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We introduce two powerful methods to solve the generalized Zakharov equations; one is the
homotopy perturbation method and the other is the homotopy analysis method. The homotopy
perturbation method is proposed for solving the generalized Zakharov equations. The initial
approximations can be freely chosen with possible unknown constants which can be determined
by imposing the boundary and initial conditions; the homotopy analysis method is applied to
solve the generalized Zakharov equations. HAM is a strong and easy-to-use analytic tool for
nonlinear problems. Computation of the absolute errors between the exact solutions of the GZE
equations and the approximate solutions, comparison of the HPM results with those of Adomian’s
decomposition method and the HAM results, and computation the absolute errors between the
exact solutions of the GZE equations with the HPM solutions and HAM solutions are presented.

1. Introduction

Nonlinearpartial differential equations are useful in describing the various phenomena in
disciplines. Apart from a limited number of these problems, most of them do not have a
precise analytical solution, so these nonlinear equations should be solved using approximate
methods.

The application of the homotopy perturbation method (HPM) [1, 2] in nonlinear
problems has been devoted by scientists and engineers, because this method is continuously.

Deform a simple problem which is easy to solve into the under study problem which
is difficult to solve. The homotopy perturbation method was first proposed by He [3–6].
For solving differential and integral equations, linear and nonlinear has been the subject
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of extensive analytical and numerical studies. The method is a coupling of the traditional
perturbation method and homotopy in topology. This method, which does not require a
small parameter in an equation, has a significant advantage in that it provides an analytical
approximate solution to a wide range of nonlinear problems in applied sciences. This HPM
has already been applied successfully to solve the Laplace equation, nonlinear dispersive
K(mp) equations, heat radiation equations, nonlinear integral equations, nonlinear heat
conduction and convection equations, nonlinear oscillators, nonlinear Schrodinger equations,
nonlinear wave equations, nonlinear chemistry problems, and other fields [7]. This HPM
yields a very rapid convergence of the solution series in most cases, usually only a few
iterations leading to very accurate solutions. Thus He’s HPM is a universal one which can
solve various kinds of nonlinear equations. The HPM yields a very rapid convergence of
the solution series in the most cases. The method does not depend on a small parameter
in the equation. Using homotopy technique in topology, a homotopy is constructed with an
embedding parameter p ∈ [0, 1] which is considered as a “small parameter.” No need to
linearization or discretization; large computational work and round-off errors are avoided. It
has been used to solve effectively, easily, and accurately a large class of nonlinear problems
with approximations. These approximations converge rapidly to accurate solutions [7–10].

TheHPMwas successfully applied to nonlinear oscillators with discontinuities [4] and
bifurcation of nonlinear problem [11]. In [6], a comparison of HPM and homotopy analysis
method was made.

In [12] the homotopy perturbation method is applied to compute the Laplace
transform and construct solitary wave solutions for a generalized Hirota-Satsuma-coupled
KdV equation [13]. In [14] the HPM is employed to compute an approximation to the
solution of the epidemic model. As well, in [15] is applied the homotopy perturbation
method for solving the Lane-Emden-type singular IVPs problem, in [16] using the homotopy
perturbation method to find exact solutions of nonlinear differential-difference equations.

In 1992, Liao employed the basic ideas of the homotopy in topology to propose
a general analytic method for nonlinear problems, namely, homotopy analysis method
(HAM) [17–20]. This method has been successfully applied to solve many types of nonlinear
problems by others [21–25].

In this paper, we consider the generalized Zakharov equations (GZE) which are a set
of coupled equations and can be written as [26–29]

i
∂E

∂t
+
∂2E

∂x2
− 2β|E|2E + 2nE = 0,

∂2n

∂t2
− ∂2n

∂x2
+
∂2|E|2
∂x2

= 0,

(1.1)

where β is an arbitrary constant and E is the envelope of the high-frequency electric
field, and n is the plasma density measured from its equilibrium value. When β = 0,
this system is reduced to the classical Zakharov equations of plasma physics. Because the
GZE is much closer to the realistic model in plasma, it is meaningful for us to study the
solitary wave solutions of the GZE. The motivation of this paper is to apply the Homotopy
perturbation method and the homotopy analysis method to the problem mentioned above.
When implementing the homotopy perturbation method (HPM) and the homotopy analysis
method (HAM), we get the explicit solutions of the GZE equations without using any
transformation method. Furthermore, we will show that considerably better approximations
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related to the accuracy level would be obtained. Comparing the HPM results for the
study problem with the Adomian decomposition method (ADM) results takes six terms in
evaluating the approximate solutions and HAM results which take eight terms in evaluating
the approximate solutions of the generalized Zakharov equations.

