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We introduce and study the concepts of α-well-posedness and L-α-well-posedness for quasivaria-
tional inequality problems having a unique solution and the concepts of α-well-posedness in the
generalized sense and L-α-well-posedness in the generalized sense for quasivariational inequality
problems having more than one solution. We present some necessary and/or sufficient conditions
for the various kinds of well-posedness to occur. Our results generalize and strengthen previously
known results for quasivariational inequality problems.

1. Introduction

Let E be a reflexive real Banach space and letK be a nonempty closed convex subset of E. Let
S be a set-valued mapping fromK toK and letA be an operator from E to the dual space E∗.
Bensoussan and Lions [1], Baiocchi and Capelo [2], and Mosco [3] considered the following
quasivariational inequality (in short, (QVIP)), which is to find a point u0 ∈ K such that

u0 ∈ S(u0), 〈Au0, u0 − v〉 ≤ 0, ∀v ∈ S(u0). (1.1)

The interest in quasivariational inequality problems lies in the fact that many economic
or engineering problems are modeled through them, as explained in [4, 5] where a wide
bibliography on variational inequalities, quasivariational inequality problems, and related
problems is contained. Moreover, under suitable assumptions, a quasivariational inequality
is equivalent to a generalized Nash equilibrium problem [3].

On the other hand, well-posedness plays a crucial role in the stability theory for
optimization problems, which guarantees that, for an approximating solution sequence, there
exists a subsequence which converges to a solution [6]. The study of well-posedness for
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scalar minimization problems started from Tikhonov [7] and Levitin and Polyak [8]. Since the
convergence of numerical methods for quasivariational inequality Problems can be obtained
also with the aid of well-posedness theory, Lignola [9] introduced and investigated the
concepts of well-posedness and L-well-posedness for quasivariational inequalities having a
unique solution and the concepts of well-posedness and L-well-posedness in the generalized
sense for quasivariational inequality problems having more than one solution.

In this paper, inspired by the above concepts of well-posedness for (QVIP), we
introduce and study the concepts of α-well-posedness and L-α-well-posedness for quasivari-
ational inequality Problems having a unique solution and the concepts of α-well-posedness
in the generalized sense and L-α-well-posedness in the generalized sense for quasivariational
inequality Problems having more than one solution. The results in this paper generalize and
improve the results in [9, 10].

2. Preliminaries

Denote by Γ the solution set of (QVIP). Let α > 0. In order to investigate the α-well-posed for
(QVIP), we need the following definitions.

First we recall the notion of Mosco convergence [11]. A sequence (Hn)n of subsets of
E Mosco converges to a setH if

H = lim inf
n

Hn = w − lim sup
n

Hn, (2.1)

where limn inf Hn andw−limn sup Hn are, respectively, the Painlevé-Kuratowski strong limit
inferior and weak limit superior of a sequence (Hn)n, that is,

lim inf
n

Hn =
{
y ∈ E : ∃yn ∈ Hn, n ∈ N, with yn −→ y

}
,

w − lim sup
n

Hn =
{
y ∈ E : ∃nk ↑ +∞, nk ∈ N, ∃ynk ∈ Hnk , k ∈ N, with ynk ⇀ y

}
,

(2.2)

where “⇀” means weak convergence, “→ ” means strong convergence.
If H = limn inf Hn, we call the sequence (Hn)n of subsets of E Lower Semi-Mosco

which converges to a setH.
It is easy to see that a sequence (Hn)n of subsets of E Mosco converges to a set H

which implies that the sequence (Hn)n, also Lower Semi-Mosco, converges to the set H, but
the converse is not true in general.

We will use the usual abbreviations usc and lsc for “upper semicontinuous” and
“lower semicontinuous,” respectively. Let E be a reflexive real Banach space with dual E∗.
An operator A : E → E∗ will be called hemicontinuous if it is continuous from every
segment of E to E∗ endowed with the weak topology. A : E → E∗ will be called monotone if
〈Au − Av, u − v〉 ≥ 0 for every u, and v ∈ E. A : E → E∗ will be called pseudomonotone if
〈Au, u − v〉 ≤ 0 ⇒ 〈Av, u − v〉 ≤ 0 for every u and v ∈ E.
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Definition 2.1. A sequence (un)n is an α-approximating sequence for (QVIP) if

(i) (un) ∈ K, for all n ∈ N;

(ii) there exists a sequence (εn)n, εn > 0, decreasing to 0 such that

d(un, S(un)) ≤ εn, that is, un ∈ B(S(un), εn), ∀n ∈ N,

〈Aun, un − v〉 − α

2
‖un − v‖2 ≤ εn, ∀v ∈ S(un), ∀n ∈ N.

