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A variational homotopy perturbation method (VHPM) which is based on variational iteration
method and homotopy perturbation method is applied to solve the approximate solution of the
fractional initial boundary value problems. The nonlinear terms can be easily handled by the
use of He’s polynomials. It is observed that the variational iteration method is very efficient and
easier to implements; illustrative examples are included to demonstrate the high accuracy and fast
convergence of this new algorithm.

1. Introduction

Recently, it has turned out that many phenomena in engineering, physics, chemistry, and
other sciences [1–3] can be described very successfully by models using mathematical tools
for fractional calculus. The importance of obtaining the exact and approximate solutions
of fractional nonlinear equations in physics and mathematics is still a significant problem
that needs new methods to discover exact and approximate solutions. But these nonlinear
fractional differential equations are difficult to get their exact solutions [4–7]. So, some semi-
analytical techniques have also largely been used to solve these equations, such as, Adomian
decomposition method [8, 9], variational iteration method [10–12], differential transform
method [13, 14], Laplace decomposition method [15, 16], and homotopy perturbation
method [17–23]. Most of these methods have their inbuilt deficiencies like the calculation of
Adomian polynomials, the Lagrange multiplier, divergent results, and huge computational
work.

Variational homotopy perturbation method [24–26] has a very simple solution pro-
cedure and absorbs all of the positive features of variational iteration and homotopy
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perturbationmethods and is highly compatible with the diversity of the physical problems. In
this work, we will use variational homotopy perturbation method to solve fractional partial
differential equations with initial and boundary conditions. The proposed algorithm provides
the solution in a rapid convergent series which may lead to the solution in a closed form. This
paper considers the effectiveness of the variational homotopy perturbationmethod in solving
fractional partial equations.

2. Description of the VHPM

To illustrate the basic idea of this method [24, 25], we consider a general fractional nonlinear
nonhomogeneous partial differential equation with initial conditions of the following form:

Dα
t u(x, t) + Ru(x, t) +Nu(x, t) = g(x, t),

u(x, 0) = h(x), ut(x, 0) = f(x),
(2.1)

where g(x, t) is the inhomogeneous term, N represents the general nonlinear differential
operator, R is the linear differential operator, andDα

t u(x, t) is the Caputo fractional derivative
of function u(x, t)which is defined as

0D
α
t u(x, t) =

1
Γ(n − α)

∫ t

0

u(n)(x, τ)dτ

(t − τ)α+1−n
, (n − 1 < Re(α) ≤ n, n ∈ N), (2.2)

where Γ(·) denotes the Gamma function. The properties of fractional derivative can be found
in [1, 2]. According to variational iteration method [10, 11], we can construct a correction
functional as follows:

un+1(x, t) = un(x, t) +
∫ t

0
λ(ξ)

(
∂mun

∂ξm
(x, ξ) + Run(x, ξ) +Nũn(x, ξ) − g(x, ξ)

)
dξ, (2.3)

where the values of the natural number m can be 1 and 2 corresponding to 0 < α ≤ 1 and
1 < α ≤ 2, respectively, and λ is a Lagrange multiplier [11], which can be identified optimally
via variational iteration method, for m = 1 and λ = −1 and for m = 2 and λ = ξ − t. The
subscripts n denote the nth approximation, and ũn is considered as a restricted variation.
That is, ũnδ = 0, (2.3) is called a correction functional. In this method, it is required first to
determine the Lagrange multiplier λ optimally. The successive approximation un+1, n ≥ 0,
of the solution u will be readily obtained upon using the determined Lagrange multiplier
and any selective function u0; consequently, the solution is given by u = limn→∞un. In the
homotopy perturbation method, the basic assumption is that the solutions can be written as
a power series in p:

u(x, t) =
∞∑
n=0

pnun(x, t) = u0 + pu1 + p2u2 + p3u3 + · · · , (2.4)
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and the nonlinear term can be decomposed as

Nu(x, t) =
∞∑
n=0

pnHn(u), (2.5)

where p ∈ [0, 1] is an embedding parameter. Hn(u) is He’s polynomials [26] that can be
generated by

Hn(u0, . . . , un) =
1
n!

