
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 495487, 23 pages
doi:10.1155/2012/495487

Research Article
On a Functional Equation Associated with
(a, k)-Regularized Resolvent Families

Carlos Lizama1 and Felipe Poblete2
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Let a ∈ L1
loc(R+) and k ∈ C(R+) be given. In this paper, we study the functional equation R(s)(a ∗

R)(t) − (a ∗R)(s)R(t) = k(s)(a ∗R)(t) − k(t)(a ∗R)(s), for bounded operator valued functions R(t)
defined on the positive real line R+. We show that, under some natural assumptions on a(·) and
k(·), every solution of the above mentioned functional equation gives rise to a commutative (a, k)-
resolvent family R(t) generated by Ax = limt→ 0+ (R(t)x − k(t)x/(a ∗ k)(t)) defined on the domain
D(A) := {x ∈ X : limt→ 0+ (R(t)x − k(t)x/(a ∗ k)(t)) exists in X} and, conversely, that each (a, k)-
resolvent family R(t) satisfy the above mentioned functional equation. In particular, our study
produces new functional equations that characterize semigroups, cosine operator families, and a
class of operator families in between them that, in turn, are in one to one correspondence with the
well-posedness of abstract fractional Cauchy problems.

1. Introduction

Functional equations arise in most parts of mathematics. Well-known examples are Cauchy’s
equation, the functional equations for the Riemann zeta function, the equation for entropy,
and numerous equations in combinatorics. Still other examples arise in probability theory,
geometry, and operator theory [1].

The theory of functional equations for bounded operators emerged after the book of
Hille and Phillips [2] in 1957. A strongly continuous semigroup T(t) of bounded and linear
operators on a Banach space X is defined by means of Abel’s functional equation:

T(t)T(s) = T(t + s), t ≥ 0,

T(0) = I,
(1.1)
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which, in turn, characterizes the well-posedness of the abstract Cauchy problem of first order:

u′(t) = Au(t), t ≥ 0,

u(0) = u0,
(1.2)

whereAx = limt→ 0+(T(t)x−x/t) is defined on the domainD(A) := {x ∈ X : limt→ 0+((T(t)x−
x)/t) exists in X}. In 1966, Sova [3] introduces the concept of strongly continuous cosine
operator functions, C(t), by means of D’Alembert’s functional equation:

C(t + s) + C(t − s) = 2C(t)C(s), t, s ∈ R,

C(0) = I,
(1.3)

which characterizes the well-posedness of the abstract Cauchy problem of second order:

u′′(t) = Au(t), t ≥ 0,

u(0) = u0,

u′(0) = u1,

(1.4)

where now Ax = 2 limt→ 0+((C(t)x − x)/t2) is defined on D(A) := {x ∈ X : limt→ 0+((C(t)x −
x)/t2) exists in X}. Let A be a linear operator defined on a Banach space X. In [4] Prüss
proved that the Volterra equation of scalar type:

u(t) =
∫ t

0
a(t − s)Au(s)ds + f(t) (1.5)

is well posed if and only if it admits a resolvent family, that is, a strongly continuous family
S(t) of bounded and linear operators which commutes with A and satisfies the so-called
resolvent equation [4, Definition 1.3]:

S(t)x = x +
∫ t

0
a(t − s)AS(s)x ds, t ≥ 0, x ∈ X. (1.6)

Resolvent families of operators have been known for a long time. They have many
applications in the study of abstract differential and integral equations. However, at present
there are associated functional equations for resolvent families only in special cases of the
scalar kernel a(t): for example a(t) = 1 or a(t) = t, which corresponds to the well-known cases
of strongly continuous semigroups and cosine operator functions, respectively. Recently,
Peng and Li in [5] have proposed an interesting functional equation for resolvent families
in case a(t) = gα(t) := tα−1/Γ(α) which works for 0 < α < 1 (see also [6] for the scalar case). A
functional equation for the kernel a(t) = gα(t) in case α > 0 has been proposed by Chen and
Li in [7] (see [7, Definition 3.1 and Theorem 3.4]).
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In this paper, we will be concerned with a commutative one parameter family
of strongly continuous operators Ra,k(t), depending on two scalar kernels a(t) and k(t),
satisfying Ra,k(0) = k(0)I and the functional equation:

Ra,k(s)(a ∗ Ra,k)(t) − (a ∗ Ra,k)(s)Ra,k(t) = k(s)(a ∗ Ra,k)(t) − k(t)(a ∗ Ra,k)(s), t, s ≥ 0.

(1.7)

In case k(t) ≡ 1 and a(t) positive, one of our main results in this paper shows that the
functional equation (1.7) characterizes a resolvent family and hence the well-posedness of
the Volterra equation (1.5). Moreover, we have the representation:

Ax = lim
t→ 0+

Ra,1(t)x − x∫ t
0 a(s)ds

, (1.8)

for all x ∈ D(A) := {x ∈ X : limt→ 0+((Ra,1(t)x−x)/(1∗a)(t)) exists in X}, which includes the
case of semigroups, cosine operator functions, and resolvent families for a(t) = gα(t), α > 0.
Our discussion will not be restricted to resolvent families; the more general case of (a, k)-
regularized resolvent families [8] is included in our results. Indeed, in such case we will see
that in addition to (1.7) the condition:

sup
t>0

∫ t
0|a(s)|ds∣∣∣∫ t0 k(t − s)a(s)ds

∣∣∣ < +∞ (1.9)

is necessary to characterize an (a, k)-regularized resolvent family. A remarkable consequence
is that the domain of A must be necessarily dense on the Banach space X. In particular,
setting k(t) ≡ 1 we obtain a new (but equivalent) functional equation for strongly continuous
semigroups (i.e., the case a(t) ≡ 1) and strongly continuous cosine operator functions (i.e.,
a(t) ≡ t), respectively. On the other hand, we prove that the condition:

lim
s→ 0+

(a ∗ a ∗ k)(s)
(a ∗ k)(s) = 0, (1.10)

that include, for example, the theory of α-times integrated semigroups, is also necessary to
characterize an (a, k)-regularized resolvent family. However, the immediate denseness of
D(A) is not automatically obtained in such case, in concordance with the theory of integrated
semigroups [9]. We remark that our results recover and extend Chen and Li [7, Theorem 3.4]
and [7, Theorem 3.12], where the case k(t) = gβ+1(t), a(t) = gα(t), α > 0, β ≥ 0 was considered
(see [7, Definition 3.7]). In particular, our formula extend the functional equations stated
recently by Peng and Li [5, 6] (see Remark 3.11 below).