(2.3)

Definition 2.2. A quasivariational inequality (QVIP) is said to be α-well-posed (resp., α-well-
posed in the generalized sense) if it has a unique solution u0 and every α-approximating
sequence (un)n strongly converges to u0 (resp., if the solution set Γ of (QVIP) is nonempty
and for every α-approximating sequence (un)n has a subsequence which strongly converges
to a point of Γ).

Definition 2.3. A sequence (un)n is an L-α-approximating sequence for (QVIP) if:

(i) (un) ∈ K, for all n ∈ N;

(ii) there exists a sequence (εn)n, εn > 0, decreasing to 0 such that d(un, S(un)) ≤ εn,
and

〈Av, un − v〉 − α

2
‖un − v‖2 ≤ εn, ∀v ∈ S(un), ∀n ∈ N. (2.4)

Definition 2.4. A quasivariational inequality (QVIP) is said to be L-α-well-posed (resp.,
L-α-well-posed in the generalized sense) if it has a unique solution u0 and every L-α-
approximating sequence (un)n strongly converges to u0 (resp., if the solution set Γ of (QVIP)
is nonempty and for every L-α-approximating sequence (un)n has a subsequence which
strongly converges to a point of Γ).

It is worth noting that if α = 0, then the definitions of α-well-posedness, α-well-
posedness in the generalized sense, L-α-well-posedness, and L-α-well-posedness in the gen-
eralized sense for (QVIP), respectively, reduce to those of the well-posedness, well-posedness
in the generalized sense, L-well-posedness, and L-well-posedness in the generalized sense for
(QVIP) in [9]. We also note that Definition 2.2 generalizes and extends α-well-posedness and
α-well-posedness in the generalized sense of variational inequalities in [10]which are related
to the continuously differentiable gap function of variational inequality Problems introduced
by Fukushima [12].

We recall some lemmas which will be needed in the rest of this paper.

Lemma 2.5 (see [13]). Let (Hn)n be a sequence of nonempty subsets of the space E such that

(i) Hn is convex for every n ∈ N;

(ii) H0 ⊆ limn inf Hn;

(iii) there existsm ∈ N such that int
⋂

n≥m Hn /= ∅.

Then, for every u0 ∈ intH0, there exists a positive real number δ such that B(u0, δ) ⊆ Hn, for
all n ≥ m.

If E is a finite dimensional space, then assumption (iii) can be replaced by

(iii)’ intH0 /= ∅.
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The following Lemmas 2.6 and 2.7 play important roles in this paper. Now we present
a Minty type lemma for quasivariational inequalities as follows.

Lemma 2.6. Suppose that set-valued mapping S is nonempty convex-valued, the operator A is
hemicontinuous and monotone, u0 ∈ S(u0). Then the following conditions are equivalent:

(i) 〈Au0, u0 − v〉 − (α/2)‖u0 − v‖2 ≤ 0, for all v ∈ S(u0),

(ii) 〈Av, u0 − v〉 − (α/2)‖u0 − v‖2 ≤ 0, for all v ∈ S(u0).

Proof. We first prove that (ii) implies (i). Let v be a arbitrary point of S(u0). For every number
t ∈ [0, 1], since the set-valued mapping S is convex-valued and u0 ∈ S(u0), the point vt =
tv + (1 − t)u0 belongs to S(u0). It follows from (ii) that

〈Avt, u0 − vt〉 − α

2
‖u0 − vt‖2 ≤ 0. (2.5)

From the definition of vt, one has

lim
t→ 0

(
〈Avt, u0 − v〉 − α

2
t‖u0 − v‖2

)
≤ 0, (2.6)

and it follows from the hemicontinuity of A that

〈Au0, u0 − v〉 ≤ 0, (2.7)

then

〈Au0, u0 − v〉 − α

2
‖u0 − v‖2 ≤ 0, ∀v ∈ S(u0). (2.8)

The converse is an easy consequence of monotonicity of A.

