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The existence results of positiveω-periodic solutions are obtained for the second-order differential
equation with delays −u′′

+ a(t) = f(t, u(t − τ1), ..., u(t − τn)), where a ∈ C(R, (0,∞)) is a ω-periodic
function, f : R×[0,∞)n → [0,∞) is a continuous function, which isω-periodic in t, and τ1, τ2, ..., τn
are positive constants. Our discussion is based on the fixed point index theory in cones.

1. Introduction and Main Results

In this paper, we discuss the existence of positive ω-periodic solutions of the second-order
differential equation with delays

−u′′(t) + a(t)u(t) = f(t, u(t − τ1), . . . , u(t − τn)), (1.1)

where a ∈ C(R, (0,∞)) is a ω-periodic function, f : R × [0,∞) × R
n → R is a continuous

function, which is ω-periodic in t, and τ1, τ2, . . . , τn are positive constants.
In recent years, the existence of periodic solutions for second-order delay differential

equations has been researched by many authors, see [1–8] and references therein. In some
practice models, only positive periodic solutions are significant. In [4, 5, 7], the authors
obtained the existence of positive periodic solutions for some delay second-order differential
equations by using Krasnoselskii’s fixed-point theorem of cone mapping. For the second-
order differential equations without delay, the existence of positive periodic solutions has
been discussed by more authors, see [9–14].

Motivated by the papers mentioned above, we research the existence of positive
periodic solutions of (1.1) with multiple delays. We aim to obtain the essential conditions
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on the existence of positive periodic solutions of (1.1) via the theory of the fixed-point
index in cones. The conditions concern with the relation of the coefficient function a(t) and
nonlinearity f(t, x1, . . . , xn). Let

m = min
0≤t≤ω

a(t), M = max
0≤t≤ω

a(t). (1.2)

Obviously, 0 < m ≤ M. Our main results are as follows.

Theorem 1.1. Let a ∈ C(R, (0,∞)) be a ω-periodic function, f ∈ C(R × [0,∞)n, [0,∞)), and
f(t, x1, . . . , xn)ω-periodic in t. If f satisfies the following conditions:

(F1) there exist positive constants c1, . . . , cn satisfying c1 + · · · + cn < m and δ > 0 such that

f(t, x1, . . . , xn) ≤ c1x1 + · · · + cnxn, (1.3)

for t ∈ R and x1, . . . , xn ∈ [0, δ];

(F2) there exist positive constants d1, . . . , dn satisfying d1 + · · · + dn > M andH > 0 such that

f(t, x1, . . . , xn) ≥ d1x1 + · · · + dnxn, (1.4)

for t ∈ R and x1, . . . , xn ≥ H,

then (1.1) has at least one positive ω-periodic solution.

Theorem 1.2. Let a ∈ C(R, (0,∞)) be a ω-periodic function, f ∈ C(R × [0,∞)n, [0,∞)), and f(t,
x1, . . . , xn)ω-periodic in t. If f satisfies the following conditions:

(F3) there exist positive constants d1, . . . , dn satisfying d1 + · · · + dn > M and δ > 0 such that

f(t, x1, . . . , xn) ≥ d1x1 + · · · + dnxn, (1.5)

for t ∈ R and x1, . . . , xn ∈ [0, δ];

(F4) there exist positive constants c1, . . . , cn satisfying c1 + · · · + cn < m and H > 0 such that

f(t, x1, . . . , xn) ≤ c1x1 + · · · + cnxn, (1.6)

for t ∈ R and x1, . . . , xn ≥ H,

then (1.1) has at least one positive ω-periodic solution.

In Theorem 1.1, the conditions (F1) and (F2) allow f(t, x1, . . . , xn) to be superlinear
growth on x1, . . . , xn. For example,

f(t, x1, . . . , xn) = a1(t)x1
2 + · · · + an(t)xn

2 (1.7)

satisfies (F1) and (F2), where a1(t), . . . , an(t) are positive and continuous ω-periodic func-
tions.
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In Theorem 1.2, the conditions (F3) and (F4) allow f(t, x1, . . . , xn) to be sublinear
growth on x1, . . . , xn. For example,

f(t, x1, . . . , xn) = b1(t)
√
|x1| + · · · + bn(t)

√
|xn| (1.8)

satisfies (F3) and (F4), where b1(t), . . . , bn(t) are positive and continuous ω-periodic func-
tions.

