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We are proving the new oscillation theorems for the solutions of third-order linear nonautonomous
differential equation with complex coefficients. In the case of real coefficients we derive the
oscillation criterion that is invariant with respect to the adjoint transformation. Our main tool is a
new version of Levinson’s asymptotic theorem.

1. Introduction

Consider an ordinary nonautonomous differential equation of the third order

Lv = v′′′(t) − 3a2(t)v′′(t) + 6a1(t)v′(t) + 2a0(t)v(t) = 0 (1.1)

with complex valued variable coefficients a0(t), a1(t), and a2(t).
A solution of (1.1) is said to be oscillatory if it has an infinite sequence of zeros

in (t0,∞), and nonoscillatory, otherwise. Equation (1.1) is said to be non-oscillatory if all
solutions are non-oscillatory and is said to be oscillatory if there exists at least one oscillatory
solution.

Oscillation theorems for ordinary differential equation of the third order in the case of
real variable coefficients have been studied in [1–7]. To the best of the author’s knowledge,
the oscillations of the solutions of nonautonomous third order equations with complex
coefficients have not been studied yet.
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Let Ck(t0,∞) be the set of k times differentiable functions on (t0,∞). By substitution

v(t) = u(t)e
∫ t
t0
a2(s)ds equation (1.1) with a2(t) ∈ C2(t0,∞) turns to the following equation:

Pu = u′′′(t) + 3I1(t)u′(t) + 2I2(t)u(t) = 0, (1.2)

where the functions I1(t) and I2(t) are given by

I1(t) = 2a1(t) + a′
2(t) − a2

2(t), I2(t) = a0(t) + 3a1(t)a2(t) − a3
2(t) +

a′′
2(t)
2

. (1.3)

If 0 < |e
∫∞
t0
a2(s)ds| < ∞ or

−∞ <

∫∞

t0

�[a2(s)]ds < ∞, (1.4)

then the solutions of (1.1) and (1.2) have the same oscillation properties; that is, (1.1) is
oscillatory if and only if (1.2) is oscillatory.

Define characteristic (Weierstrass) function of (1.2) depending on a phase function
ηj(t)

Charj(t) = Char
(
ηj
)
= e

− ∫ tt0 ηj (s)dsP
(
e
∫ t
t0
ηj (s)ds

)
, j = 1, 2, 3. (1.5)

By direct calculations

Charj(t) = η′′
j (t) + 3η′

j(t)ηj(t) + η3
j + 3ηj(t)I1(t) + 2I2(t), j = 1, 2, 3. (1.6)

To consider the case of complex coefficients, we are using asymptotic solutions of (1.2) in

Euler form u(t) = e
∫ t
t0
η(s)ds with phase functions ηj(t), j = 1, 2, 3, that are approximate

solutions of the characteristic equation Char(ηj) = 0.

Theorem 1.1 (see [4]). If Mammana’s condition

M(t) = I2(t) −
3I ′1(t)
4

> 0 or M(t) < 0 (1.7)

is satisfied except at isolated points at which M(t) may vanish, then (1.2) is oscillatory if and only if
its adjoint is oscillatory.

We will show that Mammana’s condition (1.7) is connected with the dichotomy
condition of Levinson, and it has a topological character (see condition (2.24) below).
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Theorem 1.2 (see Lazer [5]). Assume that conditions

I1(t) ≤ 0, I2(t) > 0, t > t0, (1.8)
∫∞

t0

(
I2(t) − (−I1(t))3/2

)
dt = ∞ (1.9)

are satisfied. Then (1.2) with the real coefficients is oscillatory.

The adjoint transformation I2(t) → (3I ′1(t)/2) − I2(t), or M(t) → −M(t) transforms
(1.2) to its adjoint equation −w′′′(t)−3I1(t)w′(t)+(2I2(t)−3I ′1(t))w(t) = 0. Note that condition
(1.9) is not invariant with respect to the adjoint transformationM(t) → −M(t). In the case of
real coefficients under some restrictions, we will give the criterion of oscillations of solutions
of (1.2) that is invariant with respect to the adjoint transformation (see Theorem 2.9 below).

