrodifferential equations.

In this study, a general technique is proposed for solving some NDDEs in the
reproducing kernel space. The main idea is to construct the reproducing kernel space
satisfying the conditions for determining solution of the NDDEs. The analytical solution is
represented in the form of series through the function value at the right side of the equation.
For illustration, we apply this method to the Volterra lattice equation, the discretized mKdV
lattice equation and the discrete sine-Gordon equation. The advantages of the approach lie in
the following facts. The approximate solution un,m(t) converges uniformly to the analytical
solution un(t). The method is mesh-free, easily implemented and capable in treating various
boundary conditions. Since the method needs no time discretization, there is no matter, in
which time the approximate solution is computed, from the both elapsed time and stability
problem, point of views. Also we can evaluate the approximate solution un,m(t) for fixed m
once and use it over and over.

In the next section we describe how to solve a NDDE through the reproducing kernel
method and verify convergence of the approximate solution to the exact solution. Several
numerical results are presented in Section 3. The last section is a brief conclusion.

2. Construction of the Method

Consider the following NDDE

Lun(t) =N
(
t, un+p1 , . . . , un+pd

)
, t ∈ (0, T], (2.1)

where L is a linear differential operator of one-order derivative in t, N is a nonlinear
differential operator and n, pi ∈ Z. Since nonhomogeneous initial condition can be reduced
readily to the homogeneous one, we only consider the following homogeneous initial
condition

un(0) = 0. (2.2)

We assume that (2.1)-(2.2) has a unique solution.
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Definition 2.1. W[0, T] = {u(t) | u(t), u′(t) are absolutely continuous in [0, T], u′′(t) ∈ L2[0, T],
u(0) = 0}. The inner product and norm inW[0, T] are defined, respectively, by

〈u, v〉W =
1∑

i=0

u(i)(0)v(i)(0) +
∫T

0
u′′(t)v′′(t)dt, u, v ∈W[0, T],

‖u‖w =
√
〈u, u〉W, u ∈W[0, T].

(2.3)

Remark 2.2. The space W[0, T] is a reproducing kernel space, and its reproducing kernel is
given by

Ks(t) =

⎧
⎪⎪⎨

⎪⎪⎩

st +
s

2
t2 − 1

6
t3 t ≤ s,

st +
s2

2
t − 1

6
s3 t > s.

(2.4)

Definition 2.3. W̃[0, T] = {u(t) | u(t) is absolutely continuous in [0, T], u′(t) ∈ L2[0, T]}. The
inner product and norm in W̃[0, T] are defined, respectively, by

〈u, v〉W̃ = u(0)v(0) +
∫T

0
u′(t)v′(t)dt, u, v ∈ W̃[0, T],

‖u‖W̃ =
√
〈u, u〉W̃ , u ∈ W̃[0, T].

(2.5)

Remark 2.4. The space W̃[0, T] is a reproducing kernel space and its reproducing kernel is
given by

Gs(t) =

{
1 + t t ≤ s,
1 + s t > s.

(2.6)

Remark 2.5. The definition of the spaces W[0, T] and W̃[0, T] is suitable for our numerical
examples and in generalW[0, T] is defined on the basis of the operator L, and W̃[0, T] must
be defined based on the operatorN.

In order to represent the analytical solution of the model problem, we can assume that
L : W[0, T] → W̃[0, T] is an invertible bounded linear operator, choose a countable dense
subset {ti}∞i=1 in [0, T] and define

φi(t) = Gti(t), ψi(t) = L∗φi(t), (2.7)
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where L∗ is the adjoint operator of L. The orthonormal system {ψi(t)}∞i=1 of W[0, T] can be
derived from the Gram-Schmidt orthogonalization process of {ψi(t)}∞i=1 as

ψi(t) =
i∑

k=1

βikψk(t). (2.8)

Theorem 2.6. Suppose that {ti}∞i=1 is dense in [0, T], then {ψi(t)}∞i=1 is a complete system inW[0, T]
and ψi(t) = LsKs(t)|s=ti .

Proof. See [22].