Our results are different from those in the references mentioned above. The conditions
(F1) and (F2) in Theorem 1.1 and the conditions (F3) and (F4) in Theorem 1.2 are optimal
for the existence of positive periodic solutions of (1.1). This fact can been shown from the
differential equation with linear delays

−u′′(t) + a0u(t) = a1u(t − τ1) + · · · + anu(t − τn) + h(t), (1.9)

where a0, a1, . . . an are positive constants and h ∈ C(R) is a positive ω-periodic function. If
a1, . . . an satisfy

a1 + a2 + · · · + an = a0. (1.10)

Equation (1.9) has no positive ω-periodic solutions. In fact, if (1.9) has a positive ω-periodic
solution, integrating the equation on [0, ω] and using the periodicity of u(t), we can obtain
that

∫ω
0 h(t)dt = 0, which contradicts to the positivity of h(t). Hence, (1.9) has no positive

ω-periodic solution. For a(t) ≡ a0 and f(t, x1, . . . , xn) = a1x1 + · · · + anxn + h(t), if Condition
(1.10) holds, the conditions (F1) and (F2) in Theorem 1.1 and the conditions (F3) and (F4) in
Theorem 1.2 have just not been satisfied. From this, we see that the conditions in Theorems
1.1–1.2 are optimal.

The proofs of Theorems 1.1–1.2 are based on the fixed point index theory in cones,
which will be given in Section 3. Some preliminaries to discuss (1.1) are presented in
Section 2.

2. Preliminaries

Let Cω(R) denote the Banach space of all continuous ω-periodic function u(t) with norm
‖u‖C = max0≤t≤ω|u(t)|. LetC+

ω(R) be the cone of all nonnegative functions inCω(R). Generally,
Cm

ω (R) denotes the mth-order continuous differentiable ω-periodic function space for m ∈ N.
LetM be the positive constant defined by (1.2). For h ∈ Cω(R), we consider the linear

second-order differential equation

−u′′(t) +Mu(t) = h(t), t ∈ R. (2.1)

The ω-periodic solutions of (2.1) are can been expressed by the solution of the linear second-
order boundary value problem

−u′′(t) +Mu(t) = 0, 0 ≤ t ≤ ω,

u(0) − u(ω) = 0, u̇(0) − u̇(ω) = −1,
(2.2)
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see [11]. Problem (2.2) has a unique solution, which is explicitly given by

Φ(t) =
cosh β(t −ω/2)
2β sinh

(
βω/2

) , 0 ≤ t ≤ ω, (2.3)

where β =
√
M.

By a direct calculation, we easily prove the following lemma.

Lemma 2.1. Let M > 0. For every h ∈ Cω(R), the linear equation (2.1) has a unique ω-periodic
solution u(t), which is given by

u(t) =
∫ t

t−ω
Φ(t − s)h(s)ds := Th(t), t ∈ R. (2.4)

Moreover, T : Cω(R) → Cω(R) is a completely continuous linear operator.

Since Φ(t) > 0 for every t ∈ [0, ω], if h ∈ C+
ω(R) and h(t)/≡ 0, by (2.4) the ω-periodic

solution of (2.1) u = Th(t) is positive. Moreover, we can show that the ω-periodic solution
has the following strong positivity:

Th(t) ≥ σ‖Th‖C, t ∈ R, h ∈ C+
ω(R), (2.5)

where σ = Φ/Φ = 1/ cosh(βω/2), in which

Φ = min
0≤t≤ω

Φ(t) =
1

2β sinh
(
βω/2

) , Φ = max
0≤t≤ω

Φ(t) =
cosh

(
βω/2

)

2β sinh
(
βω/2

) . (2.6)

In fact, for h ∈ C+
ω(R) and t ∈ R, from (2.4) it follows that

Th(t) =
∫ t

t−ω
Φ(t − s)h(s)ds ≤ Φ

∫ t

t−ω
h(s)ds = Φ

∫ω

0
h(s)ds, (2.7)

and therefore,

‖Th‖C ≤ −
Φ

∫ω

0
h(s)ds. (2.8)

Using (2.4) and this inequality, we have that

Th(t) =
∫ t

t−ω
Φ(t − s)h(s)ds ≥ Φ

∫ t

t−ω
h(s)ds = Φ

∫ω

0
h(s)ds

=
(
Φ/

−
Φ
)
· −
Φ

∫ω

0
h(s)ds ≥ σ‖Th‖C.