2. Main Theorems

Let W[t, a, b] = a(t)b′(t) − a′(t)b(t) be the Wronskian of two differentiable functions a(t) and
b(t). The following asymptotic theorem is proved by using Levinson’s asymptotic theorem
[8].

Theorem 2.1. Assume that there exists complex-valued phase functions ηj(t) ∈ C2(t0,∞), j = 1, 2, 3,
such that expressions �[ηj(t) − ηk(t)], k ≤ j do not change a sign, that is,

�[ηj(t) − ηk(t)
] ≤ 0 or �[ηj(t) − ηk(t)

] ≥ 0, k, j = 1, 2, 3, k ≤ j, t > t0, (2.1)
∫∞

t0

(∣∣η13(t)
∣∣ +
∣∣η23(t)

∣∣)|Char2(t)|
|G(t)| dt < ∞, ηjk(t) = ηj(t) − ηk(t), k, j = 1, 2, 3, (2.2)

∫∞

t0

(∣∣η13(t)
∣∣2 +

∣∣η23(t)
∣∣2
)
|Char2(t) − Char3(t)|

∣∣η23(t)G(t)
∣∣ dt < ∞, (2.3)

where

G(t) = W
[
t, η12, η13

] − η12(t)η13(t)η23(t),
G′(t)
G(t)

+ η1(t) + η2(t) + η3(t) = 0. (2.4)

Then solutions of (1.2) may be represented in the form

uk(t) =
3∑

j=1

ϕj(t)
(
δjk + εjk(t)

)
Cj, lim

t→∞
εjk(t) = 0, j, k = 1, 2, 3, (2.5)

where Charj(t), j = 1, 2, 3 are defined in (1.5), (1.6), and

ϕj(t) = e
∫ t
t0
ηj (s)ds, δjk =

{
1, j = k,

0, j /= k.
(2.6)

Note that conditions (2.2) and (2.3) are given in terms of characteristic functions.
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We will say that (1.2) has asymptotic solutions e
∫ t
t0
ηj (s)ds corresponding to the phase

functions ηj(t) ∈ C2(t0,∞), j = 1, 2, 3 if (2.1)–(2.3) are satisfied.

Theorem 2.2. The solution of (1.2) corresponding to the asymptotic solution with the phase ηk(t) is
oscillatory if and only if

∫∞

t0

	[ηk(t)
]
dt = ∞. (2.7)

The following theorem we deduce from Theorem 2.2 by choosing

η1(t) = −a
′(t)
a(t)

, η2(t) = a(t) − a′(t)
a(t)

, η3(t) = −a(t) − a′(t)
a(t)

. (2.8)

Theorem 2.3. Assume that there exists a complex-valued function a(t) ∈ C3(t0,∞) such that
a−1/2(t) ∈ C2(t0,∞), and

�[a(t)] does not change the sign on (t0,∞), (2.9)
∫∞

t0

∣∣∣∣3I1(t) + a2(t) + 4a1/2(t)
(
a−1/2(t)

)′′∣∣∣∣
dt

|a(t)| < ∞, (2.10)

∫∞

t0

∣∣∣∣∣∣∣∣∣

2I2(t) + 3I1(t)
(
a(t) − a′(t)

a(t)

)
+

(
a−1(t)e

∫ t
t0
a(s)ds

)′′′

a−1(t)e
∫ t
t0
a(s)ds

∣∣∣∣∣∣∣∣∣

dt

a2(t)
< ∞. (2.11)

Then (1.2) with complex coefficients has one nonoscillatory solution and two linearly independent
oscillatory solutions if and only if

∫∞

t0

	[a(t)]dt = ∞, or
∫∞

t0

	[a(t)]dt = −∞. (2.12)

By taking a(t) = λ/t from Theorem 2.3, we get the following corollary.

