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This paper investigates the control and synchronization of the shunted nonlinear resistive-capa-
citive-inductance junction (RCLSJ) model under the condition of noise disturbance with only one
single controller. Based on the sliding mode control method, the controller is designed to eliminate
the chaotic behavior of Josephson junctions and realize the achievement of global asymptotic syn-
chronization of coupled system. Numerical simulation results are presented to demonstrate the
validity of the proposed method. The approach is simple and easy to implement and provides
reference for chaos control and synchronization in relevant systems.

1. Introduction

Josephson junction, a strongly nonlinear device, has attracted considerable attention due to
the advantage of ultra low noise, low power consumption, and high working frequency [1].
And thus different models were proposed as follows: the shunted linear resistive-capacitive
junction (RCSJ) [2, 3], the shunted nonlinear resistive-capacitive junction (SNRCJ) [4], the
shunted nonlinear resistive-capacitive-inductance junction (RCLSJ) [5] and the periodically
modulated Josephson junction (PMJJ) [6, 7].

The chaotic behavior of Josephson junctions has been widely investigated. Take vor-
tex dynamics, for example, Josephson vortices in intrinsic Josephson junctions made of single
crystalline Bi2Sr2CaCu2O8+δ [8], vortex dynamics in S-shaped Josephson junctions [9], vortex
dynamics in Josephson junction arrays with magnetic flux noise measurements [10], dynam-
ics of vortices in disordered Josephson junction arrays [11], vortex dynamics in Josephson
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junction arrays with percolative disorder [12]. At the same time, intrinsic Josephson junc-
tions, formed in cuprate high-Tc superconductors, have won great attention. MachHida et al.
[13] put forward microscopic theory for intrinsic Josephson junctions and established proper
model equation describing the dynamic in intrinsic Josephson junctions. Kashiwaya et al.
[14] studied the switching dynamics of Bi2Sr1.6La0.4CuO6+δ intrinsic Josephson junctions to
show the effectiveness of the strong coupling between stacked junctions. Hayashi et al. [15]
described the dynamics in a differential equation of intrinsic Josephson junctions under
applied current.

However, it is essential to avoid all types of noise, chaos, and so forth, hence the need
for chaos control and synchronization to make good use of the system. Motivated by impor-
tant applications, researchers have put forward kinds of approaches to chaos control and syn-
chronization, such as fuzzy control method [16], backstepping control method [17], feedback
control method [18, 19], adaptive control method [20], OGY method [21], and sliding mode
control method [22, 23]. As to Josephson junctions, in applications of parametric amplifiers
[24], voltage standard [25], and superconducting quantum interference devices (SQUID)
magnetometer [26], and so forth, chaos control and synchronization is of great help. Zhao and
Wang [27] investigated the SNRCJ model, which contains two state variables and showed
chaotic behavior with an external sinusoidal signal, and synchronized the model in two types
of active siding control method as follows: strong restricting of the controller form and no
superabundant restrictive assumption imposed for the controller. The study of the RCLSJ
model which includes three state variables and exhibits chaotic dynamics with external DC
bias only has been popular over years, and the model has been found to be more appro-
priate in high-frequency applications. In paper [28] a nonlinear active controller was pro-
posed to synchronize the coupled RCLSJ model, and in paper [29] the RCLSJ model was syn-
chronized via a variable structure controller with regard to uncertainties. Synchronization of
superconducting junction arrays is also important. Gaifullin et al. [30] studied the synchro-
nization of the stacked Josephson junctions array, fabricated by high-quality Bi2Sr2CaCu2O8+δ

whiskers and crystals, making it possible to be applied in the fields as voltage standard or
HTSC Josephson spectral detector. Filatrella and Pedersen [31] set up an intrinsic Josephson
junction model of the highly anisotropic BSCCO type, and a cavity is used to enhance flu-
xon synchronization in a stacked junction, providing application for enhancing microwave
radiation from BSCCO single crystals. In addition to the classic method of synchronization,
in paper [32], cluster synchronization was introduced to realize the synchronization of coup-
led Josephson junction arrays. Recently, the chaos control and synchronization of the RCLSJ
model has been achieved in paper [33, 34]. In both papers, three control inputs were intro-
duced to realize the achievement of the model control, and although the synchronization of
the model was achieved with one control term, the control inputs did not consider the exter-
nal disturbance in practical systems.