(2.9)

Hence, (2.5) holds.
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Nowwe consider the periodic solution problem of the linear differential equation with
variable coefficient

−u′′(t) + a(t)u(t) = h(t), t ∈ R. (2.10)

Lemma 2.2. Let a ∈ Cω(R) be a positive ω-periodic function. For every h ∈ Cω(R), the linear
equation (2.10) has a unique ω-periodic solution u := Sh. Moreover, S : Cω(R) → Cω(R) is a
completely continuous linear operator and with strong positivity

Sh(t) ≥ mσ

M
‖Sh‖C, t ∈ R, h ∈ C+

ω(R). (2.11)

Proof. Let M and m be the positive constants defined by (1.2). Then 0 < m ≤ a(t) ≤ M,
t ∈ R. Let T : Cω(R) → Cω(R) be the ω-periodic solution operator of (2.1) given by (2.4). We
rewrite (2.10) to the form of

−u′′(t) +Mu(t) = (M − a(t))u(t) + h(t), t ∈ R. (2.12)

Then it is easy to see that the ω-periodic solution problem of (2.10) is equivalent to the
operator equation in Banach space Cω(R)

(I − T ◦ B)u = Th, (2.13)

where I is the identity operator in Cω(R) and B : Cω(R) → Cω(R) is the product operator
defined by

Bu(t) = (M − a(t))u(t), u ∈ Cω(R), (2.14)

which is a positive linear bounded operator. We prove that the norm of T ◦ B in L(Cω(R),
Cω(R)) satisfies ‖T ◦ B‖ < 1.

For every u ∈ Cω(R) and t ∈ R, by the definition (2.4) of T and the positivity of Φ, we
have

|(T ◦ B)u(t)| = |T(Bu)(t)| =
∣∣∣∣∣
∫ t

t−ω
Φ(t − s)(M − a(s))u(s)ds

∣∣∣∣∣

≤
∫ t

t−ω
Φ(t − s)|(M − a(s))u(s)|ds

≤ (M −m)‖u‖C
∫ t

t−ω
Φ(t − s)ds

= (M −m)‖u‖C
∫ω

0
Φ(s)ds

=
(
1 − m

M

)
‖u‖C.

(2.15)
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Therefore, ‖(T ◦ B)u‖C ≤ (1−m/M)‖u‖C. By the arbitrariness of u ∈ Cω(R), we have ‖T ◦B‖ ≤
1 −m/M < 1.

Thus, I − T ◦ B has a bounded inverse operator given by the series

(I − T ◦ B)−1 =
∞∑
n=0

(T ◦ B)n (2.16)

with the norm estimate

∥∥∥(I − T ◦ B)−1
∥∥∥ ≤ 1

1 − ‖T ◦ B‖ ≤ M

m
. (2.17)

Consequently, (2.13), equivalently (2.10), has a unique ω-periodic solution

u = (I − T ◦ B)−1(Th) := Sh, (2.18)

where

S = (I − T ◦ B)−1 ◦ T =
∞∑
n=0

(T ◦ B)nT. (2.19)

By the complete continuity of T , S : Cω(R) → Cω(R) is a completely continuous linear
operator.

For every h ∈ Cω(R), by the expression (2.19) of S, we have

‖Sh‖C ≤
∥∥∥(I − T ◦ B)−1

∥∥∥ · ‖Th‖C ≤ M

m
‖Th‖C. (2.20)

If h ∈ C+
ω(R), by the series expression of S and the positivity of T and B, we have

Sh =

( ∞∑
n=0

(T ◦ B)nT
)
h =

∞∑
n=0

(T ◦ B)n(Th) ≥ Th. (2.21)

Hence, form (2.5) and (2.20), it follows that

Sh(t) ≥ Th(t) ≥ σ‖Th‖ ≥ mσ

M
‖Sh‖C, t ∈ R. (2.22)

Namely, (2.11) holds.