2. Preliminaries

In this section we review some of the main results in the literature about the theory of (a, k)-
regularized resolvent families. This notion was introduced in [8] and studied, as well as
extended, in subsequent papers (see e.g., [10–16]).
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Let us fix some notations. From now on, we take X to be a complex Banach space
with norm ‖ · ‖. We denote by B(X) the Banach algebra of all bounded linear operators on
X endowed with the operator norm, which again is denoted by ‖ · ‖. The identity operator
on X is denoted by I ∈ B(X), and R+ denotes the interval [0,∞). For a closed operator A,
we denote by σ(A), σp(A), σr(A), and σa(A) the spectrum, the point spectrum, the residual
spectrum, and the approximate spectrum of A, respectively.

Definition 2.1. Let k ∈ C(R+), k /= 0, and a ∈ L1
loc(R+), a /= 0 be given. Assume thatA is a linear

operator with domain D(A). A strongly continuous family {R(t)}t≥0 ⊂ B(X) is called an
(a, k)-regularized resolvent family on X having A as a generator if the following properties
hold:

(i) R(0) = k(0)I;

(ii) R(t)x ∈ D(A) and R(t)Ax = AR(t)x for all x ∈ D(A) and t ≥ 0;

(iii) R(t)x = k(t)x +
∫ t
0 a(t − s)AR(s)x ds, t ≥ 0, x ∈ D(A).

We emphasize that the main properties of this theory admit very clear and simple
proofs, and what is more interesting, it is easy to associate a suitable regularized resolvent
family to a wide class of linear evolution equations, including, for example, fractional abstract
differential equations (see [17]).

Assume that a and k are both positive and one of them is nondecreasing. Let {R(t)}t≥0
be an (a, k)-regularized resolvent family with generator A such that

‖R(t)‖ ≤ Mk(t), t ≥ 0, (2.1)

for some constant M > 0. Then we have

Ax = lim
t→ 0+

R(t)x − k(t)x
(a ∗ k)(t) , x ∈ D(A). (2.2)

Here we denote (a ∗ k)(t) :=
∫ t
0 k(t − s)a(s)ds the finite convolution between a and k. The

above representation ofA in terms ofR(t)was established in [16] (see also [15]). We note that
there is a one-to-one correspondence between (a, k)-regularized resolvent families and their
generators. Moreover, we can prove that an (a, k)-regularized resolvent family is uniformly
continuous if and only if its generator is a bounded linear operator [8].

We say that {R(t)}t≥0 is of type (M,ω) if there exist constants M ≥ 0 and ω ∈ R such
that

‖R(t)‖ ≤ Meωt ∀ t ≥ 0. (2.3)

The next result corresponds to the generation theorem for the theory. We assume that the
Laplace transform for a(t) and k(t) exists for all λ > ω.

Theorem 2.2 (see [8]). Let A be a closed linear densely defined operator on X. Then {R(t)}t≥0 is
(a, k)-regularized resolvent family of type (M,ω) if and only if the following conditions hold:

(1) â(λ)/= 0 and 1/â(λ) ∈ ρ(A) for all λ > ω,
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(2) H(λ) := k̂(λ)(I − â(λ)A)−1 satisfies the estimates:

∥∥∥H(n)(λ)
∥∥∥ ≤ Mn!

(λ −ω)n+1
, λ > ω, n ∈ N0. (2.4)

In the case where k(t) ≡ 1, Theorem 2.2 is well known. In fact, if a(t) ≡ 1, then it is
just the Hille-Yosida theorem; if a(t) ≡ t, then it is the generation theorem for generators of
cosine functions due to Sova and Fattorini; for arbitrary a(t), it is the generation theorem due
essentially to Prüss [4]. In the case where k(t) = tn/n! and a(t) ≡ 1, it is the generation
theorem for n-times integrated semigroups [18]; if k(t) = tn/n! and a(t) is arbitrary, it
corresponds to the generation theorem for integrated solutions of Volterra equations due to
Arendt and Kellermann [19].

Although the generation theorem characterizes all generators of (a, k)-regularized
resolvent families, it is difficult to verify the estimate of all derivatives of the operator H(λ)
in concrete applications. Thus, one tries to build up the operator from simpler ones using
perturbation techniques. The following is the main result available until now. It corresponds
to the extension of the Miyadera-Voigt perturbation theorem in the theory of C0 semigroups.
In this theorem, the perturbation B is bounded only from the domain of the generator D(A),
endowed with the graph norm ‖x‖A := ‖x‖ + ‖Ax‖.

Theorem 2.3 (see [16]). Let A be a closed operator on X. Assume that A generates an (a, k)-
regularized resolvent family {R(t)}t≥0 of type (M,ω) and suppose that

(i) there exists b ∈ L1
loc(R+) such that (k ∗ b)(t) = a(t) for all t ≥ 0;

(ii) there exists constants μ > ω and γ ∈ [0, 1) such that

∫∞

0
e−μr
∥∥∥∥B
∫ r

0
b(r − s)R(s)x ds

∥∥∥∥dr ≤ γ‖x‖ ∀ x ∈ D(A). (2.5)

Then A + B generates an (a, k)-regularized resolvent family {R(t)}t≥0 on X such that ‖R(t)‖ ≤
(M/(1 − γ))eμt. In addition

R(t)x = R(t)x +
∫ t

0
R(t − r)B

∫ r

0
b(r − s)R(s)x dsdr, x ∈ X. (2.6)

The next result shows, roughly speaking, the continuous dependence of an (a, k)-
regularized resolvent family R(t) on its generatorA. More precisely, the theorem below show
that the convergence, in an appropriate sense, of a sequence of generators is equivalent to the
convergence of the corresponding (a, k)-regularized resolvent families.

Theorem 2.4 (see [20]). Let {kn}n≥0 ∈ L1
loc(R

+) and {an}n≥0 ∈ ACloc(R+) be of type (M,ω), ω ≥
0, such that ân(λ)/= 0 for λ > ω and

∫∞
0 e−ωs|a′

n(s)|ds < ∞. Let An be closed and linear operators in
X such thatA0 is densely defined. For each fixed n ∈ N0, assume that Rn(t) is an (an, kn)-regularized
resolvent family generated byAn inX, and that there exists constantsM > 0 andω ∈ R, independent
of n, such that

‖Rn(t)‖ ≤ Meωt, ∀ t ≥ 0. (2.7)
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Suppose also an(t) → a0(t) and kn(t) → k0(t) as n → ∞. Then the following statements are equiv-
alent:

(1) limn→∞kn(λ)(I − an(λ)An)
−1 = k0(λ)(I − a0(λ)A0)

−1 for all λ ≥ ω;

(2) limn→∞Rn(t)x = R0(t)x for all x ∈ X, t ≥ 0. Moreover the convergence is uniform in t on
every compact subset of R

+.