∂n

∂pn

[
N

( ∞∑
i=0

piui

)]
p=0

, n = 0, 1, 2 . . . . (2.6)

The variational homotopy perturbation method is obtained by the elegant coupling of
correction functional (2.3) of variational iteration method with He’s polynomials and is given
by

∞∑
n=0

pnun(x, t)

= u0(x, t) + p

∫ t

0
λ(ξ)

( ∞∑
n=0

pn
∂αun

∂ξα
(x, ξ) +

∞∑
n=0

pnRu(x, ξ) +
∞∑
n=0

pnHn(u) − g(x, ξ)

)
dξ.

(2.7)

Comparisons of like powers of p give solutions of various orders.
This method does not resort to linearization or assumptions of weak nonlinearity, the

solutions generated in the form of general solution, and it is more realistic compared to the
method of simplifying the physical problems.

3. Approximate Solutions of Fractional Equations

In order to assess the advantages and the accuracy of the variational homotopy perturbation
method for fractional equations, we have applied it to the following several problems.

Case 1. Consider the one-dimensional fractional initial boundary value problem which
describes the heat-like models [24]:

Dα
t u(x, t) =

1
2
x2uxx, 0 < x < 1, t > 0, (3.1)

with boundary conditions

u(0, t) = 0, u(1, t) = et,

u(x, 0) = x2,
(3.2)
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where 0 < α ≤ 1, and the correct functional is given as

un+1(x, t) = x2 −
∫ t

0

(
∂αun

∂ξα
(x, ξ) − 1

2
x2unxx

)
dξ. (3.3)

Applying the modified variational iteration method, one has

∞∑
n=0

pnun(x, t) = x2 − p

∫ t

0

((
∂αu0

∂ξα
+ p

∂αu1

∂ξα
+ p2

∂αu2

∂ξα
+ · · ·

)

−1
2

(
∂2u0

∂x2
+ p

∂2u1

∂x2
+ p2

∂2u2

∂x2
+ · · ·

))
dξ.

(3.4)

Comparing the coefficient of like powers of p,

p0 : u0(x, t) = x2,

p1 : u1(x, t) = x2(1 + t),

p2 : u2(x, t) = x2(1 + t) + tx2 +
t2x2

2
− t2−αx2

Γ(3 − α)
,

p3 : u2(x, t) = x2 + 3tx2 +
3t2x2

2
+
t3x2

6
+

t3−2αx2

Γ(4 − 2α)
− 3t2−αx2

Γ(3 − α)
− 2t3−βx2

Γ
(
4 − β

) ,
...

(3.5)

and so on, in this manner the rest of component of the solution can be obtained. If we take
α = 1, the first few components of the solution of (3.1) are as follows:

u0(x, t) = x2,

u1(x, t) = x2(1 + t),

p2 : u2(x, t) = x2

(
1 + t +

t2

2!

)
,

p3 : u2(x, t) = x2

(
1 + t +

t2

2!
+
t3

3!

)
,

...

(3.6)

The solution of (3.1) in series form is given by

u(x, t) = x2

(
1 + t +

t2

2!
+
t3

3!
+ · · ·

)
. (3.7)

The series solution in a closed form is given by u(x, t) = x2et, which was given in [24].
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Case 2. Consider the following homogeneous fractional coupled Burger’s equation [26]:

Dα
t u − uxx − 2uux + (uv)x = 0, (3.8)

D
β
t v − vxx − 2vvx + (uv)x = 0, (3.9)

with initial conditions

u(x, 0) = sinx, (3.10)

v(x, 0) = sinx, (3.11)

where 0 < α, β ≤ 1. The correction functional for the previous fractional coupled system is
given by

un+1(x, t) = un(x, t) −
∫ t

0

(
∂αun

∂ξα
− ∂2un

∂x2
− 2un(un)x + (unvn)x

)
dξ, (3.12)

vn+1(x, t) = vn(x, t) −
∫ t

0

(
∂βvn

∂ξβ
− ∂2vn

∂x2
− 2vn(vn)x + (unvn)x

)
dξ. (3.13)

Applying the variational homotopy perturbation method using He’s polynomials, we get

u0 + pu1 + p2u2 + · · · = u0(x, t) − p

∫ t

0

((
∂αu0

∂ξα
+ p

∂αu1

∂ξα
+ · · ·

)
−
(

∂2u0

∂x2

)
+ p

∂2u1

∂x2
+ · · ·

)
dξ,

+ p

∫ t

0

(
u0u0x + p(u0u1x + u1u0x) + p2(u0u2x + u1u1x + u2u0x + · · · )

