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Our purpose is to prove the existence of periodic solutions for a competition Lotka-Volterra system
on time scales, and one example is given to illustrate our results.

1. Introduction

Denote T as an arbitrary nonempty closed subset of the real numbers R. The Lotka-Volterra
system is mainly devoted to the study of population dynamics in mathematics. The classical
two classes of species can be modeled as

x′
1(t) = x1(t)(r11(t) + r12(t)x1(t) + r13(t)x2(t)),

x′
2(t) = x2(t)(r21(t) + r22(t)x1(t) + r23(t)x2(t)),

(1.1)

which are viewed in terms of different situations. For example, it is named with predator-
prey system if r13(t)r22(t) < 0, while competition system when r13(t) < 0, r22(t) < 0, also a
reciprocal system if r13(t) > 0, r22(t) > 0.Moreover, in order to reflect the seasonal fluctuations,
the Lotka-Volterra system with periodic coefficients is also considered in [1]. The time delay
effect, density regulation, and diffusion between patches in many ecological systems have
been investigated for its ecological significance in [2–4].
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The recently interest on ratio-dependent predator functional response calls for detailed
qualitative study on ratio-dependent predator-prey differential systems. Predator-prey
models where one or more terms involve ratios of the predator and prey populations may not
be valid mathematically unless it can be shown that solutions with positive initial conditions
never get arbitrarily close to the axis in question, that is, that persistence holds. By means
of a transformation of variables, criteria for persistence are derived for two classes of such
models, thereby leading to their validity. Ratio-dependent predator-prey models are favored
by many animal ecologists recently involving a searching process.

Our concern in this paper is to consider both the periodic variations of the environment
and the density regulation of the predators by considering account delay effect and diffusion
between patches. The environments of most natural populations undergo temporal variation,
causing changes in the growth characteristics of populations. One method of incorporating
temporal nonuniformity of the environments in models is to assume that the parameters are
periodic with the same period of the time variable. It can be modeled with the following
dynamic system:

xδ
1 (t) = r1(t) − f1(t)ex1(t) − g1(t)ey1(t−τ)

ex1(t−τ) + β1(t)ey1(t−τ) + p1(t)
(
ex2(t)−x1(t) − 1

)
,

xδ
2 (t) = r2(t) − f2(t)ex2(t) + p2(t)

(
ex1(t)−x2(t) − 1

)
,

yδ
1 (t) = r3(t) − f3(t)ey1(t) − g2(t)ex1(t−τ)

ex1(t−τ) + β1(t)ey1(t−τ) −
h1(t)ey2(t)

ey1(t) + β2(t)ey2(t)
,

yδ
2 (t) = r4(t) − f4(t)ey2(t) +

h2(t)ey1(t−τ)

ey1(t−τ) + β2(t)ey2(t−τ) ,

(1.2)

where y1(t) and x1(t) denote the population density of species y and species x in patch 1,
y2(t) and x2(t) represent the density of species y and species x in patch 2. Species x and y can
be diffused between two patches and species y is confined to compete with species x. τ > 0
is a delay due to gestation. pi(t) > 0 (i = 1, 2) are rd-continuous ω-periodic functions and
denote the dispersal rate of species y in the ith patch (i = 1, 2), respectively. ri(t) > 0, fi(t) > 0
(i = 1, 2, 3, 4), gj(t) > 0, hj(t) > 0, βj(t) > 0 (j = 1, 2) are rd-continuous ω-periodic functions.