2. Basic Idea of He’s Homotopy Perturbation Method

The homotopy perturbation method is a combination of the classical perturbation technique
and homotopy technique, which has eliminated the limitations of the traditional perturbation
methods. This technique can have full advantage of the traditional perturbation techniques.
To illustrate the basic idea of the homotopy perturbation method for solving nonlinear
differential equations, we consider the following nonlinear differential equation:

A(u) − f(r) = 0, r ∈ Ω, (2.1)

subject to boundary condition

B

(
u,

∂u

∂n

)
= 0, r ∈ Γ, (2.2)

where A is a general differential operator, B is a boundary operator, f(r) is a known analytic
function, and Γ is the boundary of the domain Ω.

The operator A can, generally speaking, be divided into two parts: a linear part L and
a nonlinear part N. Equation (2.1) therefore can be rewritten as follows:

L(u) +N(u) − f(r) = 0. (2.3)

By the homotopy technique, we construct a homotopy V (r, p) : Ω×[0, 1] → �, which satisfies

H
(
V, p

)
=
(
1 − p

)
[L(V ) − L(u0)] + p

[
A(V ) − f(r)

]
= 0, p ∈ [0, 1], r ∈ Ω, (2.4)

or

H
(
V, p

)
= L(V ) − L(u0) + pL(u0) + p

[
N(V ) − f(r)

]
= 0, (2.5)

where p ∈ [0, 1] is an embedding parameter and u0 is an initial approximation of (2.1)which
satisfies the boundary conditions. It follows from (2.4) and (2.5) that we will have,

H(V, 0) = L(V ) − L(u0), H(V, 1) = A(V ) − f(r). (2.6)

Thus, the changing process of p from zero to unity is just that of v(r, p) from u0(r) to u(r). In
topology, this is called deformation and L(v) − L(u0), A(v) − f(r) are called homotopic.
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According to the HPM, we can first use the embedding parameter p as a “small
parameter,” and assume that the solution of (2.4) and (2.5) can be written as a power series
in p:

V = V0 + pV1 + p2V2 + · · · . (2.7)

Setting p = 1 results in the approximate solution of (2.1):

u = lim
p→ 1

V = V0 + V1 + V2 + · · · . (2.8)

The series (2.8) is convergent for most cases; however, the convergent rate depends upon the
nonlinear operator A(V ) (the following opinions are suggested by [2, 30]).

(1) The second derivative of N(V ) with respect to V must be small because the
parameter may be relatively large; that is, p → 1.

(2) The norm of L−1∂N/∂V must be smaller than one so that the series converges.

3. Basic Idea of Homotopy Analysis Method

In this paper, we apply the homotopy analysis method [17–20] to find the approximate
solutions for the problem. Let us consider the following differential equation:

N[z(x, t)] = 0, (3.1)

where N is a nonlinear operator, x and t denote independent variables, and z(x, t) is an
unknown function, respectively. For simplicity, we ignore all boundary or initial conditions,
which can be treated in the similar way. By means of generalizing the traditional homotopy
method, Liao [18] constructs the so-called zero-order deformation equation:

(
1 − p

)
L
[
φ
(
x, t; p

) − z0(x, t)
]
= p�N

[
φ
(
x, t; p

)]
, (3.2)

where p ∈ [0, 1] is the embedding parameter, �/= 0 is a nonzero auxiliary parameter, L is an
auxiliary linear operator, z0(x, t) is an initial guess of z(x, t), and φ(x, t; p) is an unknown
function, respectively. It is important that one has great freedom to choose auxiliary things in
homotopy analysis method. When p = 0 and p = 1, it holds

φ(x, t; 0) = z0(x, t), φ(x, t; 1) = z(x, t), (3.3)

respectively. Thus as p increase from 0 to 1, the solution φ(x, t; p) varies from the initial guess
z0(x, t) to the solution z(x, t). Expanding φ(x, t; p) in the Taylor series with respect to p, one
has

φ
(
x, t; p

)
= z0(x, t) +

∞∑
m=1

zm(x, t)pm, (3.4)
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where

zm(x, t) =
1
m!

∂mφ
(
x, t; p

)
∂pm

∣∣∣∣∣
p=0

. (3.5)

If the auxiliary linear operator, the initial guess, and the auxiliary parameter � are so properly
chosen and the series (3.4) converges at p = 1, one has

z(x, t) = z0(x, t) +
∞∑

m=1

zm(x, t), (3.6)

which must be one of solutions of original nonlinear equation, as proved by Liao [18]. As
� = −1, (3.2) becomes

(
1 − p

)
L
[
φ
(
x, t; p

) − z0(x, t)
]
+ pN

[
φ
(
x, t; p

)]
= 0, (3.7)

which is used mostly in the homotopy perturbation method, whereas the solution obtained
directly, without using the Taylor series [31]. The comparison between HAM and HPM can
be found in [6].