Lemma 2.7. Assume that set-valued mapping S is nonempty convex-valued, then u0 ∈ Γ if and only
if the following conditions hold:

u0 ∈ S(u0), 〈Au0, u0 − v〉 − α

2
‖u0 − v‖2 ≤ 0, ∀v ∈ S(u0). (2.9)

Proof. The necessity is clearly held. Now we prove the sufficiency. Let for all v ∈ S(u0), for all
t ∈ [0, 1], vt = tv + (1 − t)u0. Since S is convex-valued, vt ∈ S(u0), one has

〈Au0, u0 − vt〉 − α

2
‖u0 − vt‖2 ≤ 0, ∀t ∈ (0, 1], (2.10)

which implies that

〈Au0, u0 − v〉 − t
α

2
‖u0 − v‖2 ≤ 0, ∀t ∈ (0, 1], ∀v ∈ S(u0). (2.11)
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The above inequality implies, for t converging to zero, that u0 is a solution of (QVIP). This
completes the proof.

3. Case of a Unique Solution

In this section, we investigate some metric characterizations of α-well-posedness and L-α-
well-posedness for (QVIP).

For any ε > 0, we consider the set

Qε =
{
u ∈ K : u ∈ B(S(u), ε), 〈Au, u − v〉 − α

2
‖u − v‖2 ≤ ε, ∀v ∈ S(u)

}

Lε =
{
u ∈ K : u ∈ B(S(u), ε), 〈Av, u − v〉 − α

2
‖u − v‖2 ≤ ε, ∀v ∈ S(u)

}
.

(3.1)

Theorem 3.1. Let the same assumptions be as in Lemma 2.7. Then, one has

(a) (QVIP) is α-well-posed if and only if the solution set Γ of (QVIP) is nonempty and
limε→ 0 diamQε = 0;

(b) moreover, if A : E → E∗ is pseudomonotone, then (QVIP) is L-α-well-posed if and only if
the solution set Γ of (QVIP) is nonempty and limε→ 0 diamLε = 0.

Proof. We only prove (a). The proof of (b) is similar and is omitted here. Suppose that (QVIP)
is α-well-posed, then Γ/= ∅. It follows from Lemma 2.7 that Qε /= ∅. Suppose by contradiction
that there exists a real number β, such that limε→ 0 diamQε > β > 0, then there exists
εn > 0, with εn → 0, and (wn)n, (zn)n ∈ Qεn , such that ‖wn − zn‖ > β, for all n ∈ N.
Since the sequences (wn)n, (zn)n are both α-approximating sequences for (QVIP), (wn)n and
(zn)n strongly converge to the unique solution u0, and this gives a contradiction. Therefore,
limε→ 0 diamQε = 0.

Conversely, let (un)n, un ∈ K, be an α-approximating sequence for (QVIP). Then there
exists a sequence εn > 0, with εn → 0, such that

d(un, S(un)) ≤ εn, ∀n ∈ N,

〈Aun, un − v〉 − α

2
‖un − v‖2 ≤ εn, ∀v ∈ S(un), ∀n ∈ N.

(3.2)

that is, un ⊂ Qεn , for all n ∈ N. It is easy to see limε→ 0 diamQε = 0 and Γ/= ∅ implying
that Γ is a singleton point set. Indeed, if there exist two different solutions z1, z2, then from
Lemma 2.7, we know that z1, z2 ∈ Qε, for all ε > 0. Thus, limε→ 0 diamQε ≥ ‖z1 − z2‖/= 0, a
contraction. Let u0 be the unique solution of (QVIP). It follows from Lemma 2.7 that u0 ∈ Qεn .
Thus, limn→ 0‖un − u0‖ ≤ limn→ 0 diamQεn = 0. So (un)n strongly converge to u0. Therefore,
(QVIP) is α-well-posed.

Theorem 3.2. Let α > 0 and the following assumptions hold:

(i) the set-valued mapping S is nonempty convex-valued, and, for each sequence (un)n in K
converges to u0, the sequence (S(un))n Lower Semi-Mosco converging to S(u0);
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(ii) for every converging sequence (hn)n, there existsm ∈ N, such that

int
⋂

n≥m
S(hn)/= ∅; (3.3)

(iii) the operator A is hemicontinuous and monotone on K.

