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The fine spectra of 2-banded and 3-banded infinite Toeplitz matrices were examined by several
authors. The fine spectra of n-banded triangular Toeplitz matrices and tridiagonal symmetric
matrices were computed in the following papers: Altun, “On the fine spectra of triangular toeplitz
operators” (2011) and Altun, “Fine spectra of tridiagonal symmetric matrices” (2011). Here, we
generalize those results to the (2n + 1)-banded symmetric Toeplitz matrix operators for arbitrary
positive integer n.

1. Introduction and Preliminaries

The spectrum of an operator over a Banach space is partitioned into three parts, which are
the point spectrum, the continuous spectrum, and the residual spectrum. Some other parts
also arise by examining the surjectivity of the operator and continuity of the inverse operator.
Such subparts of the spectrum are called the fine spectra of the operator.

The spectra and fine spectra of linear operators defined by some particular limitation
matrices over some sequence spaces were studied by several authors. We introduce the
knowledge in the existing literature concerning the spectrum and the fine spectrum. Wenger
[1] examined the fine spectrum of the integer power of the Cesàro operator over c, and
Rhoades [2] generalized this result to the weighted mean methods. Reade [3] worked on
the spectrum of the Cesàro operator over the sequence space c0. Gonzáles [4] studied the
fine spectrum of the Cesàro operator over the sequence space �p. Okutoyi [5] computed the
spectrum of the Cesàro operator over the sequence space bv. Recently, Rhoades and Yildirim
[6] examined the fine spectrum of factorable matrices over c0 and c. Akhmedov and Başar
[7, 8] have determined the fine spectrum of the Cesàro operator over the sequence spaces c0,
�∞ and �p. Altun and Karakaya [9] computed the fine spectra of Lacunary matrices over c0
and c. Furkan et al. [10] determined the fine spectrum of B(r, s, t) over the sequence spaces
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c0 and c, where B(r, s, t) is a lower triangular triple-band matrix. Later, Altun [11] computed
the fine spectra of triangular Toeplitz matrices over c0 and c.

The fine spectrum of the difference operatorΔ over c0 and cwas studied by Altay and
Başar [12]. Recently, the fine spectra ofΔ over �p and bvp are studied by Akhmedov and Başar
[13, 14], where bvp is the space of p-bounded variation sequences, introduced by Başar and
Altay [15] with 1 ≤ p < ∞. The fine spectrum with respect to the Goldberg’s classification of
the operator B(r, s, t) over �p and bvp with 1 < p < ∞ has recently been studied by Furkan et
al. [16]. Quite recently, Akhmedov and El-Shabrawy [17] have obtained the fine spectrum of
the generalized difference operatorΔa,b, defined as a double bandmatrix with the convergent
sequences ã = (ak) and ˜b = (bk) having certain properties, over c. In 2010, Srivastava and
Kumar [18] have determined the spectra and the fine spectra of the generalized difference
operatorΔν on �1, whereΔν is defined by (Δν)nn = νn and (Δν)n+1,n = −νn for all n ∈ N, under
certain conditions on the sequence ν = (νn) and they have just generalized these results by
the generalized difference operator Δuv defined by Δuvx = (unxn + vn−1xn−1)n∈N

(see [19]).
In this work, our purpose is to determine the spectra of the operator, for which the

corresponding matrix is a (2n + 1)-banded symmetric Toeplitz matrix, over the sequence
spaces c0, c, �1 and �∞. We will also give the fine spectra results for the spaces c0 and c.

Let X and Y be Banach spaces and T : X → Y be a bounded linear operator. By R(T),
we denote the range of T , that is,

R(T) = {

y ∈ Y : y = Tx;x ∈ X
}

. (1.1)

By B(X), we denote the set of all bounded linear operators on X into itself. If X is any Banach
space and T ∈ B(X) then the adjoint T ∗ of T is a bounded linear operator on the dual X∗ of
X defined by (T ∗φ)(x) = φ(Tx) for all φ ∈ X∗ and x ∈ X. Let X/= {θ} be a complex normed
space and T : D(T) → X be a linear operator with domain D(T) ⊂ X. With T , we associate
the operator

Tλ = T − λI, (1.2)

where λ is a complex number and I is the identity operator on D(T). If Tλ has an inverse,
which is linear, we denote it by T−1