Note that the above theorem is the extension of the Trotter-Kato theorem for the theory
of C0 semigroups, which follows in case a(t) ≡ k(t) ≡ 1.

In our next result, of concern are ergodic type theorems. Here the contributions to the
theory are contained in [14, 21]. We below cite only a simple, but typical, result.

Theorem 2.5. Let A be the generator of an (a, k)-regularized resolvent family {R(t)}t≥0 such that

‖R(t)‖ ≤ Mk(t) ∀ t ≥ 0. (2.8)

Suppose that

(i) a(t) is positive, and k(t) is nondecreasing and positive as well;

(ii) limt→∞(k(t)/(k ∗ a)(t)) = 0;

(iii) supt>0(k(t)(1 ∗ k)(t)/(k ∗ a)(t)) < ∞;

(iv) limt→∞((a ∗ a ∗ k)(t)/(a ∗ k)(t)) = ∞.

Define

Atx :=
1

k ∗ a(t)

∫ t

0
a(t − s)R(s)x ds; x ∈ X, t > 0, (2.9)

then the following holds.

(1) The mapping Px := limt→∞Atx is a bounded linear projection with Ran(P) = Ker(A),
Ker(P) = Ran(A), and

D(P) = Ker(A) ⊕ Ran(A). (2.10)

(2) For 0 < β ≤ 1 and x ∈ Ker(A) ⊕ Ran(A), one has

‖Atx − Px‖ = O

([
k(t)

a ∗ k(t)

]β)
as |t| −→ ∞. (2.11)

(3) If X is reflexive then Ker(A) ⊕ Ran(A) = X.

Note that in the case k(t) = tβ/Γ(β + 1), a(t) = (tα−1/Γ(α)), α > 0, β ≥ 0 the conditions
(i)–(iv) are automatically satisfied.
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In the next result, we are interested in the relation between the spectrum of A and the
spectrum of each one of the operators R(t), t ≥ 0. We denote by s(t, λ) the unique solution of
the convolution equation:

s(t, λ) := a(t) + λ

∫ t

0
a(t − τ)s(τ, λ)dτ. (2.12)

We also define

r(t, λ) := k(t) + λ

∫ t

0
s(t − τ, λ)k(τ)dτ. (2.13)

From a purely formal point of view one would expect the relation σ(R(t)) = r(t, σ(A)). This,
however, is not true in general. The following result corresponds to the inclusion theorem.

Theorem 2.6 (see [15]). Let A be a closed operator on X and let R(t) be an (a, k)-regularized
resolvent family with generator A. Then

(i) σ(R(t)) ⊃ r(t, σ(A)), t ≥ 0,

(ii) σp(R(t)) ⊃ r(t, σp(A)), t ≥ 0,

(iii) If A is densely defined then σr(R(t)) ⊃ r(t, σr(A)), t ≥ 0,

(iv) σa(R(t)) ⊃ r(t, σa(A)), t ≥ 0.

Remark 2.7. In the case k(t) = tβ/Γ(β + 1), β ≥ 0, a(t) = (tα−1/Γ(α)), α > 0, we have that

rα,β(t, λ) = tβEα,β+1(λtα), (2.14)

where Eα,β+1 denotes the Mittag-Leffler function, defined as follows:

Eα,β+1(z) :=
∞∑
n=0

zn

Γ
(
nα + β + 1

) , α > 0, β > −1. (2.15)

In particular: α = 1, β = 0 gives E1,1(z) = ez and then r1,0(t, λ) = eλt. Here R(t) is the C0

semigroup generated by A and therefore we recover the well known inclusion:

eσ(A)t ⊂ σ(R(t)), t > 0. (2.16)

If α = 2, β = 0 we have E2,1(z2) = cosh(z) and then r1,0(t, λ) = cosh
√
(λ)t. Here we recover

the inclusion [22]:

cosh
√
σ(A)t ⊂ σ(R(t)), t > 0. (2.17)

In general, let α > 0 and suppose that the fractional Cauchy problem:

Dα
t u(t) = Au(t), t > 0 (2.18)
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is well posed, where Dα
t denotes Caputo’s fractional derivative. Then A generates an (α, 0)-

regularized resolvent family Rα(t) and we conclude that

Eα,1(σ(A)tα) ⊂ σ(Rα(t)), t > 0. (2.19)

This result was first proved by Li and Zheng [23].

Recent results on the theory of (a, k)-regularized resolvent families include conditions
under which the complex inversion formula for the Laplace transform holds for (a, k)-
regularized families [24] and Kallman-Rota-type inequalities [13]. However, following the
analogy with the theories of C0 semigroups and cosine operator functions, many problems
are still to be solved.

3. A Functional Equation

Let X be a complex Banach space and f ∈ L1
loc(R

+, X). The Laplace integral is defined by

f̂(λ) :=
∫∞

0
e−λtf(t)dt := lim

τ →∞

∫ τ

0
e−λtf(t)dt. (3.1)

Also define abs(f) := inf{Reλ : f̂(λ) exist}. Recall that a function f is called Laplace trans-
formable if abs(f) < ∞. Note that a locally Bochner integrable function f is Laplace trans-
formable if and only if its antiderivative F(t) =

∫ t
0 f(s)ds is exponentially bounded, see [9,

Section 1.4]. The following theorem is the main result in this section.

Theorem 3.1. Let {R(t)}t≥0 ⊂ B(X) be an (a, k)-regularized resolvent family generated by a closed
operator A such that ρ(A)/= ∅. Then, for all t, s ≥ 0 one has R(t)R(s) = R(s)R(t), and the functional
equation:

(FE) R(s)(a ∗ R)(t) − (a ∗ R)(s)R(t) = k(s)(a ∗ R)(t) − k(t)(a ∗ R)(s) (3.2)

holds.