Corollary 2.4. Assume that for some complex number λ/= 0

∫∞

t0

t2
∣∣∣∣∣
2I2(t) +

1 − λ2

t3

∣∣∣∣∣
dt < ∞,

∫∞

t0

t

∣∣∣∣∣
3I1(t) +

λ2 − 1
t2

∣∣∣∣∣
dt < ∞. (2.13)

Then (1.2) with complex coefficients has one non-oscillatory solution and two linearly independent
oscillatory solutions if and only if

	[λ] > 0. (2.14)

By taking λ = 1 from Corollary 2.4, we obtain well-known result [4].
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Corollary 2.5. Assume that conditions

∫∞

t0

t2|I2(t)|dt < ∞,

∫∞

t0

t|I1(t)|dt < ∞ (2.15)

are satisfied. Then (1.2) with complex coefficients is non-oscillatory.

By taking a(t) = −1/t ln(t) from Theorem 2.3 we get another corollary.

Corollary 2.6. Assume that conditions

∫∞

t0

t2ln2(t)
∣
∣
∣
∣2I2(t) +

3I1(t)
t

∣
∣
∣
∣dt < ∞,

∫∞

t0

t ln(t)
∣
∣
∣
∣3I1(t) −

1
t2

∣
∣
∣
∣dt < ∞ (2.16)

are satisfied. Then (1.2) with complex coefficients is non-oscillatory.

Example 2.7. From Corollary 2.6, (1.2)with

I1(t) =
1
3t2

, I2(t) = − 1
2t3

(2.17)

is non-oscillatory. Note that Corollary 2.5 is not applicable for this example since condition
(2.15) fails.

In the case M(t) ≡ 0 by taking a(t) = i
√
3I1(t), from Theorem 2.3, we deduce the

following theorem.

Theorem 2.8. Assume that I1(t) ∈ C3(t0,∞), I1(t) ≥ β > 0, and

M(t) = I2(t) −
3I ′1(t)
4

≡ 0, t ∈ (t0,∞),
∫∞

t0

∣∣∣∣
(
I−1/41 (t)

)′′
I−1/41 (t)

∣∣∣∣dt < ∞, (2.18)

∫∞

t0

∣∣∣∣

((
I−1/41 (t)

)′′
I−3/41 (t)

)′∣∣∣∣dt < ∞. (2.19)

Then (1.2) with the real coefficients has one non-oscillatory solution and two linearly independent
oscillatory solutions if and only if

∫∞

t0

√
I1(t)dt = ∞. (2.20)

Another result may be proved by the different choice of the phase functions as follows:

ηj(t) = d1/3(t)e−iπ(2j+1)/3 − I1(t)
d1/3(t)

eiπ(2j+1)/3 − G′(t)
3G(t)

, j = 1, 2, 3, (2.21)
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where G(t) is defined in (2.4), and

d(t) = M(t) +
√
M2(t) + I31(t), M(t) = I2(t) −

3I ′1(t)
4

. (2.22)

Define 3 auxiliary regions on the real plane

R1 =
{
(I1,M) ∈ R2 | I1 ≤ 0, M < 0, I31 +M2 < 0

}
,

R2 =
{
(I1,M) ∈ R2 | I1 < 0, M ≤ 0, I31 +M2 ≥ 0

}
,

R3 = R2 \ (R1 ∪ R2) =
(
(I1,M) ∈ R2, M > 0, or I1 > 0

)
.

(2.23)

Theorem 2.9. Assume that I1(t) ∈ C1(t0,∞), R0 is simply connected region R0 ⊂ Rj for some
j = 1, 2, 3, and conditions (2.2) and (2.3),

(I1(t),M(t)) ∈ R0, t > t0 (2.24)

are satisfied. Then (1.2) has one non-oscillatory solution and two linearly independent oscillatory
solutions if and only if

∫∞

t0

�
[(√

M2(t) + I31(t) +M(t)
)1/3

+
(√

M2(t) + I31(t) −M(t)
)1/3

]

dt = ∞ (2.25)

for at least one of cubic roots.

Note that condition (2.25) is invariant with respect to the adjoint transformation
M(t) → −M(t).