With the transition variable Xi = exi(t), Y (t) = ey1(t), and y2(t) ≡ 0, the system (1.2)
reduces to

X′
1(t) = X1(t)

(
r1(t) − f1(t)X1(t) −

g1(t)Y (t − τ)
X1(t − τ) + β(t)Y (t − τ)

)

− p1(t)X1(t) − p1(t)X2(t),

X′
2(t) = X2(t)r2(t) − f2(t)X2

2(t) + p2(t)X1(t) − p2(t)X2(t),

Y ′(t) = Y (t)r3(t) − f3(t)Y 2(t) − g2(t)X1(t − τ)Y (t)
X1(t − τ) + β(t)Y (t − τ)

,

(1.3)

which was introduced by Hilger in [5] who firstly proposed the theory of time scales. There
are many related studies of positive solutions for delayed equation [6–8], dynamic equation
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(1.3) on time scales [5, 9–17], and the uniform persistence, global asymptotic stability, and
periodicity of system (1.3); see [18–23].

Recently, various continuation theorems in coincidence degree have played an
important role in study the existence of periodic solutions of the Lotka-Volterra system (see,
e.g., [11, 23–28]). In this paper, by using the well-known Gains and Mawhin’s theorem, we
prove the existence of periodic solutions of competition Lotka-Volterra dynamic system (1.2)
with time delay and diffusion on time scales.

This paper is organized as follows. In Section 2, we present some basic definitions and
results of topological degree theory. Section 3 is contributed to the proof of the main results
while the last section goes to one example.

2. Preliminaries

Several definitions and results will be presented in this section. For more details, refer to
[9, 12].

Let ω > 0. Throughout this paper, the time scales we considered are always assumed
to beω-periodic (i.e., t ∈ T = Z or R implies t±ω ∈ T) and unbounded above and below (may
be represented by

⋃
k∈T

[2(k − 1)ω, 2kω]). We denote ε = minT ∩ (R − R
−), Iω = [ε, ε +ω] ∩ T.

Definition 2.1. The forward jump operator σ : T → T and the backward jump operator ρ :
T → T are defined by

σ(t) := inf{s ∈ T : s ≥ t}, ρ(t) := sup{s ∈ T : s ≤ t}, (2.1)

respectively, for any t ∈ T: If σ(t) = t, then t is called right dense (otherwise: right scattered),
and if ρ(t) = t, then t is called left dense (otherwise left scattered).

Definition 2.2. Suppose that f : T → R and fix t ∈ T
κ. Then f is called differential at t ∈ T

κ if
there exists a constant c ∈ R such that, for any given ε > 0, there is an open neighborhood U
of t such that

∣∣f(ρ(t)) − f(s) − c
(
ρ(t) − s

)∣∣ ≤ ε
∣∣ρ(t) − s

∣∣, s ∈ U. (2.2)

c is named with the delta (or Hilger) derivative of f at t ∈ T
κ and is denoted by c = fδ(t).

Here, [a, b]κ = [a, b] if b is left dense and [a, b]κ = [a, b) if b is left scattered.

As far as T = Z or R is considered, T
κ = T. We say that f is delta (Hilger) differential

on T if f(t) exists for all t ∈ T. A function F : T → R is called an antiderivative of f : T → R

provided that Fδ(t) = f(t) for all t ∈ T. Then we define

∫s

r

f(t) δt = F(s) − F(r), r, s ∈ T. (2.3)

Definition 2.3. A function f : T → R is called rd-continuous if it is continuous at right dense
points in T and its left-sided limits exist (finite) at left dense points in T. The set of rd-
continuous functions f : T → R will be denoted by Crd(T,R).
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It is easy to see that every rd-continuous function has an antiderivative and every
continuous function is rd-continuous.

Lemma 2.4 (see [11]). If s, t ∈ T, α, β ∈ R and f, g ∈ Crd(T,R), then

(1)
∫ t
s[αf(u) + βg(u)]δu = α

∫ t
s f(u)δu + β

∫ t
s g(u)δu;

(2) if f(u) ≥ 0 for all s ≤ u < t, then
∫ t
s f(u)δu ≥ 0;

(3) if |f(u)| ≤ g(u) on [s, t) := {u ∈ T : s ≤ u < t}, then | ∫ ts f(u)δu| ≤
∫ t
s g(u)δu.

Next, we introduce some results related to the topology degree theories which are
crucial in our arguments [20].