Proof. Note that by [8, Lemma 2.2] we have that for all x ∈ X, (a ∗ R)(t)x ∈ D(A) and

R(t)x = k(t)x +A(a ∗ R)(t)x. (3.3)

Hence

(a ∗ R)(s)R(t)x = (a ∗ R)(s)k(t)x + (a ∗ R)(s)A(a ∗ R)(t)x

= (a ∗ R)(s)k(t)x +A(a ∗ R)(s)(a ∗ R)(t)x

= (a ∗ R)(s)k(t)x + R(s)(a ∗ R)(t)x − k(s)(a ∗ R)(t)x,

(3.4)

where we used the item (ii) in Definition 2.1 and (3.3). This shows that (FE) holds for all
x ∈ X and t, s ≥ 0.
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Nowwe show that R(t)R(s) = R(s)R(t) for all t, s ≥ 0. Let F(t) := R(t)R(s) andH(t) :=
R(s)R(t) then for all x ∈ D(A)

F(t)x = k(t)R(s)x + (a ∗ F)(t)Ax,

H(t)x = k(t)R(s)x + (a ∗H)(t)Ax,
(3.5)

where we used Definition 2.1, the fact thatA is closed and R(t)Ax = AR(t)x for all x ∈ D(A),
t ≥ 0. It then follows that W(t) := F(t) −H(t) satisfies

W(t)x = a ∗W(t)Ax ∀ x ∈ D(A). (3.6)

Note that by (ii) in the Definition 2.1, W(t)x ∈ D(A) for all x ∈ D(A) and hence by (iii) we
obtain

k ∗W(t)x = (R − a ∗ RA) ∗W(t)x = R ∗ (W − a ∗WA)(t)x = 0. (3.7)

Now let λ ∈ ρ(A), y ∈ X and define x = (λ −A)−1y. Then (λ −A)k ∗W(t)x = 0 implies that
k ∗W(t)y = 0 for each y ∈ X. Therefore, by Titchmarsh’s Theorem, we obtain that W(t)x = 0
for each x ∈ X which ends the proof.

Remark 3.2. Assume that R(t) is Laplace transformable. We note that an application of the
double Laplace transform to (FE) gives the following identity:

R̂(λ)R̂
(
μ
)
=

k̂(λ)
â(λ)

1
(1/â(λ)) −

(
1/â
(
μ
)) R̂(μ) − k̂

(
μ
)

â
(
μ
) 1
(1/â(λ)) −

(
1/â
(
μ
)) R̂(λ). (3.8)

Let S, T : R
+ → B(X) be strongly continuous functions satisfying ‖S(t)‖ ≤ Meωt and

‖T(t)‖ ≤ Meωt (t ≥ 0) for some ω ∈ R, M ≥ 0 (for simplicity we may assume the same
constants). For h ∈ R we will denote Sh the translation Sh(u) := S(u + h)χ[−h,+∞)(u) for u ∈ R

and

(T ∗ S)(t) :=
∫ t

0
T(t − s)S(s)ds, t > 0, (3.9)

the convolution product between T and S. We will need the following result.
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Lemma 3.3 (see Lemma 4.1, [25]). Let S, T : [0,∞) → B(X) be strongly continuous functions
satisfying the assumptions above. For λ > μ > ω, the following identities are valid:

Ŝ(λ)T̂
(
μ
)
=
∫∞

0
e−λt
∫∞

0
e−μsS(t)T(s)dsdt, (3.10)

1
μ − λ

(
Ŝ(λ) − Ŝ

(
μ
))

=
∫∞

0
e−λt
∫∞

0
e−μsS(t + s)dsdt, (3.11)

1
μ − λ

T̂
(
μ
)[
Ŝ(λ) − Ŝ

(
μ
)]

=
∫∞

0
e−λt
∫∞

0
e−μs
(
T ∗ St)(s)dsdt. (3.12)

Defining S(t) = S(−t) for t < 0 one has,

1
μ + λ

(
Ŝ(λ) + Ŝ

(
μ
))

=
∫∞

0
e−λt
∫∞

0
e−μsS(s − t)dsdt, λ + μ > 0, (3.13)

1
μ + λ

T̂
(
μ
)(

Ŝ(λ) + Ŝ
(
μ
))

=
∫∞

0
e−λt
∫∞

0
e−μs
(
T ∗ S−t)(s)dsdt, λ + μ > 0, (3.14)

and defining S(t) := −S(−t) for t < 0 one obtains

−1
μ + λ

T̂
(
μ
)(

Ŝ(λ) − Ŝ
(
μ
))

=
∫∞

0
e−λt
∫∞

0
e−μs
(
T ∗ S−t)(s)dsdt, λ + μ > 0. (3.15)

In what follows, we restate and analyze consequences of Theorem 3.1 in several
particular cases. They are important because they include different theories of strongly
continuous operators and, as consequence, involve the well-posedness of wide classes of
abstract evolution equations.

Example 3.4 (semigroups). k(t) ≡ a(t) ≡ 1. In this case we have that R(t) corresponds to a C0

semigroup and the associated functional equation (FE) reads

R(s)
∫ t

0
R(τ)dτ − R(t)

∫s

0
R(τ)dτ =

∫ t

0
R(τ)dτ −

∫s

0
R(τ)dτ, t, s ≥ 0. (3.16)

Corollary 3.5. Assume that R(t) is Laplace transformable. Then (3.16) is equivalent to Abel’s
functional equation.

Proof. By (3.11)we have the identity:

∫∞

0

∫∞

0
e−λt−μsR(t + s)dsdt =

R̂(λ) − R̂
(
μ
)

μ − λ
. (3.17)

Hence, applying the double Laplace transform to the Abel’s functional equation:

R(t + s) = R(t)R(s), t, s ≥ 0, (3.18)
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we obtain

R̂(λ)R̂
(
μ
)
=

R̂(λ) − R̂
(
μ
)

μ − λ
, (3.19)

which is equivalent to

1
μ
R̂(λ)R̂

(
μ
)
− 1
λ
R̂
(
μ
)
R̂(λ) =

1
λμ

R̂
(
μ
)
− 1
λμ

R̂(λ). (3.20)

Hence, inversion of the double Laplace transform to the above identity gives (3.16). The
converse is analogue.

Example 3.6 (cosine operator families). k(t) ≡ 1, a(t) = t. In this case we have that R(t)
corresponds to a cosine operator family [9, Section 3.14] and the associated functional
equation (FE) reads

R(s)
∫ t

0
(t − τ)R(τ)dτ − R(t)

∫ s

0
(s − τ)R(τ)dτ

=
∫ t

0
(t − τ)R(τ)dτ −

∫s

0
(s − τ)R(τ)dτ.

(3.21)

Corollary 3.7. Assume that R(t) is Laplace transformable. Then (3.21) is equivalent to the D’Alem-
bert’s functional equation.

Proof. By (3.13)we have the identity:

∫∞

0

∫∞

0
e−λt−μsR(t − s)dsdt =

R̂(λ) + R̂
(
μ
)

μ + λ
(3.22)

valid whenever R(t) is extended as an even function to R, which is indeed the case of cosine
operator families.

We apply the double Laplace transform to the D’Alembert’s functional equation:

R(t + s) + R(t − s) = 2R(t)R(s), t, s ≥ 0, (3.23)

and we obtain

R̂(λ) − R̂
(
μ
)

μ − λ
+
R̂(λ) + R̂

(
μ
)

μ + λ
= 2R̂(λ)R̂

(
μ
)
, (3.24)

which, after an algebraic manipulation, is equivalent to

λ

λ2 − μ2
R̂
(
μ
)
−

μ

λ2 − μ2
R̂(λ) = R̂(λ)R̂

(
μ
)
, (3.25)
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(compare with Remark 3.2 in case a(t) ≡ t and k(t) ≡ 1). The above identity is equivalent to:

R̂(λ)
1
μ2

R̂
(
μ
)
− R̂
(
μ
) 1
λ2

R̂(λ) =
1

μ2λ
R̂
(
μ
)
− 1
λ2μ

R̂(λ). (3.26)

Hence, inversion of the double Laplace transform to the above identity gives (3.21). The
converse is analogue.