For the case of the real constant coefficients I1(t) = I1, I2(t) = I2 from Theorem 2.9,
one can deduce the obvious result that (1.2) is oscillatory if and only if I31 + I22 > 0. Indeed in
this case condition (2.25) turns to I31 + I22 > 0, and conditions (2.2), (2.3), and (2.24) could be
dropped.

Remark 2.10. Levinson’s dichotomy condition (2.24) is satisfied if the modified Mammana’s
condition is satisfied as follows:

M(t) ≥ 0, or M(t) ≤ 0, I1(t) ≥ 0, t > t0. (2.26)

If I1(t) ≥ 0, then M(t) under condition (2.24) may change the sign.

Theorem 2.9 does not exclude the case I2(t) < 0, but Theorem 1.2 does. In the case
I1(t) ≡ 0 conditions of Theorem 2.9 are simplified.

Theorem 2.11. Assume that I2(t) is real, it does not change the sign, and conditions
∫∞

t0

∣∣∣∣
(
I−1/32

)′′′
(t)I−1/32

∣∣∣∣dt < ∞,

∫∞

t0

∣∣∣∣
(
I−1/62

)′′
(t)I−1/62

∣∣∣∣dt < ∞ (2.27)
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are satisfied. Then equation

u′′′(t) + 2I2(t)u(t) = 0 (2.28)

has one non-oscillatory solution and two linearly independent oscillatory solutions if and only if

∫∞

t0

|I2(t)|1/3dt = ∞. (2.29)

In the case M(t) = 0 (self-adjoint equation (1.2)), condition (2.25) turns to (2.20)
(see Theorem 2.8 above), which is Leighton’s (see [9]) necessary condition of oscillations
for solutions of the second-order equation u′′(t) + I1(t)u(t) = 0.

Example 2.12. Equation

u′′′(t) +

(
1
t3

+
1 − (i + μ

)2

t2

)

u′(t) +

(
1
t4

+

(
i + μ

)2 − 1
t3

)

u(t) = 0, (2.30)

where μ is a real number and is oscillatory by Corollary 2.4 since conditions (2.13) and (2.14)
are satisfied with λ = i+μ. Note that for this example Theorem 1.2 is not applicable since both
conditions (1.8) and (1.9) fail even when μ = 0.

3. Proofs

Our main tool is Levinson’s asymptotic theorem.

Theorem 3.1 (see [8]). Let Λ(t) = diag(λ1(t), . . . , λn(t)) be an n × n diagonal matrix function
which satisfies dichotomy condition.

For each pair of integers i and j in [1, n] (i /= j) exist constants K1, K2 such that for all x and
t, t0 ≤ t ≤ x < ∞

∫x

t

�[λi(s) − λj(s)
]
ds ≤ K1, or

∫x

t

�[λi(s) − λj(s)
]
ds ≥ K2. (3.1)

Let the n × n matrixN(t) satisfyN(t) ∈ L1(t0,∞) or

∫x

t

|N(t)|ds < ∞, (3.2)

by which we mean that each entry in N(t) has an absolutely convergent infinite integral. Then the
system

Y ′(t) = (Λ(t) +N(t))Y (t) (3.3)
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has a vector solution Y (t) with the asymptotic form

Y (t) = (E + ε(t))e
∫ t
t0
Λ(s)ds

C, lim
t→∞

ε(t) = 0, (3.4)

where E is the identity matrix, ε(t) is the n × n error matrix-function, and C = (C1, . . . Cn)
tr is a

constant column vector.