λ , that is,

T−1
λ = (T − λI)−1, (1.3)

and call it the resolvent operator of Tλ. If λ = 0, we will simply write T−1. Many properties of Tλ
and T−1

λ
depend on λ, and spectral theory is concerned with those properties. For instance, we

will be interested in the set of all λ in the complex plane such that T−1
λ

exists. Boundedness of
T−1
λ is another property that will be essential. We will also ask for what λ’s the domain of T−1

λ

is dense in X. For our investigation of T , Tλ and T−1
λ , we need some basic concepts in spectral

theory which are given as follows (see [20, pages 370-371]).
Let X /= {θ} be a complex normed space and T : D(T) → X be a linear operator with

domain D(T) ⊂ X. A regular value λ of T is a complex number such that

(R1) T−1
λ

exists,

(R2) T−1
λ

is bounded,

(R3) T−1
λ

is defined on a set which is dense in X.
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The resolvent set ρ(T) of T is the set of all regular values λ of T . Its complement σ(T) =
C\ρ(T) in the complex plane C is called the spectrum of T . Furthermore, the spectrum σ(T) is
partitioned into three disjoint sets as follows: the point spectrum σp(T) is the set such that T−1

λ
does not exist. A λ ∈ σp(T) is called an eigenvalue of T . The continuous spectrum σc(T) is the set
such that T−1

λ
exists and satisfies (R3) but not (R2). The residual spectrum σr(T) is the set such

that T−1
λ

exists but does not satisfy (R3).
From Goldberg [21], if T ∈ B(X), X a Banach space, then there are three possibilities

for R(T), the range of T :

(I) R(T) = X,

(II) R(T) = X, but R(T)/=X,

(III) R(T)/=X,

and three possibilities for T−1:

(1) T−1 exists and is continuous,

(2) T−1 exists, but is discontinuous,

(3) T−1 does not exist.

If these possibilities are combined in all possible ways, nine different states are created. These
are labelled as I1, I2, I3, II1, II2, II3, III1, III2, and III3. If λ is a complex number such that Tλ ∈ I1
or Tλ ∈ II1, then λ is in the resolvent set ρ(T,X) of T , the set of all regular values of T on
X. The other classification gives rise to the fine spectrum of T . For example, we will write
λ ∈ III1σ(T,X) if T satisfies III and 1.

A triangle is a lower triangular matrix with all of the principal diagonal elements
nonzero. We will write �∞, c and c0 for the spaces of all bounded, convergent, and null
sequences, respectively. By �p, we denote the space of all p-absolutely summable sequences,
where 1 ≤ p < ∞. Let μ and γ be two sequence spaces and A = (ank) be an infinite matrix of
real or complex numbers ank, where n, k ∈ N. Then, we say that A defines a matrix mapping
from μ into γ , and we denote it by writing A : μ → γ , if for every sequence x = (xk) ∈ μ the
sequence Ax = {(Ax)n}, the A-transform of x, is in γ , where

(Ax)n =
∑

k

ankxk (n ∈ N). (1.4)

By (μ : γ), we denote the class of all matrices A such that A : μ → γ . Thus, A ∈ (μ : γ) if and
only if the series on the right side of (1.4) converges for each n ∈ N and every x ∈ μ, and we
have Ax = {(Ax)n}n∈N

∈ γ for all x ∈ μ.
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Let an (n + 1)-tuple t = (t0, t1, . . . , tn) ∈ C
n+1 be given. A symmetric infinite Toeplitz

matrix is a (2n + 1)-band matrix of the form

S = S(t) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

t0 t1 · · · · · · tn 0 0 · · ·
t1 t0 t1 · · · · · · tn 0 · · ·
... t1 t0 t1 · · · · · · tn · · ·
...

... t1 t0 t1 · · · · · · · · ·
tn

...
... t1 t0 t1 · · · · · ·

0 tn
...

... t1 t0 t1 · · ·
0 0 tn

...
... t1 t0 · · ·

...
...

...
...

...
...

...
. . .

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (1.5)

The spectral results are clear when S is a multiple of the identity matrix, so for the sequel we
will have n ≥ 1 and tn /= 0.