Example 3.8 (sine operator family). k(t) ≡ t, a(t) = t. In this case we have that R(t) cor-
responds to a Laplace transformable sine family [9, Section 3.15] and the associated functional
equation (FE) reads:

R(s)
∫ t

0
(t − τ)R(τ)dτ − R(t)

∫s

0
(s − τ)R(τ)dτ = s

∫ t

0
(t − τ)R(τ)dτ − t

∫ s

0
(s − τ)R(τ)dτ.

(3.27)

Remark 3.9. The functional equation (3.27) is equivalent to the following:

2R(t)R(s) =
∫s

0
R(s − τ)dτ −

∫ t

0
R(t + τ)dτ +

∫ t

0
R(τ)dτ −

∫s

0
R(τ)dτ, t, s ≥ 0. (3.28)

To show this, we apply the double Laplace transform to (3.28) and then Lemma 3.3, to con-
clude that:

2R̂(t)R̂(s) = −
R̂(λ) − R̂

(
μ
)

μ
(
μ + λ

) −
R̂(λ) − R̂

(
μ
)

λ
(
μ − λ

) +
R̂(λ)
λμ

−
R̂
(
μ
)

λμ

= 2
R̂(λ) − R̂

(
μ
)

μ2 − λ2
.

(3.29)

Finally, using Remark 3.2 in case a(t) ≡ t and k(t) ≡ t we see from the last identity that (3.27)
is equivalent to (3.28). We notice that the functional equations (3.27) and (3.28) seem to be
new for the theory of sine operator functions [9].

Example 3.10 (Laplace transformable (α, β)-resolvent operators). This example recovers
Theorem 3.11 in [7]. Let k(t) = tβ/Γ(β+1); a(t) ≡ gα(t) = tα−1/Γ(α); α > 0, β ≥ 0. In this case we
have that R(t) corresponds to a Laplace transformable (gα, gβ+1)-regularized resolvent family
[7, Theorem 3.12] and the associated functional equation (FE) reads:

R(s)
∫ t

0
gα(t − τ)R(τ)dτ − R(t)

∫ s

0
gα(s − τ)R(τ)dτ

= gβ+1(s)
∫ t

0
gα(t − τ)R(τ)dτ − gβ+1(t)

∫s

0
gα(s − τ)R(τ)dτ.

(3.30)
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Note that, taking a(t) = k(t) = gα(t), α > 0 (i.e., β+1 = α) this example also includes the
concept of α-resolvent families introduced in [26], which characterizes the well-posedness of
the fractional Cauchy problem:

Dα
t u(t) = Au(t), t ≥ 0, (3.31)

whereDα
t denotes the Riemann-Liouville fractional derivative. On the other hand, the special

case k(t) ≡ 1 and a(t) = gα(t), α > 0 gives the theory of solution operators introduced by
Bazhlekova [27] for the fractional Cauchy problem (3.31) where now Dα

t denotes Caputo’s
fractional derivative instead of Riemann-Liouville fractional derivative. Note that the func-
tional equation has now the following form:

R(s)
∫ t

0
(t − τ)α−1R(τ)dτ − R(t)

∫ s

0
(s − τ)α−1R(τ)dτ

=
∫ t

0
(t − τ)α−1R(τ)dτ −

∫s

0
(s − τ)α−1R(τ)dτ,

(3.32)

for α > 0.
Observe the remarkable fact that in the scalar case, that is, X = R and A = ρ ∈ R, we

have that the Mittag-Leffler function Eα(ρtα) satisfies the functional equation (3.32), because
it is the unique solution of (3.31) with the fractional derivative considered in the sense of
Caputo. In other words, we have

Eα

(
ρsα
) ∫ t

0
(t − τ)α−1Eα

(
ρτα
)
dτ − Eα

(
ρtα
) ∫s

0
(s − τ)α−1Eα

(
ρτα
)
dτ

=
∫ t

0
(t − τ)α−1Eα

(
ρτα
)
dτ −

∫s

0
(s − τ)α−1Eα

(
ρτα
)
dτ, t, s ≥ 0,

(3.33)

for α > 0. In particular, it shows that the functional equation (3.32) is a proper generalization
of Abel’s functional equation (corresponding to the case α = 1) and D’Alembert functional
equation (corresponding to the case α = 2) since in case α = 1 we have E1(ρt) = eρt and in
case α = 2 we have E2(ρt2) = cosh(√ρt).

Remark 3.11. Suppose the family {R(t)}t≥0 of bounded linear operators of X is Laplace
transformable. Then for 0 < α < 1 the functional equation (3.32) is equivalent to the functional
equation:

∫ t+s

0

R(τ)
(t + s − τ)α

dτ −
∫ t

0

R(τ)
(t + s − τ)α

dτ −
∫s

0

R(τ)
(t + s − τ)α

dτ

= α

∫ t

0

∫ s

0

R(τ1)R(τ2)

(t + s − τ1 − τ2)1+α
dτ1dτ2

(3.34)
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proposed by Peng and Li in [5, 6]. Indeed, we apply the double Laplace transform to (3.34)
and use Lemma 3.3 to conclude that the following identity holds for 0 < α < 1:

Γ(1 − α)
μ − λ

[
R̂(λ)
λ1−α

−
R̂
(
μ
)

μ1−α

]
− Γ(1 − α)R̂(λ)

λ − μ

[
1

μ1−α − 1
λ1−α

]
−
Γ(1 − α)R̂

(
μ
)

μ − λ

[
1

λ1−α
− 1
μ1−α

]

= αΓ(1 − α)
μα − λα

λ − μ
R̂
(
μ
)
R̂(λ).

(3.35)

Then, algebraic manipulation shows that it is equivalent to the identity:

R̂
(
μ
)
R̂(λ) =

1/λ
1/λα

R̂
(
μ
)

λα − μα
−

1/μ
1/μα

R̂(λ)
λα − μα

. (3.36)

Finally, using Remark 3.2 in case a(t) = tα−1/Γ(α) and k(t) ≡ 1 we see from the last identity
and inversion of the double Laplace transform that (3.34) is equivalent to the functional
equation (3.32).