Then, (QVIP) is α-well-posed if and only if

Qε /= ∅, ∀ε > 0, lim
ε→ 0

diamQε = 0. (3.4)

Proof. The necessity has been proved in Theorem 3.1(a).
Conversely, assume that (3.4) holds. It is easy to see that (3.4) implies that the solution

set Γ of (QVIP) is a singleton point set. Let (un)n be an α-approximating sequence for (QVIP),
that is, there exists a sequence εn > 0, with εn → 0, such that

d(un, S(un)) ≤ εn, ∀n ∈ N,

〈Aun, un − v〉 − α

2
‖un − v‖2 ≤ εn, ∀v ∈ S(un), ∀n ∈ N.

(3.5)

Therefore, un ⊂ Qεn , for all n ∈ N. In light of (3.4), (un)n is a Cauchy sequence and strongly
converges to a point u0 ∈ K. In order to obtain that u0 solves (QVIP), we start to prove that
u0 ∈ S(u0). For each n ∈ N, choose u′

n ∈ S(un), such that ‖un − u′
n‖ < d(un, S(un)) + εn ≤ 2εn.

It follows from un → u0 and εn → 0 that u′
n → u0. It follows from the assumption (i) that

limn inf S(un) = S(u0). Thus, u0 ∈ S(u0).
To complete the proof, consider an arbitrary point v ∈ S(u0). By Lower Semi-Mosco

convergence again, we have S(u0) ⊆ limn inf S(un). Also observe that assumption (ii)
applied to the constant sequence hn = u0, for all n ∈ N, implies that intS(u0)/= ∅. From
Lemma 2.5, it follows that if v ∈ intS(u0), then there exist m ∈ N and δ > 0 such that
intB(v, δ) ⊆ S(un), for all n > m. Thus, v ∈ S(un) for n sufficiently large. Notice the A is
monotone and the sequence (un)n is an α-approximating sequence for (QVIP), then we have

〈Av, u0 − v〉 = lim
n
〈Av, un − v〉 ≤ lim inf

n
〈Aun, un − v〉 ≤ lim

n

(
εn +

α

2
‖un − v‖2

)
=

α

2
‖u0 − v‖2.

(3.6)

If v ∈ S(u0) \ intS(u0), let (vn)n be a sequence converging to v, whose point belongs to a
segment contained in intS(u0). Since vn ∈ intS(u0), for all n ∈ N, one has

〈Avn, u0 − vn〉 ≤ α

2
‖u0 − vn‖2. (3.7)

Since the hemicontinuity of A,

〈Av, u0 − v〉 ≤ α

2
‖u0 − v‖2, ∀v ∈ S(u0). (3.8)
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It follows from Lemma 2.6 that

〈Au0, u0 − v〉 − α

2
‖u0 − v‖2 ≤ 0, ∀v ∈ S(u0), (3.9)

then, by Lemma 2.7, we obtain that u0 solves (QVIP). This completes the proof.

Now, we present a result in which assumption (ii) of above theorem is dropped, while
the continuity assumption on the operator A is strengthened.

Theorem 3.3. Let the following assumptions hold:

(i) the set-valued mapping S is nonempty convex-valued, and, for each sequence (un)n in K
converging to u0, the sequence (S(un))n Lower Semi-Mosco converges to S(u0);

(ii) the operator A is (s,w)-continuous on K.

Then, (QVIP) is α-well-posed if and only if (3.4) holds.

Proof. The necessity follows from Theorem 3.1 and Lemma 2.7.
Conversely, let (un)n be an α-approximating sequence for (QVIP) and (3.4) holds.

From (3.4) and the proof of Theorem 3.2, we can obtain that (un)n strongly converges to u0,
with u0 ∈ S(u0). Since Lower Semi-Mosco convergence implies for every v ∈ S(u0), there
exists sequence (vn)n strongly converging to v such that vn ∈ S(un). Since the operator A is
(s,w)-continuous and (un)n is an α-approximating sequence for (QVIP), we have

〈Au0, u0 − v〉 = lim
n
〈Aun, un − vn〉 ≤ lim

n

(
εn +

α

2
‖un − vn‖2

)
=

α

2
‖u0 − v‖2. (3.10)

By Lemma 2.7, we obtain that u0 solves (QVIP). This completes the proof.

Theorem 3.4. Let the following assumptions hold:

(i) the set-valued mapping S is nonempty convex-valued, and, for each sequence (un)n in K
converges to u0, the sequence (S(un))n Lower Semi-Mosco converging to S(u0);

(ii) for every converging sequence (hn)n, there existsm ∈ N, such that

int
⋂

n≥m
S(hn)/= ∅; (3.11)

(iii) the operator A is hemicontinuous and monotone on K.