Let f ∈ C(R × [0,∞)n, [0,∞)). For every u ∈ C+
ω(R), set

F(u)(t) := f(t, u(t − τ1), . . . , u(t − τn)), t ∈ R. (2.23)
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Then F : C+
ω(R) → C+

ω(R) is continuous. Define a mapping A : C+
ω(R) → C+

ω(R) by

A = S ◦ F. (2.24)

By the definition of operator S, theω-periodic solution of (1.1) is equivalent to the fixed point
of A. Choose a subcone of C+

ω(R) by

K =
{
u ∈ C+

ω(R) | u(t) ≥ mσ

M
‖u‖C, t ∈ R

}
. (2.25)

From the strong positivity of S in Lemma 2.2 and the definition of A, we easily obtain the
following lemma.

Lemma 2.3. A(C+
ω(R)) ⊂ K, and A : K → K is completely continuous.

Hence, the positive ω-periodic solution of (1.1) is equivalent to the nontrivial fixed
point of A. We will find the nonzero fixed point of A by using the fixed point index theory in
cones.

We recall some concepts and conclusions on the fixed point index in [15, 16]. Let E be a
Banach space andK ⊂ E be a closed convex cone in E. AssumeΩ is a bounded open subset of
Ewith boundary ∂Ω, andK∩Ω/= ∅. LetA : K∩Ω → K be a completely continuous mapping.
If Au/=u for any u ∈ K ∩ ∂Ω, then the fixed point index i(A,K ∩ Ω, K) has definition. One
important fact is that if i(A,K ∩ Ω, K)/= 0, then A has a fixed point in K ∩ Ω. The following
two lemmas are needed in our argument.

Lemma 2.4 (see [16]). Let Ω be a bounded open subset of E with θ ∈ Ω and A : K ∩ Ω → K
a completely continuous mapping. If λAu/=u for every u ∈ K ∩ ∂Ω and 0 < λ ≤ 1, then i(A,K ∩
Ω, K) = 1.

Lemma 2.5 (see [16]). Let Ω be a bounded open subset of E and A : K ∩ Ω → K a completely
continuous mapping. If there exists an e ∈ K \ {θ} such that u −Au/=μe for every u ∈ K ∩ ∂Ω and
μ ≥ 0, then i(A,K ∩Ω, K) = 0.

In next section, we will use Lemmas 2.4 and 2.5 to prove Theorems 1.1 and 1.2.

3. Proofs of Main Results

Proof of Theorem 1.1. Choose the working space E = Cω(R). Let K ⊂ C+
ω(R) be the closed

convex cone in Cω(R) defined by (2.25) andA : K → K the operator defined by (2.24). Then
the positive ω-periodic solution of (1.1) is equivalent to the nontrivial fixed point of A. Let
0 < r < R < +∞ and set

Ω1 = {u ∈ Cω(R) | ‖u‖C < r}, Ω2 = {u ∈ Cω(R) | ‖u‖C < R}. (3.1)

We show that the operator A has a fixed point in K ∩ (Ω2 \Ω1) when r is small enough and
R large enough.

Let r ∈ (0, δ), where δ is the positive constant in Condition (F1). We prove that A
satisfies the condition of Lemma 2.4 in K ∩ ∂Ω1, namely, λAu/=u for every u ∈ K ∩ ∂Ω1 and
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0 < λ ≤ 1. In fact, if there exist u0 ∈ K ∩ ∂Ω1 and 0 < λ0 ≤ 1 such that λ0Au0 = u0, then by the
definition of A and Lemma 2.2, u0 ∈ C2

ω(R) satisfies the delay differential equation

−u′′
0(t) + a(t)u0(t) = λ0f(t, u0(t − τ1), . . . , u0(t − τn)), t ∈ R. (3.2)

Since u0 ∈ K ∩ ∂Ω1, by the definitions of K and Ω1, we have

0 ≤ u0(t − τk) ≤ ‖u0‖C = r < δ, k = 1, . . . , n, t ∈ R. (3.3)

Hence from condition (F1), it follows that

f(t, u0(t − τ1), . . . , u0(t − τn)) ≤ c1u0(t − τ1) + · · · + cnu0(t − τn), t ∈ R. (3.4)

By this and (3.2), we get that

−u′′
0(t) + a(t)u0(t) ≤ c1u0(t − τ1) + · · · + cnu0(t − τn), t ∈ R. (3.5)

Integrating both sides of this inequality from 0 to ω and using the periodicity of u0, we have

∫ω

0
a(t)u0(t)dt ≤ c1

∫ω

0
u0(t − τ1)dt + · · · + cn

∫ω

0
u0(t − τn)dt

= (c1 + · · · + cn)
∫ω

0
u0(t)ds.