Let R be the right shift operator:

R =

⎡

⎢

⎢

⎢

⎣

0 0 0 0 0 · · ·
1 0 0 0 0 · · ·
0 1 0 0 0 · · ·
...

...
...

...
...

. . .

⎤

⎥

⎥

⎥

⎦

, (1.6)

and L be the left shift operator:

L = Rt = R−1. (1.7)

Let F(z) = tn[zn + z−n] + tn−1[zn−1 + z−(n−1)] + · · · + t1[z + z−1] + t0 = P(z)/zn, where P is the
palindromic polynomial P(z) = tnz

2n + tn−1z2n−1 + · · · + t0z
n + t1z

n−1 + t2z
n−2 + · · · + tn. Then,

we can see that S = F(R) and we will call F and P as the function and polynomial associated
to the operator S, respectively. We also have

S = LnP(R). (1.8)

The roots of P(z) are nonzero and symmetric, that is, if α is a root, α−1 is also a root. Let
α1, α2, . . . , αn, α

−1
1 , α−1

2 , . . . , α−1
n be the roots of P(z) such that |αk| ≤ 1 for k = 1, 2, . . . , n. Then

S = tnL
n(R − α1I)(R − α2I) · · · (R − αnI)

(

R − α−1
1 I

)(

R − α−1
2 I

)

· · ·
(

R − α−1
n I

)

. (1.9)

Now, by induction, we can see that

Ln(R − α1I)(R − α2I) · · · (R − αnI) = (I − α1L)(I − α2L) · · · (I − αnL). (1.10)
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Let D be the unit disc {z ∈ C : |z| ≤ 1} and ∂D be the unit circle {z ∈ C : |z| = 1}. We have
the following two lemmas as a consequence of the corresponding results in [22] and [23],
respectively.

Lemma 1.1. (I − αL) ∈ (c0, c0) is onto if and only if α is not on the unit circle.

Lemma 1.2. (R − αI) ∈ (c0, c0) is onto if and only if α is outside the unit disc.

Theorem 1.3. S ∈ (c0, c0) is onto if and only if P has no root on the unit circle.

Proof. Suppose P has a root on the unit circle. Let α1, α2, . . . , αn, α
−1
1 , α−1

2 , . . . , α−1
n be the roots of

P(z) such that |αk| ≤ 1 for k = 1, 2, . . . , n. We have

S = tn(I − α1L)(I − α2L) · · · (I − αnL)
(

R − α−1
1 I

)(

R − α−1
2 I

)

· · ·
(

R − α−1
n I

)

. (1.11)

Since the matrix operators (I −α1L), (I −α2L), . . . , (I −αnL) commute with each other, without
loss of generality, we can suppose α1 is a root on the unit circle. Clearly, all the operators
(I − α1L), (I − α2L), . . . , (I − αnL), (R − α−1

1 I), (R − α−1
2 I), . . . , (R − α−1

n I) are in (c0, c0). But, by
Lemma 1.1 the operator (I − α1L) is not onto. So, S cannot be onto.

Suppose, now, P has no root on the unit circle. That means |αk| < 1 for k = 1, 2, . . . , n.
Then all the operators (I −α1L), (I −α2L), . . . , (I −αnL), (R−α−1

1 I), (R−α−1
2 I), . . . , (R−α−1

n I) are
onto by Lemma 1.1 and Lemma 1.2. Hence, S = tn(I −α1L)(I −α2L) · · · (I −αnL)(R−α−1

1 I)(R−
α−1
2 I) · · · (R − α−1

n I) is onto.

Theorem 1.4 (cf. [24]). Let T be an operator with the associated matrix A = (ank).

(i) T ∈ B(c) if and only if

‖A‖ := sup
n

∞
∑

k=1

|ank| < ∞, (1.12)

ak := lim
n→∞

ank exists for each k, (1.13)

a := lim
n→∞

∞
∑

k=1

ank exists. (1.14)

(ii) T ∈ B(c0) if and only if (1.12) and (1.13) with ak = 0 for each k.