Let X and Y be two Banach spaces. Consider an operator equation:

Lx = λNx, λ ∈ (0, 1), (2.4)

where L : DomL ∩ X → Y is a linear operator, N : X → Y is continuous, and λ is a
parameter. Let P andQ be two projections P : X → X andQ : Y → Y such that ImP = kerL
and ImL = kerQ = Im(I − Q). It is easy to see that L|DomL∩kerP : (I − P)X → ImL is
invertible, and thus we denote the inverse of this map by Φ. IfΩ is a bounded open subset of
X, themappingN is calledL-compact onΩ ifQ◦N(Ω) is bounded andΦ◦(I−Q)◦N : Ω → X
is compact. Since ImQ is isomorphic to kerL, there exists an isomorphismΨ : ImQ → kerL.

Note that operator L is called a Fredholm operator of index zero if dim(kerL) =
codim(ImL) < ∞ and ImL is closed in Y .

Lemma 2.5 (Gains and Mawhin’s theorem [20]). LetL be a Fredholm mapping of index zero, and
letN be L-compact on Ω. Suppose that

(C1) for each λ ∈ (0, 1), every solution x ∈ ∂Ω ∩ DomL of Lx = λN(x, λ) is such that
x /∈ ∂Ω;

(C2) Q ◦Nx /= 0 for each x ∈ ∂Ω ∩ kerL;

(C3) deg(Ψ ◦Q ◦N,Ω ∩ kerL, 0)/= 0.

Then equation Lx = Nx has at least one solution lying in DomL ∩Ω.

Throughout this paper, we take the following notations for convenience, and all the
other notations are defined analogously:

f =
1
ω

∫

Iω

f(t)δt, fs = min
t∈Iω

f(t), fM = max
t∈Iω

f(t), (2.5)

where f ∈ Crd(T,R) is an ω-periodic function.

3. Periodic Solution

The main result is stated as follows about the existence of ω-periodic solutions.

Theorem 3.1. Suppose that

(1) (r1β1 − g1)
s > 0;
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(2) r1βs1 − gM
1 > 0;

(3) (r3β2 − g2β2 − h1)
s > 0;

(4) r3βs2 − gM
2 βs2 − hM

1 > 0.

Then the dynamic system (1.2) has at least one ω-periodic solution.

Before proving Theorem 3.1, we first give some useful lemmas.

Lemma 3.2. Suppose λ ∈ (0, 1) is a parameter, (r1β1 − g1)
s > 0, and (r3β2 − g2β2 − h1)

s > 0. If
(x1(t), x2(t), y1(t), y2(t))

T is an ω-periodic solution of the system (1.2), then |x1(t)| + |x2(t)| ≤ 2C1

and |y1(t)| + |y2(t)| ≤ 2C2, where

C1 := max

{∣∣∣∣∣
(
ln

r1
f1

)M
∣∣∣∣∣,
∣∣∣∣∣
(
ln

r2
f2

)M
∣∣∣∣∣,
∣∣∣∣
(
ln

r2
f2

)s∣∣∣∣,
∣∣∣∣
(
ln

r1β1 − g1
β1f1

)s∣∣∣∣
}
, (3.1)

C2 := max

{∣∣∣∣∣
(
ln

r3
f3

)M
∣∣∣∣∣,
∣∣∣∣∣
(
ln

r4 + h2

f4

)M
∣∣∣∣∣,
∣∣∣∣
(
ln

r4
f4

)s∣∣∣∣,
∣∣∣∣
(
ln

r3β2 − g2β2 − h1

β2f3

)s∣∣∣∣
}
. (3.2)

Proof. Corresponding to the operator equation (2.4), we have

xδ
1 (t) = λ

[
r1(t) − f1(t)ex1(t) − g1(t)ey1(t−τ)

ex1(t−τ) + β1(t)ey1(t−τ) + p1(t)
(
ex2(t)−x1(t) − 1

)]
,

xδ
2 (t) = λ

[
r2(t) − f2(t)ex2(t) + p2(t)