)

−
(
(u0v0)xx + p(u1v0 + u0v1)xx + p2(u0v2 + u1v1 + u0v2)xx

)
dξ,

v0 + pv1 + p2v2 + · · · = v0(x, t) − p

∫ t

0

((
∂βv0

∂ξβ
+ p

∂βv1

∂ξβ
+ · · ·

)
−
(

∂2v0

∂x2

)
+ p

∂2v1

∂x2
+ · · ·

)
dξ

+ p

∫ t

0

(
v0v0x + p(v0v1x + v1v0x) + p2(v0v2x + v1v1x + v2v0x + · · · )

)

−
(
(u0v0)xx + p(u1v0 + u0v1)xx + p2(u0v2 + u1v1 + u0v2)xx

)
dξ.

(3.14)

Comparing the coefficient of like powders of p, one has

u0(x, 0) = sinx,

v0(x, 0) = sinx,

u1(x, 0) = sinx − t sinx,
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v1(x, 0) = sinx − t sinx,

u2(x, 0) = sinx − 2t sinx +
t2 sinx

2
+
t2−α sinx
Γ(3 − α)

,

v2(x, 0) = sinx − 2t sinx +
t2 sinx

2
+
t2−β sinx
Γ
(
3 − β

) ,

u3(x, 0) = sinx − 3t sinx +
3t2 sinx

2
− t3 sinx

6
+
t3−2α sinx
Γ(4 − 2α)

+
3t2−α sinx
Γ(3 − α)

− 2t3−α sinx
Γ(4 − α)

,

v3(x, 0) = sinx − 3t sinx +
3t2 sinx

2
− t3 sinx

6
+
t3−2β sinx
Γ
(
4 − 2β

) +
3t2−β sinx
Γ
(
3 − β

) − 2t3−β sinx
Γ
(
4 − β

) .

(3.15)

If we take α = β = 1, the series solutions in closed-form are given by

u(x, t) = sinx

(
1 − t +

t2

2!
− t3

3!
+
t4

4!
+ · · ·

)
= exp(−t) sinx,

v(x, t) = sinx

(
1 − t +

t2

2!
− t3

3!
+
t4

4!
+ · · ·

)
= exp(−t) sinx,

(3.16)

which is in full agreement with the result given in [26].
Figure 1 depicts the third-order approximate solutions u(x, t) or v(x, t) for (3.8)–(3.11)

by using the variational homotopy perturbation method when choosing x = 0.8. From the
figure, it is clear to see the time evolution of fractional Burger equation and we know that the
approximate solution of the model is continuous with the fractional parameter α. Figure 2
shows the third-order approximate solutions u(x, t) or v(x, t) for (3.8)–(3.11) when t = 0.8,
and we also know that the solution of the fractional nonlinear equation changes with the
parameters α.

Case 3. In this case, we consider the space fractional backward Kolmogorov equation as fol-
lows [27]:

∂u(x, t)
∂t

=
(x + 1)∂βu

∂xβ
+

(
x2et

)
∂2βu

∂x2β
, (3.17)

subject to the initial condition:

u(x, 0) = x + 1, (3.18)

where 0 < β ≤ 1. Space fractional derivative is also the Caputo definition with respect to x
and is defined as

D
β
xu(x, t) =

1
Γ
(
m − β

)
∫x

0

u(m)(ξ, t)dξ

(x − ξ)β+1−m
(
m − 1 < Re

(
β
) ≤ m,m ∈ N

)
. (3.19)
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Figure 1: The surface of third-order approximate solution u(x, t) of (3.8) and (3.9) when x = 0.8.
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Figure 2: The surface of third-order approximate solution u(x, t) of (3.8) and (3.9)when t = 0.8.

The correction functional for the previous space fractional system is given by

un+1 = un −
∫ t

0

(
∂un(x, ξ)

∂ξ
− (x + 1)∂βun

∂xβ
−
(
x2eξ

)
∂2βun

∂x2β

)
dξ. (3.20)

Applying the modified variational iteration method, one has

∞∑
n=0

pnun(x, t) = x + 1 −
∫ t

0

(
∂
∑∞

n=0 p
nun(x, t)
∂ξ

− (x + 1)∂β
∑∞

n=0 p
nun(x, t)

∂xβ

−
(
x2eξ

)
∂2β

∑∞
n=0 p

nun(x, t)

∂x2β

)
dξ.