(iii) T ∈ B(�∞) if and only if (1.12). In these cases, the operator norm of T is

‖T‖(�∞:�∞) = ‖T‖(c:c) = ‖T‖(c0:c0) = ‖A‖. (1.15)

(iv) T ∈ B(�1) if and only if

∥

∥At
∥

∥ = sup
k

∞
∑

n=1

|ank| < ∞. (1.16)

In this case, the operator norm of T is ‖T‖(�1:�1) = ‖At‖.
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Corollary 1.5. S(t) ∈ B(μ) for μ ∈ {c0, c, �1, �∞} and

‖S(t)‖(μ,μ) = |t0| + 2(|t1| + |t2| + · · · + |tn|). (1.17)

Theorem 1.6. Let X be a Banach space and T ∈ B(X). Then λ ∈ C is in the spectrum σ(T,X) if and
only if T − λI is not bijective.

Proof. Suppose T − λI is not bijective. Then T − λI is not 1-1 or not onto. If it is not 1-1, then
λ ∈ σp(T,X) ⊂ σ(T,X). Suppose now T − λI is 1-1. Then it is not onto and by Lemma 7.2-3 of
[20], λ cannot be in ρ(T,X). Hence, λ ∈ σ(T,X).

Now, suppose T − λI is bijective. Then by the open mapping theorem (T − λI)−1 is
continuous. Hence, λ is not in the spectrum σ(T,X).

Corollary 1.7. LetX be a Banach space and T ∈ B(X). Then λ ∈ ρ(T,X) if and only if Tλ is bijective.

2. The Spectra and Fine Spectra

Lemma 2.1 (Lemma 3.4 of [11]). Let z1, z2, . . . , zr be distinct complex numbers with |zi| = 1 for
1 ≤ i ≤ r. Let 0/=x = (xk) be a sequence satisfying

xk =
(

α1,0 + α1,1k + · · · + α1,m1−1k
m1−1

)

zk1 +
(

α2,0 + α2,1k + · · · + α2,m2−1k
m2−1

)

zk2

+ · · · +
(

αr,0 + αr,1k + · · · + αr,mr−1k
mr−1

)

zkr ,

(2.1)

for k = 0, 1, 2, . . ., where αi,j are constants forming the polynomials Pi(k) = αi,0 + αi,1k + · · · +
αi,mi−1k

mi−1 /= 0 for 1 ≤ i ≤ r and 0 ≤ j ≤ mi − 1. Then x /∈ c0.

Lemma 2.2. Let z1, z2, . . . , zr be distinct complex numbers. Let 0/=x = (xk) ∈ c be a sequence
satisfying

xk =
(

α1,0 + α1,1k + · · · + α1,m1−1k
m1−1

)

zk1 +
(

α2,0 + α2,1k + · · · + α2,m2−1k
m2−1

)

zk2

+ · · · +
(

αr,0 + αr,1k + · · · + αr,mr−1k
mr−1

)

zkr ,

(2.2)

for k = 0, 1, 2, . . ., where αi,j are constants forming the polynomials Pi(k) = αi,0 + αi,1k + · · · +
αi,mi−1k

mi−1 /= 0 for 1 ≤ i ≤ r and 0 ≤ j ≤ mi − 1. Then |zi| ≤ 1 for 1 ≤ i ≤ r, and the existence of a
t ≤ r with |zt| = 1 implies zt = 1 and Pt is a constant.

Proof. Let |z1| ≥ |z2| ≥ · · · ≥ |zr |. To prove |zi| ≤ 1 for all i ≤ r, suppose it is not true. Then
let a := |z1| > 1. Let s ≤ r be the largest positive integer with |z1| = |z2| = · · · = |zs|. Then
(xk/a

k) ∈ c0. Let

uk =
(

α1,0 + α1,1k + · · · + α1,m1−1k
m1−1

)(z1
a

)k
+
(

α2,0 + α2,1k + · · · + α2,m2−1k
m2−1

)(z2
a

)k

+ · · · +
(

αs,0 + αs,1k + · · · + αs,ms−1k
ms−1

)(zs
a

)k
.

(2.3)
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We have 0 = (xk/a
k − uk) for s = r. If s < r, we have

xk

ak
− uk =

(

αs+1,0 + αs+1,1k + · · · + αs+1,ms+1−1k
ms+1−1

)(zs+1
a

)k

+
(

αs+2,0 + αs+2,1k + · · · + αs+2,ms+2−1k
ms+2−1

)(zs+2
a

)k

+ · · · +
(

αr,0 + αr,1k + · · · + αr,mr−1k
mr−1

)(zr
a

)k
.