According to (3.5), the governing equation can be deduced from the zero-order
deformation equation (3.2). Define the vector

z→
n = {z0(x, t), z1(x, t), . . . , zn(x, t)}. (3.8)

Differentiating (3.2) m times with respect to the embedding parameter p and setting p = 0
and finally dividing them bym!, we have the so-called mth-order deformation equation:

L
[
zm(x, t) − χmzm−1(x, t)

]
= �Rm

(
z→
m−1

)
, (3.9)

where

Rm

(
z→
m−1

)
=

1
(m − 1)!

∂m−1N
[
φ
(
x, t; p

)]
∂pm−1

∣∣∣∣∣
p=0

,

χm =
{
0, m ≤ 1,
1, m > 1.

} (3.10)

It should be emphasized that zm(x, t) for m � 1 is governed by the linear equation (3.9) with
the linear boundary conditions that come from original problem, which can be easily solved
by symbolic computation software such as Maple.
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First, we separate the complex high-frequency electric field E into real part and
imaginary part; that is, E = E1 + iE2. Then we rewrite the system (1.1) in the following form:

∂E1

∂t
= −∂

2E2

∂x2
+ 2β

(
E2
1 + E2

2

)
E2 − 2nE2,

∂E2

∂t
=

∂2E1

∂x2
− 2β

(
E2
1 + E2

2

)
E1 + 2nE1,

∂2n

∂t2
=

∂2n

∂x2
− ∂2

∂x2

(
E2
1 + E2

2

)
,

(3.11)

with the following initial conditions [27]:

E1(x, 0) = r tanh(kx) cos(k1x),

E2(x, 0) = r tanh(kx) sin(k1x),

n(x, 0) = s +
r2

−4k2
1 + 1

tanh2(kx),

(3.12)

where r =
√
k2(4k2

1 − 1)/(1 + (4k2
1 − 1)β), k, s, β, and k1 are arbitrary constants.

4. Application the Homotopy Perturbation Method for
the Generalized Zakharov Equations

To investigate the traveling wave solution of (3.11), we first construct a homotopy as follows:

(
1 − p

)[
v̇1 − Ė1,0

]
+ p

[
v̇1 + v′′

2 − 2β
(
v2
1 + v2

2

)
v2 + 2v2v3

]
= 0,

(
1 − p

)[
v̇2 − Ė2,0

]
+ p

[
v̇2 − v′′

1 + 2β
(
v2
1 + v2

2

)
v1 − 2v1v3

]
= 0,

(
1 − p

)
[v̈3 − n̈0] + p

[
v̈3 − v′′

3 +
(
v2
1 + v2

2

)′′]
= 0,

(4.1)

where “′” denotes ∂/∂x, and “·” denotes ∂/∂t, and the initial approximations are as follows,

v1,0(x, t) = E1,0(x, t) = E1(x, 0) = r tanh(kx) cos(k1x),

v2,0(x, t) = E2,0(x, t) = E2(x, 0) = r tanh(kx) sin(k1x),

v3,0(x, t) = n0(x, t) = n(x, 0) = s +
r2

−4k2
1 + 1

tanh2(kx),

(4.2)

where r =
√
k2(4k2

1 − 1)/(1 + (4k2
1 − 1)β), k, s, β, and k1 are arbitrary constants, and

v1 = v1,0 + pv1,1 + p2v1,2 + p3v1,3 + · · · ,
v2 = v2,0 + pv2,1 + p2v2,2 + p3v2,3 + · · · ,
v3 = v3,0 + pv3,1 + p2v3,2 + p3v3,3 + · · · ,

(4.3)
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where vi,j(x, t), i, j = 1, 2, 3, . . ., are functions yet to be determined. Substituting (4.3) into
(3.11) and arranging the coefficients of “p” powers, we have