(
ex1(t)−x2(t) − 1

)]
,

yδ
1 (t) = λ

[
r3(t) − f3(t)ey1(t) − g2(t)ex1(t−τ)

ex1(t−τ) + β1(t)ey1(t−τ) −
h1(t)ey2(t)

ey1(t) + β2(t)ey2(t)

]
,

yδ
2 (t) = λ

[
r4(t) − f4(t)ey2(t) +

h2(t)ey1(t−τ)

ey1(t−τ) + β2(t)ey2(t−τ)

]
.

(3.3)

Define

Γ =
{
u = (x1(t), x2(t), y1(t), y2(t))

T ∈ C
(
T,R4

)
: xi(t +ω) = xi(t), yi(t +ω) = yi(t)

}
,

(3.4)

with the norm

‖u‖ =
2∑
i=1

max
t∈Iω

|xi(t)| +
2∑
i=1

max
t∈Iω

∣∣yi(t)
∣∣. (3.5)

Then Γ is a Banach space. Take X = Y = Γ. Assume that u = (x1(t), x2(t), y1(t), y2(t))
T ∈ Γ is a

solution of the system (3.3) for λ ∈ (0, 1). It only needs to be proven that there exists aM1 > 0
such that ‖u‖ < M1.
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In fact, since u ∈ Γ, there exists ti ∈ Iω (i = 1, 2, 3, 4) such that xi(ti) = maxt∈Iωxi(t)
and yi(ti+2) = maxt∈Iωyi(t) (i = 1, 2). Thus xδ

i (ti) = yδ
i (ti+2) = 0, for i = 1, 2. Consequently, it

follows from the system (3.3) that

r1(t1) − f1(t1)ex1(t1) − p1(t1) + p1(t1)ex2(t1)−x1(t1) − g1(t1)ey1(t1−τ)

ex1(t1−τ) + β1(t1)ey1(t1−τ) = 0, (3.6a)

r2(t2) − f2(t2)ex2(t2) − p2(t2) + p2(t2)ex1(t2)−x2(t2) = 0, (3.6b)

r3(t3) − f3(t3)ey1(t3) − g2(t3)ex1(t3−τ)

ex1(t3−τ) + β1(t3)ey1(t3−τ) −
h1(t3)ey2(t3)

ey1(t3) + β2(t3)ey2(t3)
= 0, (3.6c)

r4(t4) − f4(t4)ey2(t4) +
h2(t4)ey1(t4−τ)

ey1(t4−τ) + β2(t4)ey2(t4−τ) = 0. (3.6d)

When x1(t1) ≥ x2(t2), then x1(t1) ≥ x2(t1). From (3.6a)we get

f1(t1)ex1(t1) = r1(t1) − p1(t1) + p1(t1)ex2(t1)−x1(t1) − g1(t1)ey1(t1−τ)

ex1(t1−τ) + β1(t1)ey1(t1−τ)

≤ r1(t1).

(3.7)

It follows that

x2(t2) ≤ x1(t1) ≤ ln
r1(t1)
f1(t1)

≤
(
ln

r1
f1

)M

. (3.8)

When x1(t1) < x2(t2), then x1(t2) < x2(t2). From (3.6b)we obtain

f2(t2)ex2(t2) = r2(t2) − p2(t2) + p2(t2)ex1(t2)−x2(t2) ≤ r2(t2), (3.9)

which means

x1(t1) ≤ x2(t2) ≤ ln
r2(t2)
f2(t2)

≤
(
ln

r2
f2

)M

. (3.10)

As far as (3.6c) and (3.6d) are concerned, with analogue arguments above, we get

y1(t3) ≤ r3(t3)
f3(t3)

≤
(
ln

r3
f3

)M

,

y2(t4) ≤ ln
r4(t4) + h2(t4)

f4(t4)
≤
(
ln

r4 + h2

f4

)M

.