Proof of Theorem 2.1. Rewrite (1.2) as a system

y′(t) = A(t)y(t),

A(t) =

⎛

⎝
0 1 0
0 0 1

−2I2(t) −3I1(t) 0

⎞

⎠, y(t) =

⎛

⎝
u(t)
u′(t)
u′′(t)

⎞

⎠.
(3.5)

By transformation

y(t) = Φ(t)z(t), (3.6)

where matrix function Φ(t) is defined via phase functions ηj(t) as follows:

Φ(t) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

e
∫ t
t0
η1(s)ds

μ1(t)
e
∫ t
t0
η2(s)ds

μ2(t)
e
∫ t
t0
η3(s)ds

μ3(t)
η1(t)
μ1(t)

e
∫ t
t0
η1(s)ds η2(t)

μ2(t)
e
∫ t
t0
η2(s)ds η3(t)

μ3(t)
e
∫ t
t0
η3(s)ds

(
η′
1(t) + η2

1(t)
)

μ1(t)
e
∫ t
t0
η1(s)ds

(
η′
2(t) + η2

2(t)
)

μ2(t)
e
∫ t
t0
η2(s)ds

(
η′
3(t) + η2

3(t)
)

μ3(t)
e
∫ t
t0
η3ds

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (3.7)

we get the following:

z′(t) = Φ−1(t)
(
A(t)Φ(t) −Φ′(t)

)
z(t), or z′(t) = (D(t) + B(t))z(t), (3.8)
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where

B(t) =
1

G(t)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

η23(t)Char1(t)
μ1η23Char2(t)

μ2(t)
e
∫ t
t0
η21ds μ1η23Char3(t)

μ3(t)
e
∫ t
t0
η31ds

μ2η31Char1(t)
μ1(t)

e
∫ t
t0
η12ds η31(t)Char2(t)

μ2η31Char3(t)
μ3(t)

e
∫ t
t0
η32ds

μ3η12Char1(t)
μ1(t)

e
∫ t
t0
η13ds μ3η12Char2(t)

μ2(t)
e
∫ t
t0
η23ds η12(t)Char3(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

D(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

μ′
1(t)

μ1(t)
0 0

0
μ′
2(t)

μ2(t)
0

0 0
μ′
3(t)

μ3(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ηjk(t) = ηj(t) − ηk(t).

(3.9)

Choosing specific auxiliary functions

μ1(t) = 1, μ2(t) = e
∫ t
t0
η21(s)ds, μ3(t) = e

∫ t
t0
η31(s)ds, (3.10)

we have

D(t) =

⎛

⎝
0 0 0
0 η21 0
0 0 η31

⎞

⎠, B(t) =
1

G(t)

⎛

⎝
η32Char1 η23Char2 η23Char3
η31Char1 η31Char2 η31Char3
η12Char1 η12Char2 η12Char3

⎞

⎠. (3.11)

Here and further we suppress the time variable t for the simplicity.

From Liouville’s formula detΦ(t) = Ce
∫ t
t0
Tr(A(s))ds = C applied to (3.7) with the

assumption that ηj(t) are solutions of Charj(t) = 0, μ1 = μ2 = μ3 = 1, we get the following

C = det(Φ(t)) = G(t)e
∫ t
t0
(η1+η2+η3)(s)ds. (3.12)

The Liouville’s formula may be written in the form

G′(t)
G(t)

+ η1(t) + η2(t) + η3(t) = 0. (3.13)

We always are choosing the phase functions ηj(t) such that (3.13) is satisfied (see (2.4)). From
(3.13), we get that

(
η1 − η3

)
Char12(t) −

(
η1 − η2

)
Char13(t)

G(t)
= −η1(t) − η2(t) − η3(t) − G′(t)

G(t)
, (3.14)

Char1(t) − Char2(t)
η1(t) − η2(t)

=
Char1(t) − Char3(t)

η1(t) − η3(t)
=

Char2(t) − Char3(t)
η2(t) − η3(t)

. (3.15)
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To apply Theorem 3.1 to system (3.8) note that from (2.1) it follows dichotomy condition (3.1)
of Theorem 3.1:

∫x

t

�[ηkj
]
ds ≥ 0, or

∫x

t

�[ηkj
]
ds ≤ 0, x ≥ t, j /= k, k, j = 1, 2, 3. (3.16)

Condition (3.2) of Theorem 3.1 turns to B(t) ∈ L1(t0,∞), and it is followed from

η13(t)Charj(t)
G(t)

,
η23(t)Charj(t)

G(t)
∈ L1(t0,∞), j = 1, 2, 3. (3.17)