[
v̇1,1 + v̇1,0 + v′′

2,0 − 2βv2
1,0v2,0 − 2βv3

2,0 + 2v2,0v3,0

]
p

+
[
v′′
2,1 − 4βv1,0v1,1v2,0 − 2βv2

1,0v2,1 − 6βv2
2,0v2,1 + 2v2,1v3,0 + 2v2,0v3,0 + v̇1,2

]
p2

+
[
−2βv2

1,1v2,0 − 4βv1,0v1,2v2,0 − 4βv1,0v1,1v2,1 − 6βv2,0v
2
2,1 − 2βv2

1,0v2,2 − 6βv2
2,0v2,2

+2v2,2v3,0 + 2v2,1v3,1 + 2v2,0v3,0 + v̇1,3 + v′′
2,1

]
p3 = 0,[

v̇2,0 + v̇2,1 − v′′
1.0 + 2βv3

1,0 + 2βv1,0v
2
2,0 − 2v1,0v3,0

]
p

+
[
6βv2

1,0v1,1 + 2βv1,1v
2
2,0 + 4βv1,0v2,0v2,1 − 2v1,1v3,0 − 2v1,0v3,1 + v̇2,2 − v′′

1,1

]
p2

+
[
6βv1,0v

2
1,1 + 6βv2

1,0v1,2 + 2βv1,2v
2
2,0 + 4βv1,1v2,0v2,1 + 2βv1,0v

2
2,1

+4βv1,0v2,0v2,2 − 2v1,2v3,0 − 2v1,1v3,1 − 2v1,0v3,2 + v̇2,3 − v′′
1,2

]
p3 = 0,[

v̈3,0 + v̈3,1 + 2v
′2
1,2 + 2v

′2
2,0 + 2v1,0v

′′
1,0 + 2v2,0v

′′
2,0 − v′′

3,0

]
p

+
[
v̈3,2 + 4v′

1,0v
′
1,1 + 4v′

2,0v
′
2,1 + 2v1,1v

′′
1,0 + 2v1,0v

′′
1,1 + 2v2,1v

′′
2,0 + 2v2,0v

′′
2,1 − v′′

3,1

]
p2

+
[
v̈3,3 + 2v

′2
1,1 + 4v′

1,0v
′
1,2 + 2v

′2
2,1 + 4v′

2,0v
′
2,2 + 2v1,2v

′′
1,0 + 2v1,1v

′′
1,1 + 2v1,0v

′′
1,2

+2v2,2v
′′
2,0 + 2v2,1v

′′
2,1 + 2v2,0v

′′
2,2 − v′′

3,2

]
p3 = 0.

(4.4)

To obtain the unknown vi,j(x, t), i, j = 1, 2, 3, we must construct and solve the following
systemwhich includes nine equations with nine unknowns, considering the initial conditions
of vi,j(x, 0) = 0, i, j = 1, 2, 3,

v̇1,1 + v̇1,0 + v′′
2,0 − 2βv2

1,0v2,0 − 2βv3
2,0 + 2v2,0v3,0 = 0, (4.5)

v′′
2,1 − 4βv1,0v1,1v2,0 − 2βv2

1,0v2,1 − 6βv2
2,0v2,1 + 2v2,1v3,0 + 2v2,0v3,0 + v̇1,2 = 0, (4.6)

− 2βv2
1,1v2,0 − 4βv1,0v1,2v2,0 − 4βv1,0v1,1v2,1 − 6βv2,0v

2
2,1 − 2βv2

1,0v2,2

− 6βv2
2,0v2,2 + 2v2,2v3,0 + 2v2,1v3,1 + 2v2,0v3,0 + v̇1,3 + v′′

2,1 = 0,
(4.7)

v̇2,0 + v̇2,1 − v′′
1.0 + 2βv3

1,0 + 2βv1,0v
2
2,0 − 2v1,0v3,0 = 0, (4.8)

6βv2
1,0v1,1 + 2βv1,1v

2
2,0 + 4βv1,0v2,0v2,1 − 2v1,1v3,0 − 2v1,0v3,1 + v̇2,2 − v′′

1,1 = 0, (4.9)
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6βv1,0v
2
1,1 + 6βv2

1,0v1,2 + 2βv1,2v
2
2,0 + 4βv1,1v2,0v2,1 + 2βv1,0v

2
2,1 + 4βv1,0v2,0v2,2

− 2v1,2v3,0 − 2v1,1v3,1 − 2v1,0v2,3 + v̇3,2 − v′′
1,2 = 0,

(4.10)

v̈3,0 + v̈3,1 + 2v
′2
1,2 + 2v

′2
2,0 + 2v1,0v

′′
1,0 + 2v2,0v

′′
2,0 − v′′

3,0 = 0, (4.11)

v̈3,2 + 4v′
1,0v

′
1,14v

′
2,0v

′
2,1 + 2v1,1v

′′
1,0 + 2v1,0v

′′
1,1 + 2v2,1v

′′
2,0 + 2v2,0v

′′
2,1 − v′′

3,1 = 0, (4.12)

v̈3,3 + 2v
′2
1,1 + 4v′

1,0v
′
1,2 + 2v

′2
2,1 + 4v′

2,0v
′
2,2 + 2v1,2v

′′
1,0 + 2v1,1v

′′
1,1

+ 2v1,0v
′′
1,2 + 2v2,2v

′′
2,0 + 2v2,1v

′′
2,1 + 2v2,0v

′′
2,2 − v′′

3,2 = 0.
(4.13)