Example 3.12 (Laplace transformable k-time integrated semigroups). We take in this example
k(t) = tk/Γ(k+1), k = 0, 1, . . . and a(t) ≡ 1. We have that R(t) is a k-time integrated semigroup
and the functional equation has the form:

R(s)
∫ t

0
R(τ)dτ − R(t)

∫s

0
R(τ)dτ =

sk

k!

∫ t

0
R(τ)dτ − tk

k!

∫s

0
R(τ)dτ. (3.37)

Following the same type of arguments as in Corollaries 3.5 and 3.7 (see also the following
example), we note that the above equation is equivalent to the following well-known formula
that originally define k-time integrated semigroups (see [9, Section 3.2, Proposition 2.3.4]):

R(t)R(s) =
1

(k − 1)!

[∫ t+s

t

(s + t − r)k−1R(r)dr −
∫ s

0
(s + t − r)k−1R(r)dr

]
. (3.38)

Example 3.13 (K-convoluted semigroups). Let K be a complex valued, locally integrable
function on [0,∞). We take in this example k(t) =

∫ t
0 K(σ)dσ and a(t) ≡ 1. We have that

R(t) is an K-convoluted semigroup (see [28, Definition 2.1] and references therein) and the
functional equation has the form:

R(s)
∫ t

0
R(τ)dτ − R(t)

∫s

0
R(τ)dτ =

∫ s

0
K(σ)dσ

∫ t

0
R(τ)dτ −

∫ t

0
K(σ)dσ

∫ s

0
R(τ)dτ, (3.39)

which is equivalent with the standard definition:

R(t)R(s)x =

[∫ t+s

0
−
∫ t

0
−
∫ s

0

]
K(t + s − r)R(r)x dr. (3.40)



Abstract and Applied Analysis 15

Indeed, if R is Laplace transformable then we can apply the double Laplace transform to
(3.40) and use Lemma 3.3 to conclude that

2R̂(λ)R̂
(
μ
)
=

K̂(λ)R̂(λ) − K̂
(
μ
)
R̂
(
μ
)

μ − λ
− R̂(λ)

K̂
(
μ
)
− K̂(λ)

λ − μ
− R̂
(
μ
)K̂(λ) − R̂

(
μ
)

μ − λ

=
K̂(λ)R̂

(
μ
)
− K̂
(
μ
)
R̂(λ)

λ − μ
.

(3.41)

Then observing the formula in Remark 3.2 we note that (3.39) is equivalent to the functional
equation (3.40).

Example 3.14 (K-convoluted cosine functions). Let K be a complex valued, locally integrable
function on [0,∞). We take in this example k(t) =

∫ t
0 K(σ)dσ and a(t) = t. We have that R(t)

is an K-convoluted semigroup and the functional equation has the form:

R(s)
∫ t

0
(t − τ)R(τ)dτ − R(t)

∫ s

0
(s − τ)R(τ)dτ

=
∫s

0
K(σ)dσ

∫ t

0
(t − τ)R(τ)dτ −

∫ t

0
K(σ)dσ

∫s

0
(s − τ)R(τ)dτ,

(3.42)

in contrast with the (equivalent) recently discovered expression [25]:

2R(t)R(s) =
∫s+t

t

K(s + t − r)R(r)dr −
∫s

0
K(s + t − r)R(r)dr

+
∫ t

t−s
K(r − t + s)R(r)dr +

∫ s

0
K(r + t − s)R(r)dr,

(3.43)

where t ≥ s ≥ 0.

Example 3.15 (resolvent families). Taking k(t) ≡ 1, a ∈ L1
loc(R+)we obtain the following func-

tional equation, which seems to be the first, for the theory of integral equations of convolution
type [4]:

R(s)
∫ t

0
a(t − τ)R(τ)dτ − R(t)

∫s

0
a(s − τ)R(τ)dτ =

∫ t

0
a(t − τ)R(τ)dτ −

∫ s

0
a(s − τ)R(τ)dτ.

(3.44)
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Example 3.16 (integral resolvents). Taking a(t) = k(t) we obtain, to our knowledge, the first
functional equation for the theory of integral resolvents. Of course, it includes the scalar case
[29]:

R(s)
∫ t

0
a(t − τ)R(τ)dτ − R(t)

∫s

0
a(s − τ)R(τ)dτ

= a(s)
∫ t

0
a(t − τ)R(τ)dτ − a(t)

∫ s

0
a(s − τ)R(τ)dτ.

(3.45)

Example 3.17 (a special case). Taking k(t) = 1 and a(t) = (tα−1/Γ(α))γe−βt, γ /= 0, we obtain

R(s)
∫ t

0
(t − τ)α−1e−β(t−τ)R(τ)dτ − R(t)

∫s

0
(s − τ)α−1e−β(s−τ)R(τ)dτ

=
∫ t

0
(t − τ)α−1e−β(t−τ)R(τ)dτ −

∫s

0
(s − τ)α−1e−β(s−τ)R(τ)dτ.

(3.46)

In this example, the kernel a(t) is important in viscoelasticity theory [4].

4. Sufficient Conditions

Let k, a ∈ L1
loc(R+) be given and R : R+ → B(X) be a strongly continuous family such that

(FE) R(s)(a ∗ R)(t) − (a ∗ R)(s)R(t) = k(s)(a ∗ R)(t) − k(t)(a ∗ R)(s) (4.1)

holds for all s, t ≥ 0. In this section, we study in what extent the functional equation (FE) is
sufficient to imply that R(t) is an (a, k) resolvent family. In passing, we are going to unify and
clarify from a general perspective a basic property of the theories of semigroups and cosine
operator families: automatic denseness of the domain of the generator.

Theorem 4.1. Let k ∈ C(R+), a ∈ L1
loc(R+) be given and let R(t) ⊂ B(X) be a commutative and

strongly continuous family such that R(0) = k(0)I and satisfies (FE). Define

D(B) :=
{
x ∈ X : lim

t→ 0+

R(t)x − k(t)x
(a ∗ k)(t) exist

}
, (4.2)

Bx := lim
t→ 0+

R(t)x − k(t)x
(a ∗ k)(t) x ∈ D(B) (4.3)

and suppose the following condition:

sup
t>0

∫ t
0|a(s)|ds
|a ∗ k(t)| < +∞. (4.4)

Then R(t) is an (a, k)-regularized resolvent family with generator B. Moreover, B is closed andD(B)
is dense in X.
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Proof. Since R(0) = k(0)I, we have to prove conditions (ii) and (iii) from Definition 2.1. Fix
x ∈ D(B) and t ≥ 0. For s ≥ 0 we have from the commutativity of the family R(t) that

R(s)R(t)x − k(s)R(t)x
a ∗ k(s) =

R(t)(R(s)x − k(s)x)
a ∗ k(s) . (4.5)

Since R(t) is bounded, by definition of B we have that

lim
s→ 0+

R(t)(R(s)x − k(s)x)
a ∗ k(s) (4.6)

exists and equals to R(t)Bx. Then (4.5) implies that R(t)x ∈ D(B) and BR(t)x = R(t)Bx for
all t ≥ 0. It proves condition (ii) in Definition 2.1. In order to show condition (iii), let x ∈ X be
given and note that by (4.4) we have that

∥∥∥∥a ∗ R(s)x
a ∗ k(s) − x

∥∥∥∥ ≤ 1
|a ∗ k(s)|

∫s

0

∣∣a(s − μ
)∣∣∥∥R(μ)x − k

(
μ
)
x
∥∥dμ

≤ 1
|a ∗ k(s)|

∫s

0

∣∣a(s − μ
)∣∣dμ sup

μ∈[0,s]

∥∥R(μ)x − k
(
μ
)
x
∥∥ −→ 0 as s −→ 0+.