Then, (QVIP) is L-α-well-posed if and only if

Lε /= ∅, ∀ε > 0, lim
ε→ 0

diamLε = 0. (3.12)

Proof. Assume that (QVIP) is L-α-well-posed, then it follows from the monotonicity ofA that
∅/=Γ/=Lε, for all ε > 0. It follows from Theorem 3.1(b) that the necessity can be completed.

Assume that (3.12) holds. Let (un)n be an L-α-approximating sequence for (QVIP),
then there exists a sequence εn > 0, with εn → 0, such that un ∈ Lεn , for all n ∈ N. Following
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the same argument as the proof of Theorem 3.1, it is easy to see limε→ 0 diamLε = 0 and Γ/= ∅
imply that Γ is a singleton point set. In light of the assumption, (un)n is a Cauchy sequence and
strongly converges to a point u0 ∈ K and u0 ∈ S(u0). Let v ∈ intS(u0) and using Lemma 2.5,
one has v ∈ S(un), for n sufficiently large. Then, we get

〈Av, u0 − v〉 − α

2
‖u0 − v‖2 = lim

n

[
〈Av, un − v〉 − α

2
‖un − v‖2

]
≤ lim

n
εn = 0. (3.13)

If v ∈ S(u0) \ intS(u0), let a sequence vn converges to v, whose points belong to a segment
contained in intS(u0). Since

〈Avn, u0 − vn〉 − α

2
‖u0 − vn‖2 ≤ 0 (3.14)

and the operator A is hemicontinuous, one gets

〈Av, u0 − v〉 − α

2
‖u0 − v‖2 ≤ 0. (3.15)

According to Lemmas 2.6 and 2.7, u0 is the solution of (QVIP).

Theorem 3.5. Let the following assumptions hold:

(i) the set-valued mapping S is nonempty convex-valued, and, for each sequence (un)n in K
converging to u0, the sequence (S(un))n Lower Semi-Mosco converges to S(u0);

(ii) the operator A is (s,w)-continuous and monotone on K.

Then, (QVIP) is L-α-well-posed if and only if (3.12) holds.

Proof. Assume (3.12) holds. Let (un)n be an L-α-approximating sequence for (QVIP), then
there exists a sequence εn > 0, with εn → 0, such that (un)n ⊂ Lεn , for all n ∈ N. Since
limε→ 0 diamLε = 0, (un)n is a Cauchy sequence and converges to u0. As the similar proof of
Theorem 3.2, u0 ∈ S(u0). Let v ∈ S(u0). Since Lower Semi-Mosco convergence implies for
every v ∈ S(u0), there exists a sequence (vn)n converging to v, such that vn ∈ S(un). Since A
is (s,w)-continuous and (un)n is an L-α-approximating sequence for (QVIP), one has

〈Av, u0 − v〉 − α

2
‖u0 − v‖2 = lim

n

[
〈Avn, un − vn〉 − α

2
‖un − vn‖2

]
≤ lim

n
εn = 0. (3.16)

Applying Lemmas 2.6 and 2.7, we have that (QVIP) is L-α-well-posed.
The necessity can be completed as Theorem 3.3.

4. α-Well-Posedness in the Generalized Sense

In this section, we introduce and investigate some metric characterizations of α-well-
posedness in the generalized sense and L-α-well-posedness in the generalized sense for
(QVI).



Abstract and Applied Analysis 9

Definition 4.1 (see [11]). Let (X, d) be a metric space and let A,B be nonempty subsets of X.
The Hausdorff distance H(·, ·) between A and B is defined by

H(A,B) = max{e(A,B), e(B,A)}, (4.1)

where e(A,B) = supa∈Ad(a, B)with d(a, B) = infb∈B‖a − b‖.

Definition 4.2 (see [11]). Let A be a nonempty subset of X. The measure of non compactness
μ of the set A is defined by

μ(A) = inf

{

ε > 0 : A ⊆
n⋃

i=1

Ai, diamAi < ε, i = 1, 2, . . . , n

}

, (4.2)

where diam means the diameter of a set.

Theorem 4.3. Let the same assumptions be as in Lemma 2.7. Then, one has the following.