From (4.3), if the three approximations are sufficient, we will obtain

E1(x, t) = lim
p→ 1

v1(x, t) =
3∑

k=0

v1,k(x, t),

E2(x, t) = lim
p→ 1

v2(x, t) =
3∑

k=0

v2,k(x, t),

n(x, t) = lim
p→ 1

v3(x, t) =
3∑

k=0

v3,k(x, t).

(4.14)

To calculate the terms of the homotopy series (4.14) for E1(x, t), E2(x, t), and n(x, t), we
substitute the initial conditions (4.2) into the system (4.4), and using Mathematica software,
from (4.5), we obtain

v1,1(x, t) = rt

[
2ksech2(kx)(−k1 cos(k1x) + k sin(k1x) tanh(kx)) + sin(k1x)

× tanh(kx)

[
k2
1 − 2s +

2r2
(
1 − β + 4k2

1β
)
tanh2(kx)(

4k2
1 − 1

)
]]

;

(4.15)

substituting (4.15) into (4.8),we obtain

v2,1(x, t) = rt

[
− 2ksech2(kx)(k1 sin(k1x) + k cos(k1x) tanh(kx)) + cos(k1x)

× tanh(kx)

[
−k2

1 + 2s +
2r2

(−1 + β − 4k2
1β
)
tanh2(kx)(

4k2
1 − 1

)
]]

;

(4.16)
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Table 1: The HPM results for E(x, t) for the first three approximation in comparison with the analytical
solution with initial conditions (3.11) when k = 0.05, k1 = 1, s = 0.33, β = 1.

ti

xi 0.1 0.2 0.3 0.4 0.5

0.1 4.4605 × 10−14 3.99649 × 10−12 4.88487 × 10−11 2.82493 × 10−10 1.0943 × 10−9

0.2 1.20054 × 10−17 3.04251 × 10−12 4.29073 × 10−11 2.60288 × 10−10 1.03179 × 10−9

0.3 6.81758 × 10−14 1.71124 × 10−12 3.5057 × 10−11 2.32051 × 10−10 9.54569 × 10−10

0.4 1.59939 × 10−13 3.07249 × 10−15 2.53001 × 10−11 1.97794 × 10−10 8.62668 × 10−10

0.5 2.7525 × 10−13 2.08147 × 10−12 1.36395 × 10−11 1.57525 × 10−10 7.56107 × 10−10

Table 2: The ADM results for E(x, t) for the first six approximations in comparison with the analytical
solution with initial conditions (3.11) when k = 0.05, k1 = 1, s = 0.33, β = 1.

ti

xi 0.1 0.2 0.3 0.4 0.5

0.1 2.4373 × 10−17 5.88838 × 10−16 1.13172 × 10−14 1.13331 × 10−13 6.8677 × 10−13

0.2 2.867 × 10−29 3.45808 × 10−16 8.9531 × 10−15 9.68767 × 10−14 6.093099 × 10−13

0.3 2.219 × 10−17 1.49642 × 10−16 6.6379 × 10−15 8.04947 × 10−14 5.320314 × 10−13

0.4 9.095 × 10−17 8.5223 × 10−26 4.3731 × 10−15 6.4194 × 10−14 4.549809 × 10−13

0.5 2.063 × 10−16 1.033 × 10−16 2.1600 × 10−15 4.79847 × 10−14 3.78204 × 10−13

substituting (4.15), (4.16) into (4.11), we obtain

v3,1(x, t) =
4k2

1k
2r2t2

4k2
1 − 1

[
(−2 + Cosh(2kx))Sech4(kx)

]
. (4.17)

in This Manner the Other Components v1,2(x, t), v2,2(x, t), v3,2(x, t), v1,3(x, t), v2,3(x, t), and
v3,3(x, t) Can be obtains from (4.6), (4.9), (4.12), (4.7), (4.10), and (4.13), Respectively, and
Substituting Into (4.14) to Obtain E1(x, t), E2(x, t), and n(x, t).