One can drop condition η23(t)Char1(t)/G(t) ∈ L1(t0,∞) since from (3.15)we have

η23(t)Char1(t)
G(t)

=
η13(t)Char2(t)

G(t)
− η12Char3

G
. (3.18)

Assuming that

η2
13(t)(Char2(t) − Char3(t))

η23(t)G(t)
∈ L1(t0,∞), (3.19)

condition η13Char1/G ∈ L1(t0,∞) may be dropped as well since

η13Char1
G

=
η13
(
η13Char2 − η12Char3

)

Gη23
=

η13
(
η13(Char2 − Char3) + η23Char3

)

η23G
. (3.20)

So condition (3.2) of Theorem 3.1 turns to
(∣∣η23(t)

∣∣ +
∣∣η13(t)

∣∣)∣∣Charj(t)
∣∣

|G(t)| ,

∣∣η13(t)
∣∣2|Char2 − Char3(t)|∣∣η23(t)G(t)

∣∣ ∈ L1(t0,∞), j = 2, 3, (3.21)

or (2.2) and (2.3). From Theorem 3.1 applied to system (3.8) and we get that

z(t) = z0(t)(E + ε(t))C, z0(t) = e
∫ t
t0
D(s)ds =

⎛

⎝
μ1(t) 0 0
0 μ2(t) 0
0 0 μ3(t)

⎞

⎠C1,

y(t) = Φ(t)z(t) = Φ(t)z0(t)(E + ε(t))C,

(3.22)

or representation (2.5).

Proof of Theorem 2.2. Theorem 2.2 is followed from Theorem 2.1 since in representation (2.5)
one may choose asymptotic solutions as follows:

ϕ2(t) = e
∫ t
t0
�[η2(s)]ds sin

∫ t

t0

	[η2(s)
]
dsds, ϕ3(t) = e

∫ t
t0
�[η2(s)]ds cos

∫ t

t0

	[η2(s)
]
ds (3.23)

which are oscillating if and only if condition (2.7) is satisfied.
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Proof of Theorem 2.3. Theorem 2.3 is deduced from Theorem 2.2 by choosing phase functions
as in (2.8). From

2�[η21
]
= 2�[η13

]
= �[η23

]
= 2�[a(t)], (3.24)

condition (2.1) turns to condition (2.9). From (2.4), we get that

G(t) = 2a3(t), η1 + η2 + η3 +
G′(t)
G(t)

= 0. (3.25)

Since in conditions (2.2)-(2.3) the function G(t) appears in denominator we should assume
that G(t)/= 0, or a(t)/= 0. By direct calculations, we get that

2η13Char2
G

=
1
a2

⎛

⎜⎜⎜
⎝

2I2 + 3I1
(
a − a′

a

)
+

(
a−1(t)e

∫ t
t0
a(s)ds

)′′′

a−1(t)e
∫ t
t0
a(s)ds

⎞

⎟⎟⎟
⎠

,

η13(Char2 − Char3)
G

=
3I1(t)
a(t)

+ a(t) + 4
(
a−1/2

)′′
a−1/2.

(3.26)

In view of

2η13
G

=
η23
G

=
4η2

13

η23G
=

1
a2

, (3.27)

conditions (2.2) and (2.3) of Theorem 2.2 turn to (2.10) and (2.11).
Further the asymptotic solution

e
∫ t
t0
η2(s)ds + e

∫ t
t0
η3(s)ds =

2
a(t)

e
∫ t
t0
�[a(s)]ds cos

∫ t

t0

	[a(s)]ds (3.28)

is oscillating if and only if (2.12) is satisfied. Indeed, the solution corresponding to the

asymptotic solution e
∫ t
t0
η1ds = C/a(t) is non-oscillatory (1/a(t) does not have zeros; otherwise

a(t) ∈ C3(t0,∞) is undefined at some points).