(3.6)

Hence, we obtain that

m

∫ω

0
u0(t)dt ≤

∫ω

0
a(t)u0(t)dt ≤ (c1 + · · · + cn)

∫ω

0
u0(t)ds. (3.7)

By the definition of cone K,
∫ω
0 u0(t)dt ≥ (mσ/M)‖u0‖C · ω > 0. From (3.7), it follows that

m ≤ c1 + · · ·+ cn, which contradicts to the assumption in Condition (F1). HenceA satisfies the
condition of Lemma 2.4 in K ∩ ∂Ω1. By Lemma 2.4, we have

i(A,K ∩Ω1, K) = 1. (3.8)

On the other hand, choose R > max{(M/mσ)H,δ}, where H is the positive constant in
condition (F2), and let e(t) ≡ 1. Clearly, e ∈ K \ {θ}. We show thatA satisfies the condition of
Lemma 2.5 in K ∩ ∂Ω2, namely, u −Au/=μv for every u ∈ K ∩ ∂Ω2 and μ ≥ 0. In fact, if there
exist u1 ∈ K ∩ ∂Ω2 and μ1 ≥ 0 such that u1 −Au1 = μ1e, since u1 − μ1e = Au1, by definition of
A and Lemma 2.2, u1 ∈ C2

ω(R) satisfies the differential equation

−u′′
1(t) + a(t)

(
u1(t) − μ1

)
= f(t, u1(t − τ1), . . . , u1(t − τn)), t ∈ R. (3.9)
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Since u1 ∈ K ∩ ∂Ω2, by the definition of K, we have

u1(t − τk) ≥ mσ

M
‖u1‖C =

mσ

M
R > H, t ∈ I, k = 1, . . . , n. (3.10)

From this and Condition (F2), it follows that

f(t, u1(t − τ1), . . . , u1(t − τn)) ≥ d1u1(t − τ1) + · · · + dnun(t − τn), t ∈ I. (3.11)

By this inequality and (3.9), we have

−u′′
1(t) + a(t)

(
u1(t) − μ1

) ≥ d1u1(t − τ1) + · · · + dnu1(t − τn), t ∈ I. (3.12)

Integrating this inequality on [0, ω] and using the periodicity of u1, we obtain that

∫ω

0
a(t)

(
u1(t) − μ1

)
dt ≥ d1

∫ω

0
u1(t − τ1)dt + · · · + dn

∫ω

0
u1(t − τn)dt

= (d1 + · · · + dn)
∫ω

0
u1(t)ds.

(3.13)

Consequently, we have that

M

∫ω

0
u1(t)dt ≥

∫ω

0
a(t)u1(t)dt ≥

∫ω

0
a(t)

(
u1(t) − μ1

)
dt

≥ (d1 + · · · + dn)
∫ω

0
u1(t)ds.

(3.14)

Since
∫ω
0 u1(t)dt ≥ (mσ/M)‖u1‖C · ω > 0, form this inequality it follows that M ≥ d1 + · · · +

dn, which contradicts to the assumption in Condition (F2). This means that A satisfies the
condition of Lemma 2.5 in K ∩ ∂Ω2. By Lemma 2.5,

i(A,K ∩Ω2, K) = 0. (3.15)

Now by the additivity of fixed point index, (3.8), and (3.15) we have

i
(
A,K ∩

(
Ω2 \Ω1

)
, K

)
= i(A,K ∩Ω2, K) − i(A,K ∩Ω1, K) = −1. (3.16)

HenceA has a fixed point inK∩(Ω2\Ω1), which is a positiveω-periodic solution of (1.1).

Proof of Theorem 1.2. Let Ω1,Ω2 ⊂ Cω(R) be defined by (3.1). We prove that the operator A
defined by (2.24) has a fixed point in K ∩ (Ω2 \Ω1) if r is small enough and R large enough.