5. Application the Homotopy Analysis Method for
the Generalized Zakharov Equations

In order to apply the homotopy analysis method, we choose the linear operator

L
[
φi

(
x, t; p

)]
=

∂φi

∂t
, i = 1, 2,

L
[
φ3

(
x, t; p

)]
=

∂2φ3

∂t2
,

(5.1)
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Table 3: The HAM results for E(x, t) for the 8th-order approximate in comparison with the analytical
solution with initial conditions (3.11) when � = −1, k = 0.05, k1 = 1, s = 0.33, β = 1.

ti

xi 0.1 0.2 0.3 0.4 0.5

0.1 5.1079 × 10−15 1.008416 × 10−13 5.6412 × 10−13 1.779969 × 10−12 4.42412 × 10−12

0.2 1.517338 × 10−22 6.7515 × 10−13 4.35941 × 10−12 1.527263 × 10−12 3.9370 × 10−12

0.3 5.167 × 10−15 3.3395 × 10−14 3.2705 × 10−13 1.27024 × 10−12 3.4467 × 10−12

0.4 1.027 × 10−14 6.0992 × 10−21 2.1885 × 10−13 1.02169 × 10−12 .9686 × 10−12

0.5 1.525 × 10−14 3.3136 × 10−14 1.08417 × 10−13 7.6228 × 10−13 2.4632 × 10−12

Table 4: The HPM results for n(x, t) for the first three approximations in comparison with the analytical
solution with initial conditions (3.11) when k = 0.05, k1 = 1, s = 0.33, β = 1.

ti

xi 0.1 0.2 0.3 0.4 0.5

0.1 4.95717 × 10−6 3.71741 × 10−6 2.47462 × 10−6 1.22975 × 10−6 1.62464 × 10−8

0.2 2.19054 × 10−5 1.95081 × 10−5 1.70953 × 10−5 1.4669 × 10−5 1.22309 × 10−5

0.3 4.9547 × 10−5 4.61578 × 10−5 4.27335 × 10−5 3.92765 × 10−5 3.57893 × 10−5

0.4 8.58804 × 10−5 8.17233 × 10−5 77.507 × 10−5 7.3241 × 10−5 6.89074 × 10−5

0.5 1.28493 × 10−4 1.23818 × 10−4 1.1906 × 10−4 1.14219 × 10−4 1.09299 × 10−4

with the property L[c] = 0 where c is constant; from (3.11), we define a system of nonlinear
operators as

N1
[
φ1

(
x, t; p

)
, φ2

(
x, t; p

)
, φ3

(
x, t; p

)]
=

∂φ1
(
x, t; p

)
∂t

+
∂2φ2

(
x, t; p

)
∂x2

− 2β
(
φ2
1

(
x, t; p

)
+ φ2

2
(
x, t; p

))
φ2

(
x, t; p

)
+ 2φ2

(
x, t; p

)
φ3

(
x, t; p

)
,

N2
[
φ1

(
x, t; p

)
, φ2

(
x, t; p

)
, φ3

(
x, t; p

)]
=

∂φ2
(
x, t; p

)
∂t

− ∂2φ1
(
x, t; p

)
∂x2

+ 2β
(
φ2
1

(
x, t; p

)
+ φ2

2
(
x, t; p

))
φ1

(
x, t; p

)
− 2φ1

(
x, t; p

)
φ3

(
x, t; p

)
,

N3
[
φ1

(
x, t; p

)
, φ2

(
x, t; p

)
, φ3

(
x, t; p

)]
=

∂2φ3
(
x, t; p

)
∂t2

− ∂2φ3
(
x, t; p

)
∂x2

+
∂2
(
φ2
1

(
x, t; p

)
+ φ2

2

(
x, t; p

))
∂x2

.

(5.2)

By using the above definition, we construct the zero-order deformation equations:

(
1 − p

)
L
[
φi

(
x, t; p

) − zi,0(x, t)
]
= p�Ni

[
φ1

(
x, t; p

)
, φ2

(
x, t; p

)
, φ3

(
x, t; p

)]
, i = 1, 2, 3. (5.3)
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Table 5: The ADM results for n(x, t) for the first six approximations in comparison with the analytical
solution with initial conditions (3.11) when k = 0.05, k1 = 1, s = 0.33, β = 1.

ti

xi 0.1 0.2 0.3 0.4 0.5

0.1 7.8 × 10−19 1.42 × 10−17 1.216 × 10−16 8.0762 × 10−16 4.14247 × 10−15

0.2 9.4 × 10−19 1.639 × 10−17 1.3206 × 10−16 8.4007 × 10−16 4.22213 × 10−15

0.3 1.16 × 10−18 1.94 × 10−17 1.466 × 10−16 8.8452 × 10−16 4.32766 × 10−15

0.4 1.45 × 10−18 2.322 × 10−17 1.6455 × 10−16 9.3918 × 10−16 4.45507 × 10−15

0.5 1.74 × 10−18 2.758 × 10−17 1.8546 × 10−16 1.0022 × 10−15 4.5994 × 10−15
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(d) The HAM solution for |E|2 for the 8th
order