(4.7)

It follows from (4.1) and (4.7) that

R(s)(a ∗ R)(t)x − k(s)(a ∗ R)(t)x
a ∗ k(s) =

(a ∗ R(s))(R(t)x − k(t)x)
a ∗ k(s) −→ R(t)x − k(t)x, (4.8)

as s → 0+ for all x ∈ X. Then, for all x ∈ X and t ≥ 0, (a ∗ R)(t)x ∈ D(B) and

B(a ∗ R)(t)x = R(t)x − k(t)x. (4.9)

Now let x ∈ D(B). Note that (a ∗R)(t)x ∈ D(B) and hence by (4.3) and the commutativity of
R(t), we have

B(a ∗ R)(t)x = lim
s→ 0+

R(s)(a ∗ R)(t)x − k(s)(a ∗ R)(t)x
a ∗ k(s)

= lim
s→ 0+

(a ∗ R)(t) [R(s)x − k(s)x]
a ∗ k(s)

= (a ∗ R)(t)Bx.

(4.10)

It then follows from (4.9) and (4.10) that for all x ∈ D(B),

R(t)x = k(t)x + B(a ∗ R)(t)x = k(t)x + (a ∗ R)(t)Bx. (4.11)
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It shows (iii) in Definition 2.1 and hence that R(t) is an (a, k)-regularized resolvent family
generated by B.

We now show closedness. Let (xn) ∈ D(B) be a sequence such that xn → x andAxn →
y as n → ∞. It follows from the second equality in (4.11) that

R(t)x = k(t)x + (a ∗ R)(t)y. (4.12)

Then by (4.7)we have

R(t)x − k(t)x
a ∗ k(t) =

(a ∗ R)(t)y
a ∗ k(t) −→ y, (4.13)

as t → 0+. It shows x ∈ D(B) and Bx = y.
Finally, we show that D(B) is dense in X. Let x ∈ X be given. Then it was proved that

a ∗ R(t)x ∈ D(B) for all t ≥ 0. Hence, defining

xn =
a ∗ R(1/n)
a ∗ k(1/n) x, n ∈ N, (4.14)

it follows from (4.7) that xn ∈ D(B) and limn→∞xn = x, proving the claim and the theorem.

Remark 4.2. We notice that the denseness of D(A) is always present under the conditions
of the above theorem. In particular, we recover a well-known result in the theories of semi-
groups and cosine operator functions and, more important, give new results for other theories
of strongly continuous functions of operators. An immediate application of this result is that
the Laplacian operator with Dirichlet boundary conditions cannot be the generator on Lp

spaces for p /= 2, of those classes of (a, k)-regularized resolvent families that have a(t) and
k(t) satisfying (4.4).

Our next result studies a complementary case of Theorem 4.1. Here we deal with
integrated versions of the operator families where, as we known, the density of the domain
is not present, in general.

Theorem 4.3. Let k ∈ C(R+) and a ∈ L1
loc(R+). Let R(t) ⊂ B(X) be a commutative strongly

continuous family such that R(0) = k(0)I and satisfies (FE). Define D(B) and B as in the above
theorem. Suppose the following condition:

lim
s→ 0+

(a ∗ (a ∗ k))(s)
a ∗ k(s) = 0. (4.15)

Then R(t) is an (a, k)-regularized resolvent family with generator B.

Proof. Since R(0) = k(0), we have to prove conditions (ii)-(iii) in Definition 2.1. The proof of
(ii) is the same as in Theorem 4.1. To show (iii), fix x ∈ D(B) and note that

∥∥∥∥a ∗ R(s)x
a ∗ k(s) − x

∥∥∥∥ ≤ 1
|a ∗ k(s)|

∫s

0

∣∣a(s − μ
)∣∣∥∥(R(μ)x − k

(
μ
)
x
)∥∥dμ. (4.16)
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Since x ∈ D(B), there exists δ > 0 such that for all |μ| ≤ δ

∥∥∥∥∥
R
(
μ
)
x − k

(
μ
)
x

(a ∗ k)
(
μ
) − Bx

∥∥∥∥∥ < 1. (4.17)

Then for all |μ| ≤ δ,
∥∥R(μ)x − k

(
μ
)
x
∥∥ ≤ (1 + ‖Bx‖)

∣∣(a ∗ k)
(
μ
)∣∣ =: Cx

∣∣(a ∗ k)
(
μ
)∣∣. (4.18)

It follows from (4.16), (4.18), and the condition (4.15) that
∥∥∥∥a ∗ R(s)x

a ∗ k(s) − x

∥∥∥∥ ≤ 1
|a ∗ k(s)|

∫ s

0

∣∣a(s − μ
)
Cx(a ∗ k)

(
μ
)∣∣dμ

=
|a ∗ (a ∗ k)(s)|

|a ∗ k(s)| Cx −→ 0 as s −→ 0+.

(4.19)

Since R(t)x − k(t)x ∈ D(B), it follows from (4.1) and (4.19) that

R(s)(a ∗ R)(t)x − k(s)(a ∗ R)(t)x
a ∗ k(s) =

(a ∗ R(s))(R(t)x − k(t)x)
a ∗ k(s) −→ R(t)x − k(t)x, (4.20)

as s → 0+. Then for all x ∈ D(B), we have (a ∗ R)(t)x ∈ D(B) and

B(a ∗ R)(t)x = R(t)x − k(t)x. (4.21)

Finally, note that (a ∗ R)(t)x ∈ D(B) and

B(a ∗ R)(t)x = (a ∗ R)(t)Bx. (4.22)

Hence

R(t)x = k(t)x + B(a ∗ R)(t)x = k(t)x + (a ∗ R)(t)Bx, (4.23)

proving the theorem.