Consequently, the aim of this paper lies in the achievement of the control and syn-
chronization of the RCLSJ model by means of sliding mode method with only one con-
trol term under the condition of noise disturbance. It is worth noting the control and syn-
chronization aim considered in this paper can be both achieved with only a single control
input. Furthermore, the single controller proposed in this paper regardless of the system’s
noise disturbance, which is of great significance in reducing the cost and complexity for con-
troller implementation. This paper is organized as follows. Section 2 describes the model and
discusses the dynamics behavior of the system, and Section 3 presents the sliding mode
designs, together with numerical simulations. In Section 4, we summarize this work.
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2. The Model of Josephson Junction System and Dynamics Analysis

A standard form of the RCLSJ model [35] is proposed as

h

4πe
dγ

dt
= V,

C
dV

dt
+

V

RV
+ Ic sin

(
γ
)
+ Is = I,

L
dIs
dt

+ IsRs = V,

(2.1)

where Rs and L are the shunt resistance and inductance, Is the shunt current, I the input DC
bias. Ic, C, RV are critical current, capacitance, and resistance of the junction, respectively. The
junction resistance RV is nonlinear, expressed as follows:

RV =

{
RN, |V | > Vg

Rsg, |V | ≤ Vg

, with Vg =
2Δ
e

, (2.2)

where RN and Rsg are the normal state resistance and energy gap resistance, Vg the gap vol-
tage. γ and V are the superconducting order parameter phase difference and the junction
voltage.

For numerical simulation and analysis, the standard form of nonlinear nondimensio-
nal differential equation is got as

dx1

dτ
= x2,

dx2

dτ
=

1
βc

[
i − gx2 − sin(x1) − x3

]
,

dx3

dτ
=

1
βL

(x2 − x3),

(2.3)

with x1 = γ, x2 = V/IcRs, x3 = Is/Ic.

Normalized time: τ = ωct, ωc = 4πIcRs/h.

Normalized current: i = I/Ic.

Normalized voltage: v = V/IcRs.

Other dimensionless parameters: βc = 4πIcR2
sC/h, βL = 4πeIcL/h, g = Rs/RV , where

βc and βL are simplified capacitance and inductance, respectively. Further, the equation of
dynamic system [33] can be obtained as

ẋ1 = x2,

ẋ2 = a[d − cx2 − sin(x1) − x3],

ẋ3 = b(x2 − x3).

(2.4)
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Figure 1: The x2-x3 two-dimensional phase diagram.
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Figure 2: The bifurcation diagrams varying with d.

Let βc = 0.707, βL = 2.68, g = 0.0478, i = 1.2, that is, a = 1.4144, b = 0.3731, c = 0.0478,
d = 1.2 and the initial condition (0, 0, 0). The phase diagram is shown in Figure 1.

Bifurcation diagrams can be applied to discover the transitions between periodic
motion and chaotic motion of the system with the system parameter varying. Figure 2 dis-
plays the bifurcation of the system (2.4) with respect to parameter d.

3. Design of the Controller with Only One Control Term

3.1. Chaos Control in RCLSJ Model

The controlled system is defined as follows:

ẋ1 = x2,

ẋ2 = a[d − cx2 − sin(x1) − x3] + δ(t) + u,

ẋ3 = b(x2 − x3),

(3.1)
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where u is the control input and δ(t) is the external disturbance of the system. Assume dis-
turbance term δ(t) is bounded, that is, |δ(t)| ≤ αwhere α is positive constant.

The goal is to design a sliding controller and stabilize the system for any given initial
condition. First of all, an adaptive switching surface is defined as

S(t) = x2(t) + ϕ(t), (3.2)

where ϕ(t) is an adaptive function given by

ϕ̇ = x1 + bx3 + acx2 + ρx2, ρ > 0. (3.3)

When the system operates in sliding mode, it satisfies the following equation:

S(t) = Ṡ(t) = 0. (3.4)

Therefore,

Ṡ(t) = ẋ2(t) + ϕ̇(t) = 0 =⇒ ẋ2(t) = −ϕ̇(t) = −x1 − bx3 − acx2 − ρx2. (3.5)

From (3.5) the following sliding mode dynamics can be obtained as

ẋ1 = x2 ,

ẋ2 = −x1 − bx3 − acx2 − ρx2,

ẋ3 = b(x2 − x3).

(3.6)

In the following, the Lyapunov stability theory is used to analyze the stability of the sliding
mode dynamics (3.6). The Lyapunov function is selected as v(t) = 0.5(x1

2 + x2
2 + x3

2), which
leads to

v̇ = x1ẋ1 + x2ẋ2 + x3ẋ3 = x1x2 + x2
(−x1 − bx3 − acx2 − ρx2

)
+ x3b(x2 − x3)

= −(ac + ρ
)
x2

2 − bx3
2 ≤ 0.