(2.4)

Since |zj/a| < 1 for s+1 ≤ j ≤ r, we have (xk/a
k −uk) ∈ c0. Then (uk) ∈ c0 but this contradicts

with Lemma 2.1. Hence, we have |zi| ≤ 1 for 1 ≤ i ≤ r.
Now, let us prove the second part. Suppose, there exist a positive integer q ≤ r

such that |zi| = 1 for all i ≤ q. For any i, Pi is constant means mi = 1. Suppose m =
max{m1, . . . , mq} > 1. Without loss of generality let m1 ≥ m2 ≥ · · · ≥ mq. Let q0 ≤ q be
the largest integer satisfying m1 = m2 = · · · = mq0 = m. Then (xk/k

m−1) ∈ c0. This means,
since |zi| have modulus less than 1, (vk) ∈ c0, where

vk = α1,m−1zk1 + α2,m−1zk2 + · · · + αq0,m−1zkq0 . (2.5)

But, this again contradicts with Lemma 2.1. Hence, we have m1 = m2 = · · · = mq = 1. Now,
we have (wk) ∈ c, where

wk = α1,0z
k
1 + α2,0z

k
2 + · · · + αq,0z

k
q . (2.6)

Suppose, one of the elements in {z1, z2, . . . , zq} is equal to 1, say z1 = 1. Then, (wk+1−wk) ∈ c0,
where

wk+1 −wk = α2,0(z2 − 1)zk2 + · · · + αq,0
(

zq − 1
)

zkq , (2.7)

and this again contradicts with Lemma 2.1. Hence, q ≤ 1 and 1 is the unique candidate for zt
with modulus 1.

Theorem 2.3. σp(S, μ) = ∅ for μ ∈ {�1, c0, c}.
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Proof. Since �1 ⊂ c0 ⊂ c, it is enough to show that σp(S, c) = ∅. Let λ be an eigenvalue of the
operator S. An eigenvector x = (x0, x1, . . .) ∈ c corresponding to this eigenvalue satisfies the
linear system of equations:

t0x0 + t1x1 + t2x2 + · · · + tnxn = λx0

t1x0 + t0x1 + t1x2 + · · · + tnxn+1 = λx1

t2x0 + t1x1 + t0x2 + · · · + tnxn+2 = λx2

...

tnx0 + tn−1x1 + tn−2x2 + · · · + tnx2n = λxn

tnx1 + tn−1x2 + tn−2x3 + · · · + tnx2n+1 = λxn+1

tnx2 + tn−1x3 + tn−2x4 + · · · + tnx2n+2 = λxn+2

...

(2.8)

Since tn /= 0 we can write this system of equations in the form:

d0x0 + d1x1 + d2x2 + · · · + dnxn = 0

d1x0 + d0x1 + d1x2 + · · · + dnxn+1 = 0

d2x0 + d1x1 + d0x2 + · · · + dnxn+2 = 0

...

dnx0 + dn−1x1 + dn−2x2 + · · · + dnx2n = 0

dnx1 + dn−1x2 + dn−2x3 + · · · + dnx2n+1 = 0

dnx2 + dn−1x3 + dn−2x4 + · · · + dnx2n+2 = 0

...

(2.9)

where d0 = (t0 − λ)/tn, dn = 1 and dj = tj/tn for 1 ≤ j ≤ n − 1. This system of equations, by
change of variables un+k = xk for k = 0, 1, 2, . . ., is equivalent to system of equations

dnuk + dn−1uk+1 + · · · + d0un+k + d1un+k+1 + · · · + dnu2n+k = 0, k = 0, 1, 2, . . . , (2.10)

with the initial conditions u0 = u1 = · · · = un−1 = 0.
We see that this is a 2n-th order linear homogenous difference equation with the

corresponding characteristic polynomial

P(z) = z2n + dn−1z2n−1 + · · · + d1z
n+1 + d0z

n + d1z
n−1 + · · · + dn−1z + 1. (2.11)
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Suppose P(z) has r distinct roots z1, z2, . . . , zr with multiplicities m1, m2, . . . , mr . Then, any
solution (uk) of the system of equations satisfies

uk =
(

α1,0 + α1,1k + · · · + α1,m1−1k
m1−1

)

zk1 +
(

α2,0 + α2,1k + · · · + α2,m2−1k
m2−1

)

zk2

+ · · · +
(

αr,0 + αr,1k + · · · + αr,mr−1k
mr−1

)

zkr .