Example 4.4. Suppose that a(t) and k(t) are positive kernels, then the condition (4.15) holds.
In fact, denote c(t) = (a ∗ k)(t). Then c(t) is positive nondecreasing and therefore

(a ∗ c)(t) =
∫ t

0
a(t − s)c(s)ds ≤

∫ t

0
a(t − s)c(t)ds = c(t)

∫ t

0
a(s)ds, t ≥ 0. (4.24)

Hence

(a ∗ a ∗ k)(t)
(a ∗ k)(t) ≤

∫ t

0
a(s)ds −→ 0, (4.25)

as t → 0.
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Remark 4.5. In view of Theorems 3.1, 4.1, and 4.3, the Definition-regularized family is equi-
valent, under certain conditions on the kernels a(t) and k(t), to the functional equation (FE).
This fact can be used to define (a, k)-regularized families in a local way and avoid the use
of Laplace transform in the development of the theory. We note that more general classes of
families of bounded operators like, for example, (a, k)-regularized-C-resolvent families can
be understood using (FE) (see, e.g., [30, Definition 1.2]). We left the details to the interested
reader.

5. Application

In this section, we give one example to show how this class of regularized families defined by
functional equations appears in new concrete problems, while other methods do not apply
directly.

Consider the following nonlinear third order differential equation:

u′′′(t) + αu′′(t) + c2Au(t) + bAu′(t) = f
(
t, u(t), u′(t), u′′(t)

)
, (5.1)

with given initial conditions u(0), u′(0), u′′(0), and where α, b, c are positive real numbers
and f is a vector-valued function.

Equation (1.5) has recently attracted the attention of a number of authors because their
applications in different fields as, for example, high-intensity ultrasound and vibrations of
flexible materials. See [31–33] and references therein. In such cases, usually the operator A is
the negative Laplacian and f(t, u, ut, utt) = (K(ut)

2 + |∇u|2)t for a suitable constantK > 0. For
example, in high-intensity ultrasound, u is the velocity potential of the acoustic phenomenon
described on some bounded R

3 domain. In the abstract case, A is a nonnegative, self-adjoint
operator (possibly with compact resolvent) defined on a Hilbert space H.

Mathematical understanding of the linearized equation:

u′′′(t) + αu′′(t) + c2Au(t) + bAu′(t) = 0 (5.2)

is meant as a preliminary critical step for the subsequent analysis of the full nonlinear model
(5.1).

The usual operator-theoretic method to solve (5.2) is to rewrite it as a first-order
abstract Cauchy problem of the form

U′(t) = AU(t), t ≥ 0, U(0) = U0, (5.3)

on the Banach space X := X ×X ×X with the usual norm, and where

A =

⎛
⎝ 0 I 0

0 0 I
−c2A −bA −αI

⎞
⎠ (5.4)

is defined on D(A) := D(A) ×D(A) × X. It is known that if A is unbounded then, for b = 0,
the matrix of operators A cannot be the generator of a C0 semigroup on X or even in some
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subspaces of it (see [31, Theorem 1.1]). It can be seen directly observing the entries of the
resolvent operator

(λI −A)−1 =

⎛
⎜⎝
(
λ2 + αλ + bA

)
H(λ) (λ + α)H(λ) H(λ)

−c2AH(λ)
(
λ2 + αλ

)
H(λ) λH(λ)

−λc2AH(λ) −
(
λb + c2

)
H(λ) λ2H(λ)

⎞
⎟⎠, (5.5)

where H(λ) = (λ3 + αλ2 + bλA + c2A)−1. Indeed, for b = 0 we replace the identity:

λ3H(λ) + αλ2H(λ) + c2AH(λ) = I (5.6)

and obtain

(λI −A)−1 =

⎛
⎜⎝

(
λ2 + αλ

)
H(λ) (λ + α)H(λ) H(λ)

λ3H(λ) + αλ2H(λ) − I
(
λ2 + αλ

)
H(λ) λH(λ)

λ4H(λ) + αλ3H(λ) − λI −
(
λb + c2

)
H(λ) λ2H(λ)

⎞
⎟⎠, (5.7)

and nowwe observe that the entries λ3H(λ)+αλ2H(λ)− I and λ4H(λ)+αλ3H(λ)−λI cannot
be a Laplace transform. Therefore, A cannot generate a C0 semigroup on X.

However, for α/= 0, we can directly associate to (5.2) an (a, k)-regularized family onX,
with k(t) = e−αt and a(t) = ((bα − c2)/α2)(1 − e−αt) + (c2/α)t. Indeed, for such choice of the
pair (a, k)we have

k̂(λ) =
1

λ + α
, â(λ) =

c2 + λb

λ3 + αλ2
. (5.8)

Hence

λ2H(λ) =
k̂(λ)
â(λ)

(
1

â(λ)
−A

)−1
. (5.9)

Now take the (formal) Laplace transform of the left-hand side of (5.2)with initial conditions
u(0) = x, u′(0) = y, u′′(0) = z. We obtain in case b = 0

û(λ) =
(
λ2 + αλ

)
H(λ)x + (λ + α)H(λ)y +H(λ)z. (5.10)

Therefore, in case b = 0 we can still have that (5.2) is well posed in the sense that A is the
generator of an (a, k)-regularized family {S(t)}t≥0 and, in this case, a (mild) solution of the
problem can be explicitly given by the formula:

u(t) = [S(t) + α(1 ∗ S)(t)]x + [(1 ∗ S)(t) + α(t ∗ S)(t)]y + (t ∗ S)(t)z, (5.11)
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where x, y, z ∈ X. Finally, note that

k(t) = e−αt, a(t) = c2
∫ t

0
(t − s)k(s)ds + b

∫ t

0
k(s)ds (5.12)

are positive kernels and therefore, by Example 4.4, the condition (4.15) in Theorem 4.3 is
satisfied. In this way, a method based on a direct approach, defined by an specific functional
equation, is now available. Note that in case b /= 0 the matrix operator A is the generator
of a C0 semigroup T(t) on X, but it can never be compact. It has nothing to do with the
corresponding properties of S(t). Therefore maximal regularity results for the corresponding
nonhomogeneous version of (5.2) cannot be proved by reduction to a first-order problem. The
same remark applies to stability questions; even if S(t) is integrable, the type of T(t) cannot
be negative unless the type of S(t) already is, this implies that it is not possible to obtain sharp
integrability results for the solution u(t) of (5.2) by means of an indirect approach.

Remark 5.1. The argument given above for the justification of the introduction of (a, k)-
regularized families for a third-order abstract differential equation is analog to those given
in the origins of the theory of cosine families, see for example, Fattorini [34], which has
proved along the years to be very efficient to handle directly incomplete second-order abstract
Cauchy problems.
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