Proof of Corollaries 2.4 and 2.6. We deduce Corollaries 2.4 and 2.6 from Theorem 2.3 by the
special choice of function a(t) as follows:

a(t) =
λ

t lnγ(t)
, λ /= 0. (3.29)
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From (2.10) and (2.11) we get that

t lnγ(t)

∣
∣
∣
∣
∣
3I1 +

γ
(
γ − 2

)

t2 ln2(t)
+

λ2

t2 ln2γ(t)
− 1
t2

∣
∣
∣
∣
∣
∈ L1(t0,∞),

rlt2 ln2γ(t)

∣∣
∣
∣
∣
2I2 +

3I1
t

(
1 +

γ

ln(t)
+

λ

lnγ(t)

)
+
γ
(
γ − 1

)(
γ − 2

)

t3 ln3(t)

+
λγ
(
γ − 2

)

t3 ln2+γ(t)
− γ

t3 ln(t)
+

λ3

t3 ln3γ(t)
− λ

t3 lnγ(t)

∣
∣
∣
∣∣
∈ L1(t0,∞),

(3.30)

or in the case γ = 0

∫∞

t0

t

(

3I1(t) +
λ2 − 1
t2

)

dt < ∞,

∫∞

t0

t2
∣∣∣∣∣
2I2(t) +

3(1 + λ)I1(t)
t

+
λ
(
λ2 − 1

)

t3

∣∣∣∣∣
dt < ∞,

(3.31)

which is equivalent to (2.13).
Further from (2.12)we get condition (2.14) in the case γ = 0:

∫∞

t0

	[λ]dt
t lnγ(t)

= ∞, or 	[λ] > 0, γ = 0. (3.32)

The proof of Corollary 2.6 is followed from (3.30) to (3.27) by choosing γ = −λ = 1.

Proof of Theorem 2.8. Theorem 2.8 is followed from Theorem 2.3. Indeed from M(t) ≡ 0, t >
t0, a(t) = i

√
3I1(t), we have 2I2(t) = −a′(t)a(t). Condition (2.10) turns to (2.18) as follows:

3I1 + a2

a
+ 4
(
a−1/2

)′′
a−1/2 = Q(t) ∈ L1(t0,∞), Q(t) = 4

(
a−1/2

)′′
a−1/2, (3.33)

and condition (2.11) turns to (2.19) since

1
a2

(
2I2 + 3I1

(
a − a′(t)

a

)
+
v′′′(t)
v

)
=

v′′′(t)
a2v

− a =
(
Q(t)
2a(t)

)′
+Q(t), (3.34)

where

v(t) = a−1(t)e
∫ t
t0
a(s)ds

, Q(t) = 4
(
a−1/2

)′′
a−1/2 = 4

(
I−1/41

)′′
I−1/41 . (3.35)
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Proof of Theorem 2.9. Let choose the phase functions ηj(t) as in (2.21). We deduce Theorem 2.9
from Theorem 2.2. By calculations

G(t) =

√
3
(
3I31 + 3d2 + 3dI ′1 − 2d′I1

)

id
= −i3

√
3d

[

1 +
I31
d2

+
I1
3d

(

ln
I31
d2

)′]

, (3.36)

η12 =
3
2

(
I1
d1/3

− d1/3
)
− i

√
3

2

(
I1
d1/3

+ d1/3
)
, η23 = i

√
3
(

I1
d1/3

+ d1/3
)
, (3.37)

to deduce dichotomy conditions (2.1) from (2.24), it is enough to show that

�[η2 − η3
]
> 0, if (I1,M) ∈ R1,

�[η2 − η3
] ≤ 0, if (I1,M) ∈ R2 \ R1,

�[η1 − η2
]
> 0, if (I1,M) ∈ R2,

�[η1 − η2
] ≤ 0, if (I1,M) ∈ R2 \ R2.

(3.38)

Case 1 (I31(t) +M2(t) ≥ 0, t > t0). In this case d and η1 are real, η2,3 are complex conjugate and
from (3.37)

�[η1 − η2
]
= �[η1 − η3

]
=

3
2

(
I1
d1/3

− d1/3
)
, �[η2 − η3

]
= 0. (3.39)

If I1 < 0,M ≤ 0, then d = M +
√
M2 + I31 < M + |M| = 0, �[η1 − η2] > 0.