Figure 1: Comparison between the exact solution, the HPM solution, the ADM solution, and the HAM
solution for E(x, t) with initial conditions (3.11) when k = 0.05, k1 = 1, s = 0.33, β = 1, � = −1.
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Table 6: The HAM results for n(x, t) for the 8th-order approximate in comparison with the analytical
solution with initial conditions (3.11) when � = −1, k = 0.05, k1 = 1, s = 0.33, β = 1.

ti

xi 0.1 0.2 0.3 0.4 0.5

0.1 6.26 × 10−8 1.25 × 10−7 1.875 × 10−7 2.498 × 10−7 3.123 × 10−7

0.2 1.25 × 10−7 2.499 × 10−7 3.749 × 10−7 4.996 × 10−7 6.245 × 10−7

0.3 1.874 × 10−7 3.748 × 10−7 5.62 × 10−7 7.495 × 10−7 9.364 × 10−7

0.4 2.497 × 10−7 4.996 × 10−7 7.493 × 10−7 9.989 × 10−7 1.2482 × 10−6

0.5 3.122 × 10−7 6.244 × 10−7 9.366 × 10−7 1.2482 × 10−6 1.5599 × 10−6
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Figure 2: Comparison between the exact solution, the HPM solution, the ADM solution, and the HAM
solution for n(x, t) with initial conditions (3.11)when k = 0.05, k1 = 1, s = 0.33, β = 1, � = −1.
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When p = 0,

φ1(x, t; 0) = z1,0(x, t) = E1(x, 0) = r tanh(kx) cos(k1x),

φ2(x, t; 0) = z2,0(x, t) = E2(x, 0) = r tanh(kx) sin(k1x),

φ3(x, t; 0) = z3,0(x, t) = n(x, 0) = s +
r2

−4k2
1 + 1

tanh2(kx).

(5.4)

When p = 1,

φ1(x, t; 1) = E1(x, t), φ2(x, t; 1) = E2(x, t), φ3(x, t; 1) = n(x, t). (5.5)

Therefore, as the embedding parameter p increases from 0 to 1, φi(x, t; p) varies from initial
guess zi,0(x, t) to the solutions E1(x, t), E2(x, t), and n(x, t), for i = 1, 2, 3, respectively.

Expanding φi(x, t; p) in the Taylor series with respect to p for i = 1, 2, 3, one has

φi

(
x, t; p

)
= zi,0(x, t) +

∞∑
m=1

zi,m(x, t)pm, (5.6)

where

zi,m(x, t) =
1
m!

∂mφi(x, t; p)
∂pm

∣∣∣∣
p=0

. (5.7)

If the auxiliary linear operator, the initial guess, and the auxiliary parameters �i are so
properly chosen, the above series, converge at p = 1, has

E1(x, t) = z1,0(x, t) +
∞∑

m=1

z1,m(x, t),

E2(x, t) = z2,0(x, t) +
∞∑

m=1

z2,m(x, t),

n(x, t) = z3,0(x, t) +
∞∑

m=1

z3,m(x, t),

(5.8)

which must be one of solutions of the original nonlinear equation, as proved by Liao [18].
Define the vectors

z→
i,n = {zi,0(x, t), zi,1(x, t), . . . , zi,n(x, t)}, i = 1, 2, 3. (5.9)

We have the mth-order deformatiom equations:

L
[
zi,m(x, t) − χmzi,m−1(x, t)

]
= �iRi,m

(
z→
1,m−1, z

→
2,m−1, z

→
3,m−1

)
, i = 1, 2, 3, (5.10)
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where