Theorem 2.7. If {ti}∞i=1 is dense in [0, T], then the analytical solution of (2.1)-(2.2) will be

un(t) =
∞∑

i=1

i∑

k=1

βikN
(
tk, un+p1(tk), . . . , un+pd(tk)

)
ψi(t). (2.9)

Proof. Since {ψi(t)}∞i=1 is a complete system inW[0, T], we have

un(t) =
∞∑

i=1

〈
un(t), ψi(t)

〉
W
ψi(t) =

∞∑

i=1

i∑

k=1

βik
〈
un(t), ψk(t)

〉
Wψi(t)

=
∞∑

i=1

i∑

k=1

βik
〈
un(t), L∗φk(t)

〉
Wψi(t) =

∞∑

i=1

i∑

k=1

βik
〈
Lun(t), φk(t)

〉
W̃ψi(t)

=
∞∑

i=1

i∑

k=1

βik〈Lun(t), Gtk(t)〉W̃ψi(t) =
∞∑

i=1

i∑

k=1

βikLun(tk)ψi(t)

=
∞∑

i=1

i∑

k=1

βikN
(
tk, un+p1(tk), . . . , un+pd(tk)

)
ψi(t).

(2.10)

Now the approximate solution un,m(t) can be obtained by the m-term intercept of the
analytical solution un(t), that is,

un,m(t) =
m∑

i=1

i∑

k=1

βikN
(
tk, un+p1(tk), . . . , un+pd(tk)

)
ψi(t). (2.11)

Obviously,

‖un,m(t) − un(t)‖W −→ 0, (m −→ ∞). (2.12)
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In the sequel, for evaluating (2.11), we choose nonnegative integer m and put the initial
function un,0(t) = 0. Then the approximate solution is defined by

un,m(t) =
m∑

i=1

Biψi(t), (2.13)

where

Bi =
i∑

k=1

βikN
(
tk, un+p1,k−1(tk), . . . , un+pd,k−1(tk)

)
. (2.14)

Lemma 2.8. If un,m
‖.‖−−→ un, ‖un,m‖ is bounded in (2.13), tm → s andN(t, un+p1(t), . . . , un+pd(t)) is

continuous, then N(tm, un+p1,m−1(tm), . . . , un+pd,m−1(tm)) → N(s, un+p1(s), . . . , un+pd(s)).

Proof. Note that

∣∣un+pi(t)
∣∣ =

∣∣∣
〈
un+pi(s), Kt(s)

〉
W

∣∣∣ ≤
∥∥un+pi(s)

∥∥
W
‖Kt(s)‖W ≤ c0

∥∥un+pi(s)
∥∥
W
,

∣∣∣∣∣
∂un+pi(t)

∂t

∣∣∣∣∣
=
∣∣∣∣

〈
un+pi(s),

∂Kt(s)
∂t

〉

W

∣∣∣∣ ≤
∥∥un+pi(s)

∥∥
W

∥∥∥∥
∂Kt(s)
∂t

∥∥∥∥
W

≤ c1
∥∥un+pi(s)

∥∥
W
,

∣∣un+pi,m−1(s) − un+pi(s)
∣∣ =

∣∣〈un+pi,m−1(t) − un+pi(t), Ks(t)〉W
∣∣

≤ ∥∥un+pi,m−1(t) − un+pi(t)
∥∥
W
‖Kt(s)‖W

≤ c0
∥∥un+pi,m−1(t) − un+pi(t)

∥∥
W
.

(2.15)

On the other hand, we have

∣∣un+pi,m−1(tm) − un+pi(s)
∣∣ =

∣∣un+pi,m−1(tm) − un+pi,m−1(s) + un+pi,m−1(s) − un+pi(s)
∣∣

≤ ∣∣∂tun+pi,m−1
(
η
)∣∣|tm − s| + ∣∣un+pi,m−1(s) − un+pi(s)

∣∣.
(2.16)

From un,m
‖.‖−−→ un and former statements, it follows that

∣∣un+pi,m−1(s) − un+pi(s)
∣∣ −→ 0,

∣∣∂tun+pi,m−1
(
η
)∣∣ ≤ c1

∥∥un+pi,m−1
∥∥
w
. (2.17)

Therefore,

∣∣un+pi,m−1(tm) − un+pi(s)
∣∣ −→ 0, as m −→ ∞, (2.18)
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because of the boundedness of ‖un,m‖. The continuity of N(t, un+p1(t), . . . , un+pd(t)) implies
that

N
(
tm, un+p1,m−1(tm), . . . , un+pd,m−1(tm)

) −→N
(
s, un+p1(s), . . . , un+pd(s)

)
, as m −→ ∞.