(3.11)
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Now choose κi ∈ Iω (i = 1, 2) such that x1(κ1) = mint∈Iωx1(t), x2(κ2) = mint∈Iωx2(t),
then xδ

i (κi) = 0. Thus we obtain that

r1(κ1) − f1(κ1)ex1(κ1) − p1(κ1) + p1(κ1)ex2(κ1)−x1(κ1) − g1(κ1)ey1(κ1−τ)

ex1(κ1−τ) + β1(κ1)ey1(κ1−τ) = 0, (3.12a)

r2(κ2) − f2(κ2)ex2(κ2) − p2(κ2) + p2(κ2)ex1(κ2)−x2(κ2) = 0. (3.12b)

When x1(κ1) < x2(κ2), then x1(κ1) < x2(κ2) ≤ x2(κ1). From (3.12a), we have

f1(κ1)ex1(κ1) = r1(κ1) − p1(κ1) + p1(κ1)ex2(κ1)−x1(κ1) − g1(κ1)ey1(κ1−τ)

ex1(κ1−τ) + β1(κ1)ey1(κ1−τ)

≥ r1(κ1) −
g1(κ1)
β1(κ1)

,

(3.13)

and thus

x2(κ2) > x1(κ1) ≥ ln
r1(κ1)β(κ1) − g1(κ1)

f1(κ1)β1(κ1)
≥
(
ln

r1β1 − g1
β1f1

)s

, (3.14)

according to the hypothesis (r1β1 − g1)
s > 0.

When x1(κ1) ≥ x2(κ2), then x1(κ2) ≥ x1(κ1) ≥ x2(κ2). From (3.12b), we get

f2(κ2)ex2(κ2) = r2(κ2) − p2(κ2) + p2(κ2)ex1(κ2)−x2(κ2) ≥ r2(κ2), (3.15)

which yields

x1(κ1) ≥ x2(κ2) ≥ ln
r2(κ2)
f2(κ2)

≥
(
ln

r2
f2

)s

. (3.16)

Combing the inequalities (3.8) and (3.10) with (3.14) and (3.16), from (3.1) it easily gets that

|x1(t)| + |x2(t)| ≤ 2C1. (3.17)

On the other hand, choose κi+2 ∈ Iω (i = 1, 2) such that y1(κ3) = mint∈Iωy1(t), y2(κ4) =
mint∈Iωy2(t), we have yδ

i (κi+2) = 0 and then

r3(κ3) − f3(κ3)ey1(κ3) − g2(κ3)ex1(κ3−τ)

ex1(κ3−τ) + β1(κ3)ey1(κ3−τ) −
h1(κ3)ey2(κ3)

ey1(κ3) + β2(κ3)ey2(κ3)
= 0, (3.18a)

r4(κ4) − f4(κ4)ey2(κ4) +
h2(κ4)ey1(κ4−τ)

ey1(κ4−τ) + β2(κ4)ey2(κ4−τ) = 0. (3.18b)
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When y1(κ3) < y2(κ4), then y1(κ3) < y2(κ4) ≤ y2(κ3). From (3.18a), we get

f3(κ3)ey1(κ3) = r3(κ3) −
g2(κ3)ex1(κ3−τ)

ex1(κ3−τ) + β1(κ3)ey1(κ3−τ) −
h1(κ3)ey2(κ3)

ey1(κ3) + β2(κ3)ey2(κ3)

≥ r3(κ3) − g2(κ3) − h1(κ3)
β2(κ3)

,

(3.19)

which means

y2(κ4) > y1(κ3) ≥ ln
r3(κ3)β2(κ3) − g2(κ3)β2(κ3) − h1(κ3)

β2(κ3)f3(κ3)

≥
(
ln

r3β2 − g2β2 − h1

β2f3

)s

,

(3.20)

under the hypothesis that (r3f3 − g2f3 − h1)
s > 0.