Let r ∈ (0, δ), where δ is the positive constant in Condition (F2), and choose e(t) ≡ 1.
We prove thatA satisfies the condition of Lemma 2.5 inK∩∂Ω1, namely, u−Au/=μe for every
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u ∈ K ∩ ∂Ω1 and μ ≥ 0. In fact, if there exist u0 ∈ K ∩ ∂Ω1 and μ0 ≥ 0 such that u0 −Au0 = μ0e,
since u0 − μ0e = Au0, by definition of A and Lemma 2.2, u0 ∈ C2

ω(R) satisfies the differential
equation

−u′′
0(t) + a(t)

(
u0(t) − μ0

)
= f(t, u0(t − τ1), . . . , u0(t − τn)), t ∈ R. (3.17)

Since u0 ∈ K∩∂Ω1, by the definitions ofK andΩ1, u0 satisfies (3.3). From (3.3) and Condition
(F3), it follows that

f(t, u0(t − τ1), . . . , u0(t − τn)) ≥ d1u0(t − τ1) + · · · + dnu0(t − τn), t ∈ R. (3.18)

From this and (3.17), we see that

−u′′
0(t) + a(t)

(
u0(t) − μ0

) ≥ d1u0(t − τ1) + · · · + dnu0(t − τn), t ∈ R. (3.19)

Integrating this inequality on [0, ω] and using the periodicity of u0(t), we have

∫ω

0
a(t)

(
u0(t) − μ0

)
dt ≥ d1

∫ω

0
u0(t − τ1)dt + · · · + dn

∫ω

0
u0(t − τn)dt

= (d1 + · · · + dn)
∫ω

0
u0(t)ds.

(3.20)

From this we obtain that

M

∫ω

0
u0(t)dt ≥

∫ω

0
a(t)u0(t)dt ≥

∫ω

0
a(t)

(
u0(t) − μ0

)
dt

≥ (d1 + · · · + dn)
∫ω

0
u0(t)ds.

(3.21)

Since
∫ω
0 u0(t)dt ≥ (mσ/M)‖u0‖C · ω > 0, from the inequality above, it follows that M ≥

d1 + · · · + dn, which contradicts to the assumption in (F3). Hence A satisfies the condition of
Lemma 2.5 in K ∩ ∂Ω1. By Lemma 2.5, we have

i(A,K ∩Ω1, K) = 0. (3.22)

Then, choosing R > max{(M/mσ)H,δ}, we show thatA satisfies the condition of Lemma 2.4
in K ∩ ∂Ω2, namely, λAu/=u for every u ∈ K ∩ ∂Ω2 and 0 < λ ≤ 1. In fact, if there exist
u1 ∈ K∩∂Ω2 and 0 < λ1 ≤ 1 such that λ1Au1 = u1, then by the definition ofA and Lemma 2.2,
u1 ∈ C2

ω(R) satisfies the differential equation

−u′′
1(t) + a(t)u1(t) = λ1f(t, u1(t − τ1), . . . , u1(t − τn)), t ∈ R. (3.23)
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Since u1 ∈ K ∩ ∂Ω2, by the definition ofK, u1 satisfies (3.10). From (3.10) and condition (F4),
it follows that

f(t, u1(t − τ1), . . . , u1(t − τn)) ≤ c1u1(t − τ1) + · · · + cnu1(t − τn), t ∈ R. (3.24)

By this and (3.23), we have

−u′′
1(t) + a(t)u1(t) ≤ c1u1(t − τ1) + · · · + cnu1(t − τn), t ∈ R. (3.25)

Integrating this inequality on [0, ω] and using the periodicity of u1(t), we have
∫ω

0
a(t)u1(t)dt ≤ c1

∫ω

0
u1(t − τ1)dt + · · · + cn

∫ω

0
u1(t − τn)dt

= (c1 + · · · + cn)
∫ω

0
u1(t)ds.