(3.7)

According to Lyapunov stability theory, it appears that the sliding motion on the sliding
manifold is stable and ensures limt→∞‖[x1, x2, x3]‖ = 0 where ‖ · ‖ is the Euclidean norm of a
vector.

The next step is to design a control scheme to drive the system trajectories onto the
sliding mode s = 0. The equivalent control law is obtained:

ueq = −x1 − bx3 − ρx2 − a(d − sinx1 − x3) − δ(t). (3.8)

In general, the overall control signal has the following form:

u = ueq + ks sgn(S), (3.9)

where ks is the switching gain.
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In practice, the system uncertainty, δ(t), is unknown. To overcome this, the equivalent
control input is therefore modified to

u = ueq + ks sgn(S) = −x1 − bx3 − ρx2 − a(d − sinx1 − x3) + ks sgn(S). (3.10)

Theorem 3.1. When ks < −α, the controller (3.10) can make the system (2.4) reach sliding mode S =
0 and the trajectory of the system converge to the sliding surface S(t) = 0 in a finite time.

Proof. The Lyapunov function of the system is constructed as V = 0.5S2, and then its first deri-
vative with respect to time is

V̇ = SṠ = S
[
a(d − cx2 sin(x1) − x3) + x1 + bx3 + acx2 + ρx2 + δ(t) + u

]

= S
[
δ(t) + ks sgn(S)

] ≤ α|S| + ks|S| = (ks + α)|S| < 0.
(3.11)

Thus the proof is achieved completely.

Without loss of generality, we choose the uncertainty term δ(t) = 0.1 cos(t), where
|δ(t)| ≤ α = 0.1 and the initial conditions of the system [0.5, 0.8, 0.4], ks = −7 and ρ = 7. The
system parameters a = 1.4144, b = 0.3731, c = 0.0478, d = 1.2 are specified for simulation.

The simulation results are modeled in MATLAB software by using fourth-order
Runge-Kutta method and shown in the following figures. Figure 3 shows the time responses
of the state variables of the uncontrolled system. Figure 4 shows the time domain charts of
state variables of system when the control is active. Figure 5 shows the time-varying graph
of sliding surface. Obviously, the simulation results presented confirm the validity of the
proposed control.

3.2. Synchronization of the Coupled RCLSJ Model

For the advantage of ultralow noise, low power consumption and high working frequency
for RCL, we were led to ask whether it would be possible to synchronize two different RCLSJ
systems together.

The controlled system with noise perturbation is described as follows:

ẏ1 = y2,

ẏ2 = a
[
d − cy2 − sin

(
y1
) − y3

]
+ δ(t) +U,

ẏ3 = b
(
y2 − y3

)
,

(3.12)

where U is the control input and δ(t) is the external disturbance of the system. Assume dis-
turbance term δ(t) is bounded, that is, |δ(t)| ≤ δ where δ is positive constant.
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Figure 3: The time domain charts of state variables without controller.

Define the error states of system as follows:

e1 = y1 − x1,

e2 = y2 − x2,

e3 = y3 − x3.

(3.13)

The error dynamics system is obtained:

ė1 = e2,

ė2 = −a(ce2 + e3) + d(t) +U1,

ė3 = b(e2 − e3),

(3.14)

withU1 = U − a(siny1 − sinx1).
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We establish an extended system as follows:

ė1 = e2,

ė2 = e4,

ė3 = b(e2 − e3),

ė4 = −ab(e2 − e3) − ace4 + ḋ(t) + U̇1,

(3.15)

and choose a sliding mode surface s = 0, where

s(t) = e4 +
∫ t

0
(c1e1 + c2e2 + c4e4)dτ (3.16)

and c1, c2, c4 are constants waiting for designing.

Theorem 3.2. If the controllerU1 is selected as

U1 =
∫ t

0

[
ace4 + ab(e2 − e3) − c1e1 − c2e2 − c4e4 − k sgn(s(t))

]
dτ, (3.17)

where s(t) is as in (3.16) and k is constant satisfying k > δ + 1, then the states of the error system
(3.13) will approach the sliding mode surface s = 0 in a finite time.

Proof. The Lyapunov function of the system is selected as V = s2; with the section of the
sliding mode surface (3.16) and the controller (3.17), we have

V̇ = 2s(ė4 + c1e1 + c2e2 + c4e4)

= 2s[−ace4 − ab(e2 − e3) + c1e1 + c2e2 + c4e4 − δ(t) + u̇1]

= 2s
[−ḋ(t) − k sgn(s)

] ≤ 2
(∣∣−ḋ(t)∣∣ − k

)|s| ≤ −2|s| = −2V 1/2

(3.18)

which implies that, V 1/2(t) ≤ V 1/2(0)−t, t ∈ [0, ts) and V (t) = 0when t ≥ ts where ts = V 1/2(0).
The proof is finished as desired.