When y1(κ3) ≥ y2(κ4), then y1(κ4) ≥ y1(κ3) ≥ y2(κ4). From (3.18b), we have

f4(κ4)ey2(κ4) = r4(κ4) +
h2(κ4)ey1(κ4−τ)

ey1(κ4−τ) + β2(κ4)ey2(κ4−τ) ≥ r4(κ4), (3.21)

which implies

y1(κ3) ≥ y2(κ4) ≥ ln
r4(κ4)
f4(κ4)

≥
(
ln

r4
f4

)s

. (3.22)

Combing the inequalities (3.11) with (3.20) and (3.22), from (3.2) it easily follows that

∣∣y1(n)
∣∣ + ∣∣y2(n)

∣∣ ≤ 2C2. (3.23)

Set M1 = 2C1 + 2C2 + 1, then ‖u‖ < M1. M1 is independent on λ ∈ (0, 1).

Lemma 3.3. Suppose μ ∈ (0, 1) is a parameter, r1βs1 − gM
1 > 0 and r3βs2 − gM

2 βs2 − hM
1 > 0. Then any

solution v = (v1, v2, v3, v4)
T of the algebraic system

0 = r1 − f1e
v1 + μ

(−p1 + p1e
v2−v1

) − μ

ω

∫

Iω

g1(t)ev3

ev1 + β1(t)ev3
δt,

0 = r2 − f2e
v2 + μ

(−p2 + p2e
v1−v2

)
,

0 = r3 − f3e
v3 − μ

ω

∫

Iω

g2(t)ev1

ev1 + β1(t)ev3
δt − μ

ω

∫

Iω

h1(t)ev4

ev3 + β2(t)ev4
δt,

0 = r4 − f4e
v4 +

μ

ω

∫

Iω

h2(t)ev3

ev3 + β2(t)ev4
δt

(3.24)
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satisfies ‖v‖ ≤ 2C3 + 2C4, where

C3 := max

{∣∣∣∣∣ln
r1β

s
1 − gM

1

f1β
s
1

∣∣∣∣∣,
∣∣∣∣∣ln

r1

f1

∣∣∣∣∣,
∣∣∣∣∣ln

r2

f2

∣∣∣∣∣

}
, (3.25)

C4 := max

{∣∣∣∣∣ln
r3β

s
2 − gM

2 βs2 − hM
1

f3β
s
2

∣∣∣∣∣,
∣∣∣∣∣ln

r3

f3

∣∣∣∣∣,
∣∣∣∣∣ln

r4

f4

∣∣∣∣∣,
∣∣∣∣∣ln

r4 + hM
2

f4

∣∣∣∣∣

}
. (3.26)

Proof. When v2 ≤ v1, from the first two equations of (3.24) and Lemma 2.4, we obtain that

f1e
v1 = r1 + μ

(−p1 + p1e
v2−v1

) − μev3

ω

∫

Iω

g1(t)
ev1 + β1(t)ev3

δt ≤ r1,

f2e
v2 = r2 + μ

(−p2 + p2e
v1−v2

) ≥ r2,

(3.27)

which implies that

ln
r2

f2

≤ v2 ≤ v1 ≤ ln
r1

f1

. (3.28)

Analogously, when v1 < v2, we have

f1e
v1 = r1 + μ

(−p1 + p1e
v2−v1

) − μev3

ω

∫

Iω

g1(t)
ev1 + β1(t)ev3

δt ≥ r1 −
gM
1

βs1
,

f2e
v2 = r2 + μ

(−p2 + p2e
v1−v2

) ≤ r2;

(3.29)

it follows that

ln
r1β

s
1 − gM

1

f1β
s
1

≤ v1 < v2 ≤ ln
r2

f2

, (3.30)

by the assumption that r1βs1 − gM
1 > 0.