(2.19)

Theorem 2.9. Suppose that ‖un,m‖ is bounded in (2.13), and (2.1)-(2.2) has a unique solution. If
{ti}∞i=1 is dense in [0, T], then them-term approximate solution un,m(t) derived from the above method
converges to the analytical solution un(t) of (2.1)-(2.2) and

un(t) =
∞∑

i=1

Biψi(t), (2.20)

where Bi is given by (2.14).

Proof. At first, we prove the convergence of un,m(t). From (2.13), we infer that

un,m+1(t) = un,m(t) + Bm+1ψm+1(t). (2.21)

The orthonormality of {ψi}∞i=1 yields that

‖un,m+1‖2 = ‖un,m‖2 + B2
m+1 = · · · =

m+1∑

i=1

B2
i . (2.22)

In terms of (2.22), it holds that ‖un,m+1‖ ≥ ‖un,m‖. Due to the condition that ‖un,m‖ is bounded,
‖un,m‖ is convergent and there exists a constant c such that

∑∞
i=1 B

2
i = c. If l > m, and then

‖un,l − un,m‖2 = ‖un,l − un,l−1 + un,l−1 − un,l−2 + · · · + un,m+1 − un,m‖2

= ‖un,l − un,l−1‖2 + ‖un,l−1 − un,l−2‖2 + · · · + ‖un,m+1 − un,m‖2.
(2.23)

On account of ‖un,l − un,l−1‖2 = B2
l
, consequently, we have

‖un,l − un,m‖2 =
l∑

i=m+1

B2
i −→ 0 as m −→ ∞. (2.24)

The completeness ofW[0, T] shows that un,m → un asm → ∞. Now, we prove that un is the
solution of (2.1)-(2.2). Taking limits in (2.13), we get

un(t) =
∞∑

i=1

Biψi(t). (2.25)
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Note that

(Lun)(t) =
∞∑

i=1

BiLψi(t), (2.26)

(Lun)(tl) =
∞∑

i=1

BiLψi(tl) =
∞∑

i=1

Bi
〈
Lψi(t), φl(t)

〉
W̃

=
∞∑

i=1

Bi
〈
ψi(t), L

∗φl(t)
〉
W

=
∞∑

i=1

Bi
〈
ψi(t), ψl(t)

〉
W
.

(2.27)

Therefore, consider

i∑

l=1

βil(Lun)(tl) =
∞∑

i=1

Bi

〈

ψi(t),
i∑

l=1

βilψl(t)

〉

W

=
∞∑

i=1

Bi
〈
ψi(t), ψl(t)

〉
W

= Bl. (2.28)

In view of (2.14), we have

Lun(tl) =N
(
tl, un+p1,l−1(tl), . . . , un+pd,l−1(tl)

)
. (2.29)

Since {ti}∞i=1 is dense in [0, T], for each s ∈ [0, T], there exist a subsequence {tmj}∞j=1 such that

tmj −→ s
(
j −→ ∞)

. (2.30)

We have known that

Lun
(
tmj

)
=N

(
tmj , un+p1,mj−1

(
tmj

)
, . . . , un+pd,mj−1

(
tmj

))
. (2.31)

Let j → ∞, by Lemma 2.8 and the continuity ofN, we have

(Lun)(s) =N
(
s, un+p1(s), . . . , un+pd(s)

)
, (2.32)

which indicates that un satisfies (2.1)-(2.2).

3. Numerical Results

To test the accuracy of the proposed method, three examples are treated in this section. The
results are compared with the exact solutions. All experiments are done by taking T = 1.