(3.21)
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Comparing the coefficient of like powders of P , we can obtain the following approximations:

u0 = x + 1,

u1 = 1 + x − 2x3−2β

Γ
(
2 − 2β

) +
2etx3−2β

Γ
(
2 − 2β

) +
tx1−β

Γ
(
2 − β

) +
tx2−β

Γ
(
2 − β

) ,

u2 = 1 + x +
6x5−4β

Γ
(
4 − 4β

) − 12etx5−4β

Γ
(
4 − 4β

) +
6etx5−4β

Γ
(
4 − 4β

) − 10x5−4ββ

Γ
(
4 − 4β

) +
20etx5−4ββ

Γ
(
4 − 4β

)

− 10e2tx5−4ββ

Γ
(
4 − 4β

) +
4x5−4ββ2

Γ
(
4 − 4β

) − 8etx5−4ββ2

Γ
(
4 − 4β

) +
4e2tx5−4ββ2

Γ
(
4 − 4β

) +
x3−3ββ

Γ
(
2 − 3β

) − etx3−3β

Γ
(
2 − 3β

)

+
ettx3−3β

Γ
(
2 − 3β

) +
2x4−3ββ

Γ
(
3 − 3β

) − 2etx4−3β

Γ
(
3 − 3β

) +
2ettx4−3β

Γ
(
3 − 3β

) − x4−3ββ

Γ
(
3 − 3β

) +
etx4−3ββ

Γ
(
3 − 3β

)

+
tx2−β

Γ
(
2 − β

) − ettx4−3ββ

Γ
(
3 − 3β

) +
t2x1−2β

2Γ
(
2 − 2β

) +
t2x2−2β

2Γ
(
2 − 2β

) − x3−2β

Γ
(
2 − 2β

) +
etx3−2β

Γ
(
2 − 2β

)

+
tx1−β

Γ
(
2 − β

) +
2etx3−3βΓ

(
4 − 2β

)
Γ
(
4 − 3β

)
Γ
(
2 − 2β

) − 2x3−3βΓ
(
4 − 2β

)
Γ
(
4 − 3β

)
Γ
(
2 − 2β

) − 2tx3−3βΓ
(
4 − 2β

)
Γ
(
4 − 3β

)
Γ
(
2 − 2β

)

− 2x4−3βΓ
(
4 − 2β

)
Γ
(
4 − 3β

)
Γ
(
2 − 2β

) +
2etx4−3βΓ

(
4 − 2β

)
Γ
(
4 − 3β

)
Γ
(
2 − 2β

) − 2tx4−3βΓ
(
4 − 2β

)
Γ
(
4 − 3β

)
Γ
(
2 − 2β

)

+
t2x2−2βΓ

(
3 − β

)
2Γ

(
3 − 2β

) +
t2x3−2βΓ

(
3 − β

)
2Γ

(
3 − 2β

) ,

(3.22)

and so on; in the same manner the rest of components of the iteration formula (3.21) can
be obtained using the Mathematica package. When fractional derivatives are β = 1, the
exact solution of (3.17) was given in [27] using homotopy perturbation method and the
approximate solution of (3.17) is

u0 = x + 1,

u1 = (x + 1)(1 + t),

u2 = (x + 1)

(
1 + t +

t2

2!

)
,

...

(3.23)

and so on. Hence, we have the closed form

u(x, t) = (x + 1)

(
1 + t +

t2

2!
+
t3

3!
+ · · ·

)
= exp(t)(x + 1), (3.24)

which is the exact solution of the corresponding integer problem.
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4. Conclusion

In this work, a variational homotopy perturbation method which is based on homotopy
perturbation method and variational iteration method is used to solve fractional partial equa-
tions. The nonlinear terms can be easily handled by the use of He’s polynomials. It is worth
mentioning that the method is capable of reducing the volume of the computational work
as compared to the classical methods while still maintaining the high accuracy of the result,
and the size reduction amounts to an improvement of the performance of the approach. The
VHPM can be applied for some other engineering system with less computational work.
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