Hence, from (3.25)we have |v1| + |v2| ≤ 2M3.
On the other hand, with similar discussion above, from the last two of (3.24), we obtain

ln
r3β

s
2 − gM

2 βs2 − hM
1

f3β
s
2

≤ v3 ≤ ln
r3

f3

,

ln
r4

f4

≤ v4 ≤ ln
r4 + hM

2

f4

,

(3.31)

which imply that |v3| + |v4| ≤ 2C4 from (3.26). So, ‖v‖ ≤ 2C3 + 2C4.

With the preparations above, we can complete the proof of Theorem 3.1 as follows.
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Proof of Theorem 3.1. Set M2 = 2C3 + 2C4 + 1. By Lemma 3.3, we know that any solution v of
the system (3.24) satisfies ‖u‖ < M2. Take C = M1 +M2, and define Ω = {u ∈ Γ : ‖u‖ < C}.
Due to Lemmas 3.2 and 3.3, condition (C1) in Lemma 2.5 is satisfied.

Let

L : DomL ∩ Γ −→ Γ,

Lu(t) =

⎛
⎜⎜⎜⎜⎜⎝

xδ
1 (t)

xδ
2 (t)

yδ
1 (t)

yδ
2 (t)

⎞
⎟⎟⎟⎟⎟⎠

,
(3.32)

where DomL = {(x1(t), x2(t), y1(t), y2(t))
T ∈ C(T,R4)} and
N : Γ −→ Γ,

Nu(t) =

⎛
⎜⎜⎝

N1(t)
N2(t)
N3(t)
N4(t)

⎞
⎟⎟⎠,

(3.33)

where

N1(t) = r1(t) − f1(t)ex1(t) − g1(t)ey1(t−τ)

ex1(t−τ) + β1(t)ey1(t−τ) − p1(t) + p1(t)ex2(t)−x1(t),

N2(t) = r2(t) − f2(t)ex2(t) − p2(t) + p2(t)ex1(t)−x2(t),

N3(t) = r3(t) − f3(t)ey1(t) − g2(t)ex1(t−τ)

ex1(t−τ) + β1(t)ey1(t−τ) −
h1(t)ey2(t)

ey1(t) + β2(t)ey2(t)
,

N4(t) = r4(t) − f4(t)ey2(t) +
h2(t)ey1(t−τ)

ey1(t−τ) + β2(t)ey2(t−τ) .

(3.34)

With the definitions above, we obtain that Lu = Nu for u ∈ DomL ∩ Γ with ImL =
{u ∈ Γ :

∫
Iω
xi(t)δt = 0,

∫
Iω
yi(t)δt = 0, t ∈ T, i = 1, 2} and kerL = R

4 which is closed in Γ, and
dim(kerL) = codim(ImL) = 4. Therefore,L is a Fredholmmapping of index zero. Moreover,
define two projections P,Q such that ImP = kerL and ImL = kerQ = Im(I −Q), where

P = Q : Γ −→ Γ,

Pu = Qu =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
ω

∫

Iω

x1(t)δt

1
ω

∫

Iω

x2(t)δt

1
ω

∫

Iω

y1(s)δs

1
ω

∫

Iω

y2(s)δs

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
(3.35)
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Then Γ = kerL ⊕ kerP = kerL ⊕ kerQ, and choose Ψ as the identity isomorphism of
ImQ to kerP . Furthermore, the generalized inverse (to L) exists and is given by

Φ : ImL −→ DomL ∩ kerP,

Φu =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫ s

η

x1(t)δt − 1
ω

∫

Iω

∫ t

η

x1(s)δsδt

∫ s

η

x2(t)δt − 1
ω

∫

Iω

∫ t

η

x2(s)δsδt

∫ t

η

y1(s)δs − 1
ω

∫

Iω

t∑
η

y1(s)δs

∫ t

η

y2(s)δs − 1
ω

∫

Iω

t∑
η

y2(s)δs

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
(3.36)

Thus

Q ◦Nu =

(
1
ω

∫

Iω

N1(t)δt,
1
ω

∫

Iω

N2(t)δt,
1
ω

∫

Iω

N3(t)δt,
1
ω

∫

Iω

N4(t)δt

)T

. (3.37)