Next we analyze the dynamics of the error system on the sliding manifold. On the
sliding manifold s = 0 the error system (3.15) reads

ė1 = e2,

ė2 = e4,

ė3 = b(e2 − e3),

ė4 = −c1e1 − c2e2 − c4e4 + δ(t).

(3.19)
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Thus,

⎛

⎝
e1
e2
e4

⎞

⎠ = eAt

⎡

⎣

⎛

⎝
e1(0)
e2(0)
e4(0)

⎞

⎠ +
∫ t

0
e−As

⎛

⎝
0
0

ḋ(t)

⎞

⎠ds

⎤

⎦, (3.20)

where

A =

⎛

⎝
0 1 0
0 0 1
−c1 −c2 −c4

⎞

⎠. (3.21)

Its characteristic polynomial is

f(λ) = |λI −A| = λ3 + c4λ
2 + c2λ + c1. (3.22)

According to Routh-Hurwitz theorem, we know that the real parts of its all characteristic
roots are negative if and only if

Δ1 = c4 > 0, Δ2 = c4c2 − c1 > 0, Δ3 = c1(c4c2 − c1) > 0. (3.23)

Therefore, there exists positive constants a1 and b1 such that |eAtx| ≤ a1e
−b1t|x| for every

x ∈ R3 and t ≥ 0. Thus,

|ei| ≤ a1e
−b1tmax

i=1,2,4
|ei(0)| + a1δ

b1
, i = 1, 2, 4. (3.24)

Additionally, (3.19) implies that

e3 = e−bt
(

e3(0) +
∫ t

0
ebtbe2dt

)

. (3.25)

Therefore,

|e3| ≤ e−bt
(

|e3(0)| +
∫ t

0
ebt|be2|dt

)

. (3.26)

Obviously, we can get the following theorem.

Theorem 3.3. If the controller U is selected as U = U1 + a(siny1 − sinx1), where U1 =
∫ t
0[ace4 +

ab(e2−e3)−c1e1−c2e2−c4e4−k sgn(s(t))]dτ , c1, c2, c4 are constants satisfying (3.23) and k > δ+1,
there exists a constant M such that the controlled chaotic system with noise perturbation (3.12) is syn-
chronous with the system (2.4) with ultimate error bound Mδ, that is:

lim
t→∞
∣∣y1 − x1

∣∣ ≤ Mδ, lim
t→∞
∣∣y2 − x2

∣∣ ≤ Mδ, lim
t→∞
∣∣y3 − x3

∣∣ ≤ Mδ. (3.27)
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Figure 6: The time response of the error system and sliding mode surface.

Without loss of generality, we choose the uncertainty term δ(t) = 0.1 cos(t), where
|δ(t)| ≤ δ = 1. In the following numerical simulations, the parameters of the system are a =
1.4144, b = 0.3731, c = 0.0478, d = 1.2; the initial conditions of the system (2.4) and the system
(3.12) are [0.4 0.5 0.7]T and [0.5 0.6 0.8]T , respectively. The constants in the sliding mode are
selected c1 = 1, c2 = 2, c4 = 2. And the constant in the sliding mode controller is selected as
k = 10.

Numerical simulations are presented to demonstrate the effectiveness of the proposed
method. Figure 6 displays the time response of the synchronization errors defined in (3.13)
and sliding mode surface defined in (3.16) when the control signal has been activated. It is
very clear that the error dynamics converge asymptotically to zero as soon as the control is
activated. The numerical simulation verifies the theoretical analysis.

4. Conclusions and Discussion

We have investigated the control and synchronization of the RCLSJ model via sliding mode
method. In the sliding mode design, the single controller is constructed in the case of noise
disturbance for the chaos control of the junction, and numerical simulation results are
employed to verify the effectiveness of the control scheme. And it is same with the chaos
synchronization of the junction. In practical system, with noise disturbance considered, the
control scheme is of significant importance due to its simple and effective execution as well
as good robustness.
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Here, another interesting remark is that chaos control and chaos synchronization could
be realized by using the same method. Comparing the chaos control and synchronization, we
can get the conclusion that chaos control and chaos synchronization are the same with each
other in essence. In other words, chaos control is special case of chaos synchronization, and
it is considered to achieve synchronization with O (0, 0, 0). Moreover, applying this control
method to multiscroll chaotic systems [36–39] is our future work.
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