Example 3.1. Consider the Volterra equation of the form

∂un
∂t

= un(un−1 − un+1). (3.1)
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Table 1: Relative errors of u4,m(t), for Example 3.1.

t uexact RE (m = 16) RE (m = 50) RE (m = 150)
0.1 3.33333 2.39250E − 02 2.15212E − 03 2.27949E − 04
0.2 2.85714 1.81724E − 02 1.63061E − 03 1.72270E − 04
0.3 2.50000 1.47060E − 02 1.28701E − 03 1.35604E − 04
0.4 2.22222 1.21036E − 02 1.04777E − 03 1.10095E − 04
0.5 2.00000 1.02211E − 02 8.73935E − 04 9.15787E − 05
0.6 1.81818 8.78692E − 03 7.43272E − 04 7.76766E − 05
0.7 1.66667 7.65804E − 03 6.42308E − 04 6.69478E − 05
0.8 1.53846 6.77754E − 03 5.62483E − 04 5.84769E − 05
0.9 1.42857 6.04603E − 03 4.98142E − 04 5.16585E − 05
1 1.33333 5.45125E − 03 4.45418E − 04 4.60794E − 05

With the initial condition un(0) = n, it is easy to check that the exact solution will be

un(t) =
n

1 + 2t
. (3.2)

Taking n = 4, relative error (RE) of numerical results for m = 16, m = 50, and m = 150 are
reported in Table 1. Accuracy of approximate solutions is getting better asm increases.

Example 3.2. Consider the discrete mKdV equation

∂un
∂t

=
(
α − u2n

)
(un+1 − un−1). (3.3)

With the initial condition un(0) =
√−α tanh(k/2)(1 + cosh(k))sech(kn − 2), where k

and α are arbitrary constants, the exact solution will be

un(t) =
√−α tanh

(
k

2

)
(1 + cosh(k))sech

(
kn + 2α tanh

(
k

2

)
(1 + cosh(k))t − 2

)
. (3.4)

Taking m = 50, α = −0.1 and k = 0.3 and choosing n = 10 and n = 15, we have listed relative
error of approximate solutions at some nodal points in Table 2. Numerical results are in good
agreement with the exact solutions.

Example 3.3. Consider the discrete sine-Gordon equation of the form

∂un+1
∂t

− ∂un
∂t

= sin(un+1 − un). (3.5)

With the initial condition un(0) = 2 arctan(tanh(kn+δ))where δ and k /= 0 are arbitrary
constants, the exact solution will be

un(t) = 2 arctan
(
tanh

(
kn − 1

2 tanh(k)
t + δ

))
. (3.6)
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Table 2: Relative errors of un,50(t), for Example 3.2.

t RE (n = 10) RE (n = 15)
0.1 9.28456E − 06 1.31645E − 05
0.2 4.00254E − 06 3.45703E − 06
0.3 7.57456E − 06 3.88922E − 05
0.4 2.41475E − 05 8.78319E − 05
0.5 4.59293E − 05 1.49880E − 04
0.6 7.31335E − 05 2.24650E − 04
0.7 1.05974E − 04 3.11759E − 04
0.8 1.44666E − 04 4.10836E − 04
0.9 1.89424E − 04 5.21514E − 04
1 2.40464E − 04 6.43435E − 04

Table 3: Relative errors of un,50(t), for Example 3.3.

t RE (n = 5) RE (n = 10)
0.1 1.36553E − 10 6.79847E − 12
0.2 2.58908E − 08 6.18223E − 08
0.3 1.51271E − 07 3.55847E − 07
0.4 5.55149E − 07 1.27165E − 06
0.5 1.79618E − 06 3.99090E − 06
0.6 5.56118E − 06 1.19763E − 05
0.7 1.69167E − 05 3.53422E − 05
0.8 5.10327E − 05 1.03601E − 04
0.9 1.53212E − 04 3.02802E − 04
1 4.58423E − 04 8.83675E − 04

Taking m = 50, δ = 9 and k = 0.3 and choosing n = 5 and n = 10, we have given relative
error of approximate solutions at some nodal points in Table 3. Numerical results are in good
agreement with the exact solutions.

4. Conclusion

In this work, we proposed an algorithm for solving a class of nonlinear differential-difference
equations on the basis of reproducing kernel spaces. Results of numerical examples show that
the present method is an accurate and reliable analytical-numerical technique for solving
such differential-difference equations. The method is shown to be of good convergence,
simple in principle, and easy to program.
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