If I1 ≤ 0,M > 0, then d = M +
√
M2 + I31 ≥ M > 0, �[η1 − η2] < 0.

Otherwise if I1 > 0, then d > M +
√
M2 ≥ 0, d1/3 > 0 and

d2 =
(
M +

√
M2 + I31

)2

= I31 + 2M2

⎛

⎝1 +

√

1 +
I31
M2

⎞

⎠ ≥ I31 , d2/3 ≥ I1 > 0,

�[η1 − η2
]
=

3
2

(
I1
d1/3

− d1/3
)

≤ 0.

(3.40)

Further condition (2.7) turns to (2.25) since 	[η2] = (1/2)	[η2 − η3].
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Case 2 (I31(t) +M2(t) < 0, t > t0). In this case d = M + i
√
−I31 −M2 is complex valued, η1,2,3, G

are real. In view of

dd =
(
M +

√
M2 + I31

)(
M −

√
M2 + I31

)
= −I31 ,

d1/3
(
d
)1/3

= −I1, d
1/3

= − I1
d1/3

,
(
re−ia

)1/3
= r1/3eia/3, d

1/3
= d1/3,

(3.41)

we get that

η2 = eiπ/3d1/3 − e−iπ/3I1
d1/3

− G′(t)
3G(t)

= 2�
[
eiπ/3d1/3

]
− G′(t)
3G(t)

, 	[η2
]
= 0,

η1 = −2�
[
d1/3
]
− G′(t)
3G(t)

, η3 = 2�
[
e−iπ/3d1/3

]
− G′(t)
3G(t)

.

(3.42)

Condition (2.25) fails in this case: �[d1/3 − d
1/3

] = 0 and (1.2) is non-oscillatory. Further

d = M + i
√
−M2 − I31 = reia, tan(a) =

√
−M2 − I31

M
, a ∈

(
−π
2
,
π

2

)
,

η1 − η2 =
√
3
(
	
[
d1/3
]
−
√
3�
[
d1/3
])

= 3	
[
d1/3
]( 1√

3
− cot

(
a

3

))
,

η1 − η3 = −
√
3
(
	
[
d1/3
]
+
√
3�
[
d1/3
])

= −3	
[
d1/3
]( 1√

3
+ cot

(
a

3

))
,

η2 − η3 = −2
√
3	
[
d1/3
]
= −2

√
3r1/3 sin

(
a

3

)
.

(3.43)

IfM > 0 then tan(a) > 0, 0 < a < π/2, a = tan−1
√
−1 − (I31/M

2), and we get the following:

0 <
a

3
<

π

6
, sin

(
a

3

)
> 0, cos

(
a

3

)
> 0, −∞ < 1 +

I31
M2

≤ 0,

	
[
d1/3
]
= r1/3 sin

(
a

3

)
> 0, cot

(
a

3

)
>

1√
3
,

η1 − η2 < 0, η1 − η3 < 0, η2 − η3 < 0.

(3.44)
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IfM < 0 then tan(a) < 0, −π/2 < a < 0, a = −tan−1
√
−1 − (I31/M

2), and we get the following:

−π
6

<
a

3
< 0, sin

(
a

3

)
< 0, cos

(
a

3

)
> 0,

	
[
d1/3
]
< 0, cot

(
a

3

)
< − 1√

3
,

η1 − η2 < 0, η1 − η3 < 0, η2 − η3 > 0.

(3.45)

Proof of Theorem 2.11. By taking I1(t) ≡ 0, we get the following:

d(t) = 2I2(t), G(t) = −6i
√
3I2(t), η1(t) = −d1/3 − G′

3G
= −d1/3 − d′

3d

η2,3(t) = e±iπ/3d1/3 − d′

3d
=

1 ± i
√
3

2
d1/3 − d′

3d
, 	[η2,3

]
= ±

√
3
2

d1/3,

(3.46)

and Theorem 2.9 turns to Theorem 2.11.
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