(2.12)

Observe that if ζ is a root of P(z), then 1/ζ is also a root. There are two cases.
Case 1 (1 is not a root of P(z)). Since (uk) ∈ c, by Lemma 2.2 we can write

uk =
(

α1,0 + α1,1k + · · · + α1,m1−1k
m1−1

)

zk1 +
(

α2,0 + α2,1k + · · · + α2,m2−1k
m2−1

)

zk2

+ · · · +
(

αq,0 + αq,1k + · · · + αq,mq−1k
mq−1

)

zkq ,

(2.13)

where |zi| < 1 for 1 ≤ i ≤ q. By the symmetry of the roots we havem1 +m2 +m3 + · · · +mq = n.
Now, using the initial conditions u0 = u1 = · · · = un−1 = 0 we have

Vα = 0, (2.14)

where α = [α1,0, α1,1, . . . , α1,m1−1, α2,0, α2,1, . . . , α2,m2−1, . . . , αq,0, αq,1, . . . , αq,mq−1]
t and V is the

generalized Vandermonde matrix

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 · · · 0 1 0 · · · 0 · · · · · · 1 0 · · · 0
z1 z1 · · · z1 z2 z2 · · · z2 · · · · · · zq zq · · · zq
z21 2z21 · · · 2m1−1z21 z22 2z22 · · · 2m2−1z22 · · · · · · z2q 2z2q · · · 2mq−1z2q
z31 3z31 · · · 3m1−1z31 z32 3z32 · · · 3m2−1z32 · · · · · · z3q 3z3q · · · 3mq−1z3q
...

...
...

...
...

...
...

...
...

...
...

...
...

...
zn−11 A · · · B zn−12 C · · · D · · · · · · zn−1q E · · · F

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (2.15)

where A denotes (n − 1)zn−11 , B denotes (n − 1)m1−1zn−11 , C denotes (n − 1)zn−12 , D denotes
(n − 1)m2−1zn−12 , E denotes (n − 1)zn−1q , and F denotes (n − 1)mq−1zn−1q .

The determinant of the matrix V was explicitly given in [25, 26]:

detV =

⎡

⎣

q
∏

i=1

⎛

⎝

mi−1
∏

j=0

j!

⎞

⎠z

(mi
2

)

i

⎤

⎦

⎡

⎣

∏

1≤i<j≤q

(

zj − zi
)mimj

⎤

⎦. (2.16)

An inductive proof of this formula is given by Chen and Li [27]. Since zero is not a root of
our polynomial P , we have detV /= 0; hence, we conclude α = 0, which means the sequences
(uk) = 0 and (xk) = 0. Hence, there is no eigenvalue in this case.
Case 2 (1 is a root of P(z)). Since (uk) ∈ c, by Lemma 2.2 we can write

uk = α1,01k +
(

α2,0 + α2,1k + · · · + α2,m2−1k
m2−1

)

zk2 + · · · +
(

αq,0 + αq,1k + · · · + αq,mq−1k
mq−1

)

zkq ,

(2.17)
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where |zi| < 1 for 2 ≤ i ≤ q. By the symmetry of the roots we have p := 1+m2+m3+· · ·+mk ≤ n.
Now, using the initial conditions u0 = u1 = · · · = un−1 = 0 we have

Wα = 0, (2.18)

where α = [α1,0, α2,0, α2,1, . . . , α2,m2−1, . . . , αq,0, αq,1, . . . , αq,mq−1]
t andW is an n×p submatrix of a

generalized n × n Vandermonde matrix. Since the determinant of generalized Vandermonde
matrix with nonzero roots is not zero, we have that the columns of W are linearly
independent. So again we can conclude that α = 0, which again will mean that there is no
eigenvalue.

If T : μ → μ (μ is �1 or c0) is a bounded linear operator represented by the matrix A,
then it is known that the adjoint operator T ∗ : μ∗ → μ∗ is defined by the transpose At of the
matrix A. It should be noted that the dual space c∗0 of c0 is isometrically isomorphic to the
Banach space �1 and the dual space �∗1 of �1 is isometrically isomorphic to the Banach space
�∞.