Clearly,Q◦N andΦ◦(I−Q) are well defined. By the Lebesgue convergence theorem and the
Arzela-Ascoli theorem, Φ ◦ (I −Q)(Ω) is relatively compact for any open-bounded setΩ ⊂ Γ.
Moreover, Q ◦N(Ω) is bounded. Therefore, N is L-compact on Ω for any open-bounded set
Ω ⊂ Γ. When u ∈ ∂Ω ∩ R

4 is a constant vector in R
4, then Q ◦ Nu/= 0 since Q ◦ Nu = 0 is the

system (3.24) with ε = 1. Condition (C2) in Lemma 2.5 is also satisfied.
Finally, we claim that deg(Ψ◦Q ◦N,Ω, O)/= 0, whereO := (0, 0, 0, 0)T . In fact, consider

the homotopy

Hμv = μQ ◦Nv +
(
1 − μ

)
Gv, μ ∈ [0, 1], (3.38)

where Gv = (r1 − f1e
v1 , r2 − f2e

v2 , r3 − f3e
v3 , r4 − f4e

v4)
T
.

When v ∈ Ω ∩ kerL = Ω ∩ R
4 is a constant vector with ‖v‖ = C, from Lemma 2.5, we

get that Hμv/=O on ∂Ω ∩ kerL. Since ImQ = kerL and (v∗
1, v

∗
2, v

∗
3, v

∗
4)

T ∈ Ω ∩ kerL is the
unique solution of the algebraic equations Gv = (0, 0, 0, 0)T , by the homotopy invariance of
Brouwer degree, we obtain

deg(Ψ ◦Q ◦N, ∂Ω ∩ kerL, O) = sign
(
−f1f2f3f4e

v∗
1+v

∗
2+v

∗
3+v

∗
4

)
/= 0. (3.39)

Therefore, all the conditions in Lemma 2.5 are fulfilled and the dynamic system (1.2) has at
least one ω-periodic solution lying in DomL ∩Ω.
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4. Example

Consider the following system with 20π-periodic time scale:

xδ
1 (t) = 4 − 2 cos

t

10
−
(
5 − sin

t

10

)
ex1(t) − (5 − cos(t/10) + 2 sin(t/10))ey1(t−1/3)

ex1(t−1/3) + (5 − cos(t/10))ey1(t−1/3)

+
(
5
3
− sin t

10

)(
ex2(t)−x1(t) − 1

)
,

xδ
2 (t) = 5 − 2 sin

t

10
−
(
4 + cos

t

10

)
ex2(t) +

(
5
4
− cos

(
t

10

))(
ex1(t)−x2(t) − 1

)
,

yδ
1 (t) = 5 + 2 sin

t

10
+ cos

t

10
− (2 − cos(t/10))ey2(t)

ey1(t) + (4 − sin(t/10))ey2(t)

−
(
7
3
− cos

t

10

)
ey1(t) − (2 + sin(t/10))ex1(t−1/3)

ex1(t−1/3) + (5 − cos(t/10))ey1(t−1/3) ,

yδ
2 (t) = 5 + 2 sin

t

10
−
(
5 + cos

t

10

)
ey2(t) +

(3 + sin(t/10))ey1(t−1/3)

ey1(t−1/3) + (4 − sin t/10)ey2(t−1/3) .

(4.1)

From the definition of Iω, we obtain that Iω = [0, 20π]. It is straight to check that (r1β1 −g1)s =
mint{r1(t)β1(t)−g1(t)} = 15−13 cos(t/10)+2 sin(t/10)+2cos2(t/10) > 0, and other inequalities
r1β

s
1 − gM

1 > 0, (r3β2 − g2β2 − h1)
s > 0 and r3β

s
2 − gM

2 βs2 − hM
1 > 0. Hence, from Theorem 3.1, the

dynamic system (4.1) has at least one 20-periodic solution on the time scale T.
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