(3.26)

From this we obtain that

m

∫ω

0
u1(t)dt ≤

∫ω

0
a(t)u1(t)dt ≤ (c1 + · · · + cn)

∫ω

0
u1(t)ds. (3.27)

Since
∫ω
0 u1(t)dt ≥ (mσ/M)‖u0‖C · ω > 0, from the inequality (3.27), it follows that m ≤ c1+

· · ·+cn, which contradicts to the assumption in Condition (F4). HenceA satisfies the condition
of Lemma 2.4 in K ∩ ∂Ω1. By Lemma 2.4, we have

i(A,K ∩Ω2, K) = 1. (3.28)

Now, from (3.22) and (3.28), it follows that

i
(
A,K ∩

(
Ω2 \Ω1

)
, K

)
= i(A,K ∩Ω2, K) − i(A,K ∩Ω1, K) = 1. (3.29)

HenceA has a fixed point inK∩(Ω2\Ω1), which is a positiveω-periodic solution of (1.1).

4. Remarks

In Theorems 1.1 and 1.2, the conditions (F1) and (F4) can be replaced by the following
condition:

(F5) there exist positive constants c1, . . . , cn satisfying c1 + · · · + cn < m and H > 0 such
that

f(t, x1, . . . , xn) ≤ c1x1 + · · · + cnxn, (4.1)

for t ∈ R and x1, . . . , xn ∈ [(mσ/M)H,H];

and (F2) and (F3) can be replaced by the
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(F6) there exist positive constants d1, . . . , dn satisfying d1 + · · · + dn > M andH > 0 such
that

f(t, x1, . . . , xn) ≥ d1x1 + · · · + dnxn, (4.2)

for t ∈ R and x1, . . . , xn ∈ [(mσ/M)H,H].

In fact, if condition (F5) holds, setting

Ω3 = {u ∈ Cω(R) | ‖u‖C < H}, (4.3)

similar to the proof of (3.28), we can prove that

i(A,K ∩Ω3, K) = 1, (4.4)

and if condition (F6) holds, similar to the proof of (3.15), we can prove that

i(A,K ∩Ω3, K) = 0. (4.5)

Therefore, by the proofs of Theorems 1.1 and 1.2, we have the following theorem.

Theorem 4.1. Let a ∈ C(R, (0,∞)) be a ω-periodic function, f ∈ C(R × [0,∞)n, [0,∞)) and
f(t, x1, . . . , xn)ω-periodic in t. Then in each case of the following:

(1) (F1) and (F6) hold,

(2) (F2) and (F5) hold,

(3) (F3) and (F5) hold,

(4) (F4) and (F6) hold.

Equation (1.1) has at least one positive ω-periodic solution.

Now we consider the existence of two positive periodic solutions of (1.1). If the
conditions (F2), (F3), and (F5) hold, by the proof of Theorem 1.1, condition (F2) implies that
(3.15) holds when R is large enough and R > H, and by the proof of Theorem 1.2, condition
(F3) implies that (3.22) holds when r is small enough and r < H. SinceΩ1 ⊂ Ω3 andΩ3 ⊂ Ω2,
by (3.15), (3.22), and (4.4), we have

i
(
A,K ∩

(
Ω3 \Ω1

)
, K

)
= i(A,K ∩Ω3, K) − i(A,K ∩Ω1, K) = 1,

i
(
A,K ∩

(
Ω2 \Ω3

)
, K

)
= i(A,K ∩Ω2, K) − i(A,K ∩Ω3, K) = −1.

(4.6)

This means that A has fixed-points u1 ∈ K ∩ (Ω3 \Ω1) and u2 ∈ K ∩ (Ω2 \Ω3), and u1 and u2

are two positive ω-periodic solution of (1.1). Consequently, we have the following theorem.
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Theorem 4.2. Let a ∈ C(R, (0,∞)) be a ω-periodic function and f ∈ C(R × [0,∞)n, [0,∞)) and
f(t, x1, . . . , xn) be ω-periodic in t. If (F2), (F3), and (F5) hold, then (1.1) has two positive ω-periodic
solutions.

Similar to Theorem 4.2, we have the following theorem.

Theorem 4.3. Let a ∈ C(R, (0,∞)) be a ω-periodic function, f ∈ C(R × [0,∞)n, [0,∞)), and
f(t, x1, . . . , xn)ω-periodic in t. If (F1), (F4), and (F6) hold, then (1.1) has two positive ω-periodic
solutions.
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