Lemma 2.4 (see [21, page 59]). T has a dense range if and only if T ∗ is one to one.

Corollary 2.5. If T ∈ (μ : μ) then σr(T, μ) = σp(T ∗, μ∗) \ σp(T, μ).

Theorem 2.6. σr(S, c0) = ∅.

Proof. σp(S, �1) = ∅ by Theorem 2.3. Now using Corollary 2.5 we have σr(S, c0) = σp(S∗, c∗0) \
σp(S, c0) = σp(S, �1) \ σp(S, c0) = ∅.

If T : c → c is a bounded matrix operator represented by the matrix A, then T ∗ : c∗ →
c∗ acting on C ⊕ �1 has a matrix representation of the form

[

χ 0
b At

]

, (2.19)

where χ is the limit of the sequence of row sums of A minus the sum of the limits of the
columns of A, and b is the column vector whose kth entry is the limit of the kth column of A
for each k ∈ N. For S : c → c, the matrix S∗ is of the form

[

2(t1 + t2 + · · · + tn) + t0 0
0 S

]

=
[

F(1) 0
0 S

]

. (2.20)

Theorem 2.7. σr(S, c) = {t0 + 2(t1 + t2 + · · · + tn)} = {F(1)}.

Proof. Let x = (x0, x1, . . .) ∈ C ⊕ �1 be an eigenvector of S∗ corresponding to the eigenvalue
λ. Then we have (2[t1 + t2 + · · · + tn] + t0)x0 = λx0 and Sx′ = λx′ where x′ = (x1, x2, . . .). By
Theorem 2.3 x′ = (0, 0, . . .). Then x0 /= 0. So λ = 2[t1 + t2 + · · · + tn] + t0 is the only value that
satisfies (2[t1 + t2 + · · · + tn] + t0)x0 = λx0. Hence, σp(S∗, c∗) = {2[t1 + t2 + · · · + tn] + t0}. Then
σr(S, c) = σp(S∗, c∗) \ σp(S, c) = {2[t1 + t2 + · · · + tn] + t0}.

We will write F(1) instead of {F(1)} for the sequel.
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Lemma 2.8. σ(S, �1) = σ(S, c0) = σ(S, c) = σ(S, �∞).

Proof. We will use the fact that the spectrum of a bounded operator over a Banach space is
equal to the spectrum of the adjoint operator. The adjoint operator is the transpose of the
matrix for c0 and �1. So σ(S, c0) = σ(S∗, c∗0) = σ(S, �1) = σ(S∗, �∗1) = σ(S, �∞). We know by
Cartlidge [28] that if a matrix operator A is bounded on c, then σ(A, c) = σ(A, �∞). Hence,
we have σ(S, c0) = σ(S, �1) = σ(S, �∞) = σ(S, c).

Theorem 2.9. σ(S, μ) = F(∂D) for μ ∈ {�1, c0, c, �∞}.

Proof. Let us first consider S as an operator on c0. By Theorems 1.6 and 2.3 λ ∈ σ(S, c0) if and
only if S − λI is not onto over c0. By Theorem 1.3 S − λI is not onto over c0 if and only if the
polynomial P(z) − λzn has a root on the unit circle. P(z) − λzn has a root on the unit circle if
and only if λ = P(z)/zn = F(z) for some z ∈ ∂D. We have λ = F(z) for some z ∈ ∂D if and
only if λ ∈ F(∂D). Hence, σ(S, c0) = F(∂D). Finally, we apply Lemma 2.8.

Corollary 2.10. S ∈ (c, c) is onto if and only if P has no root on the unit circle.

The spectrum σ is the disjoint union of σp, σr and σc, so we have the following theorem
as a consequence of Theorems 2.3, 2.6, 2.7, and 2.9.

Theorem 2.11. σc(S, c0) = F(∂D) and σc(S, c) = F(∂D) \ F(1).

As a result of Theorems 1.3, 2.3, 2.6, 2.7, and 2.9 and Corollary 2.10, we have the
following.

Theorem 2.12. F(∂D) = II2σ(S, c0), F(∂D) \ F(1) = II2σ(S, c) and F(1) = III2σ(S, c).