R1,m

(
z→
1,m−1, z

→
2,m−1, z

→
3,m−1

)
=

∂z1,m−1
∂t

+
∂2z2,m−1
∂x2

− 2β

⎡
⎣m−1∑

j=0

j∑
k=0

z1,kz1,j−kz2,m−1−j +
m−1∑
j=0

j∑
k=0

z2,kz2,j−kz2,m−1−j

⎤
⎦

+ 2
m−1∑
j=0

z2,jz3,m−1−j ,

R2,m

(
z→
1,m−1, z

→
2,m−1, z

→
3,m−1

)
=

∂z2,m−1
∂t

− ∂2z1,m−1
∂x2

+ 2β

⎡
⎣m−1∑

j=0

j∑
k=0

z1,kz1,j−kz1,m−1−j +
m−1∑
j=0

j∑
k=0

z1,kz2,j−kz2,m−1−j

⎤
⎦

− 2
m−1∑
j=0

z1,jz3,m−1−j ,

R3,m

(
z→
1,m−1, z

→
2,m−1, z

→
3,m−1

)
=

∂2z3,m−1
∂t2

− ∂2z3,m−1
∂x2

+
∂2

∂x2

⎡
⎣m−1∑

j=0

z1,jz1,m−1−j +
m−1∑
j=0

z2,jz2,m−1−j

⎤
⎦,

(5.11)

where z1, z2, and z3 are functions of x and t. Now, the solutions of themth-order deformation
equation (5.10) form � 1 become

zi,m(x, t) = χmzi,m−1(x, t) + �iL
−1
[
Ri,m

(
z→
1,m−1, z

→
2,m−1, z

→
3,m−1

)]
, i = 1, 2, (5.12)

where L−1 =
∫ t
0(·)dt and

z3,m(x, t) = χmz3,m−1(x, t) + �3L
−1
[
R3,m

(
z→
1,m−1, z

→
2,m−1, z

→
3,m−1

)]
, i = 1, 2, (5.13)

where L−1 =
∫∫ t

0(·)dtdt. For simplicity, we suppose �1 = �2 = �3 = �.
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We consider the solutions of (3.11)with the initial conditions (5.4); we obtain

z1,1(x, t) = rt�

[
2ksech2(kx)(k1 cos(k1x) − k sin(k1x) tanh(kx)) + sin(k1x)

× tanh(kx)

[
−k2

1 + 2s +
2r2

(−1 + β − 4k2
1β
)
tanh2(kx)(

4k2
1 − 1

)
]]

,

(5.14)

z2,1(x, t) = rt�

[
2ksech2(kx)(k1 sin(k1x) + k cos(k1x) tanh(kx)) + cos(k1x)

× tanh(kx)

[
k2
1 − 2s +

2r2
(
1 − β + 4k2

1β
)
tanh2(kx)(

4k2
1 − 1

)
]]

,

(5.15)

z3,1(x, t) = −4k
2
1k

2r2t2�

4k2
1 − 1

[
(−2 + cosh(2kx))sech4(kx)

]
. (5.16)

Obviously, for � = −1 the obtained solutions are the same homotopy perturbation
method in (4.15)–(4.17); we continue to evaluate eight terms of HAM.

Using a Taylor series, then the closed-form solutions yield as follows:

E(x, t) = r tanh(kx −wt) exp[i(k1x −Ωt)],

n(x, t) = s +
r2

−4k2
1 + 1

tanh2(kx −wt),
(5.17)

where w = 2k1k, Ω = −2s + k2
1 + 2k2, r =

√
k2(4k2

1 − 1)/(1 + (4k2
1 − 1)β), k, s, β, and k1 are

arbitrary constants.

6. Comparing the HPM Results with the HAM Results and
the ADM Results and the Exact Solutions

To demonstrate the convergence of the HPM, the results of the numerical example are
presented, and only few terms are required to obtain accurate solutions. Tables 1 and 4 show
the absolute errors between the analytical solutions and the HPM solutions of the GZE with
initial conditions (3.12) for E(x, t), n(x, t) are very small with the present choice of t and x;
Tables 2, 3, 5, and 6 help us to compare the HPM results with the ADM results, and the HAM
results when � = −1 through the absolute errors. Both the analytical solutions, the HPM
result, the ADM result and the HAM result for E(x, t) and n(x, t) are plotted in Figures 1 and
2. The diagrams of the results obtained for � = −1.1, � = −1, and � = −0.9 in comparison with
the ADM solutions and the exact solutions for E(x, t) and n(x, t) are shown in Figures 3 and
4, respectively.
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Figure 3: The results obtained by HAM for various � by the 8th-order approximate solutions for E(x, t),
in comparison with ADM solutions and the exact solutions with initial conditions (3.11) when k = 0.05,
k1 = 1, s = 0.33, β = 1, (a)x = 0.25, (b) = 0.5, (c) = 0.75, (d) = 1.
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Figure 4: The results obtained by HAM for various � by 8th-order approximate solutions for n(x, t), in
comparison with ADM solutions and the exact solutions with initial conditions (3.11) when k = 0.05,
k1 = 1, s = 0.33, β = 1, (a)x = 0.25, (b) = 0.5, (c) = 0.75, (d) = 1.
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