3. Some Applications

Now, let us give an application of Theorem 2.9. Consider the system of equations

yk = t0xk +
n
∑

j=1

tj
(

xk+j + xk−j
)

k = 0, 1, 2, . . . , (3.1)

where xk = 0 for negative k.

Theorem 3.1. Let P(z) = tnz
2n + tn−1z2n−1 + · · ·+ t0z

n + t1z
n−1 + t2z

n−2 + · · ·+ tn, where t0, t1, . . . , tn
are complex numbers such that the complex sequences x = (xn) and y = (yn) are solutions of system
(3.1). Then the following are equivalent:

(i) boundedness of (yn) always implies a unique bounded solution (xn),

(ii) convergence of (yn) always implies a unique convergent solution (xn),

(iii) yn → 0 always implies a unique solution (xn) with xn → 0,

(iv)
∑ |yn| < ∞ always implies a unique solution (xn) with

∑ |xn| < ∞,

(v) P has no root on the unit circle ∂D.
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Proof. The system of equations (3.1) holds, so we have Sx = y. Then P is the polynomial
associated to S. Let F be the function associated to S. Let us prove only (i)⇔(v) and omit the
proofs of (ii)⇔(v), (iii)⇔(v), (iv)⇔(v) since they are similarly proved. Suppose boundedness
of (yn) always implies a unique bounded solution (xn). Then the operator S − 0I = S ∈
(�∞, �∞) is bijective. So, λ = 0 is not in the spectrum σ(S, �∞) by Theorem 1.6, which means
0 /∈ F(∂D) and 0 /∈ P(∂D).

For the reverse implication, suppose P(z) has no root on the unit circle ∂D. Then F(z)
has no zero on the unit circle. So, λ = 0 is in the resolvent set ρ(S, �∞). Now, by Theorem 1.6,
S = S − 0I is bijective on �∞, which means that the boundedness of (yn) implies a bounded
unique solution (xn).

Example 3.2. We can see that

F(∂D) = {t0 + 2t1 cos θ + 2t2 cos 2θ + · · · + 2tn cosnθ : θ ∈ [0, π]}. (3.2)

When n = 1, S is a tridiagonal matrix, that is,

S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

q r 0 0 0 0 · · ·
r q r 0 0 0 · · ·
0 r q r 0 0 · · ·
0 0 r q r 0 · · ·
...

...
...

...
...

...
. . .

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (3.3)

then σ(S, μ) = F(∂D) for μ ∈ {�1, c0, c, �∞}, where F = q + r(z + z−1). Therefore,

σ
(

S, μ
)

=
{

q + 2r cos θ : θ ∈ [0, π]
}

=
[

q − 2r, q + 2r
]

, (3.4)

which is one of the main results of [29]. [q−2r, q+2r] is the closed line segment in the complex
plane with endpoints q − 2r and q + 2r.

Example 3.3. When n = 2, S is a pentadiagonal matrix, that is,

S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

q r s 0 0 0 0 · · ·
r q r s 0 0 0 · · ·
s r q r s 0 0 · · ·
0 s r q r s 0 · · ·
0 0 s r q r s · · ·
...

...
...

...
...

...
...

. . .

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (3.5)

then F = q + r(z + z−1) + s(z2 + z−2) and

σ
(

S, μ
)

=
{

q + 2r cos θ + 2s cos 2θ : θ ∈ [0, π]
}

. (3.6)
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So the spectrum is a line segment if r is a real multiple of s. It can be proved that, the spectrum
is a closed connected part of a parabola if r is not a real multiple of s. For example, if q = r = 1
and s = i (the complex number i)we have

σ
(

S, μ
)

= {1 + 2 cos θ + 2i cos 2θ : θ ∈ [0, π]} =
{

(

x, y
) ∈ R

2 : y = x2 − 2x − 1, x ∈ [−1, 3]
}

.

(3.7)
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Journal of Ibaraki University, vol. 36, pp. 25–32, 2004.

[9] M. Altun and V. Karakaya, “Fine spectra of lacunary matrices,” Communications in Mathematical
Analysis, vol. 7, no. 1, pp. 1–10, 2009.
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[15] F. Başar and B. Altay, “On the space of sequences of p-bounded variation and related matrix
mappings,” Ukrainian Mathematical Journal, vol. 55, no. 1, pp. 136–147, 2003.
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