(a) (QVIP) is α-well-posed in the generalized sense if and only if the solution set Γ of (QVIP)
is nonempty compact and e(Qε,Γ) → 0, as ε → 0.

(b) Moreover, ifA is pseudomonotone, then (QVIP) is L-α-well-posed in the generalized sense if
and only if the solution set Γ of (QVIP) is nonempty compact and e(Lε,Γ) → 0, as ε → 0.

Proof. We only prove (a), the proof of (b) is similar and is omitted here. Assume that (QVIP) is
α-well-posed in the generalized sense, then the Γ is nonempty and compact. It follows from
Lemma 2.7 that Qε /= ∅. Now we prove e(Qε,Γ) → 0, as ε → 0. Suppose by contradiction
that there exists β > 0, εn → 0, and wn ∈ Qεn , such that d(wn,Γ) ≥ β. It follows from
wn ∈ Qεn that (wn)n is an α-approximating sequence for (QVIP). (QVIP) is α-well-posedness
in the generalized sense, then there exists a subsequence (wnk)k of (wn)n strongly converging
to a point of Γ. This contradicts d(wn,Γ) ≥ β. Thus, e(Qε,Γ) → 0, as ε → 0.

For the converse, let (un)n be an α-approximating sequence for (QVIP), then un ∈ Qεn .
It follows from e(Qεn,Γ) → 0 that there exists a sequence zn ⊂ Γ, such that d(un, zn) → 0.
Since Γ is compact, there exists a subsequence (znk)k of (zn)n strongly converging to u0 ∈ Γ.
Thus there exists the corresponding subsequence (unk)k of (un)n strongly converging to u0.
Therefore, (QVIP) is α-well-posed in the generalized sense.

Theorem 4.4. (a) If (QVIP) is α-well-posed in the generalized sense, then

Qε /= ∅, ∀ε > 0, lim
ε→ 0

μ(Qε) = 0. (4.3)

(b) If (4.3) and the following assumptions hold:

(i) the set-valued mapping S is nonempty convex-valued, and, for each sequence (un)n in K
converges to u0, the sequence (S(un))n Lower Semi-Mosco converging to S(u0);

(ii) the operator A is (s,w)-continuous on K,

then, (QVIP) is α-well-posed in the generalized sense.
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Proof. (a) Suppose that (QVIP) is α-well-posed in the generalized sense. So Qε /= ∅, for all
ε > 0. By Theorem 4.3(a), Γ is nonempty compact and e(Qε,Γ) → 0, as ε → 0. For any ε > 0,
we have

H(Qε,Γ) = max{e(Qε,Γ), e(Γ, Qε)} = e(Qε,Γ), (4.4)

and since Γ is compact, μ(Γ) = 0. For every n ∈ N, the following relation holds [14]:

μ(Qε) ≤ 2H(Qε,Γ) + μ(Γ) = 2H(Qε,Γ) = 2e(Qε,Γ). (4.5)

It follows from e(Qε,Γ) → 0, as ε → 0, that limε→ 0 μ(Qε) = 0.
(b) Assume that (4.3) holds. Then, for any ε > 0, cl(Qε) is nonempty closed and

increasing with ε > 0. By (4.3), limε→ 0μ(cl(Qε)) = limε→ 0μ(Qε) = 0, where cl(Qε) is the
closure of Qε. By the generalized Cantor theorem [11, page 412], we know that

lim
ε→ 0

H(cl(Qε),Δ) = 0, as ε −→ 0, (4.6)

where Δ =
⋂

ε>0 cl(Qε) is nonempty compact.
Now we show that

Γ = Δ. (4.7)

It follows from Lemma 2.7 that Γ ⊆ Δ. So we need to prove that Δ ⊆ Γ. Indeed, let u0 ∈ Δ.
Then, d(u0, Qε) = 0 for every ε > 0. Given εn > 0, εn → 0, for every n, there exists un ∈ Qεn

such that d(u0, un) < εn. Hence, un → u0 and

d(un, S(un)) ≤ εn, (4.8)

〈Aun, un − v〉 ≤ εn +
α

2
‖un − v‖2, ∀v ∈ S(un). (4.9)

It follows from (4.8), un → u0, and the proof of Theorem 3.2 that u0 ∈ S(u0).
Since Lower Semi-Mosco convergence implies that, for every v ∈ S(u0), there exists a

sequence vn ∈ S(un), for all n ∈ N, such that limnvn = v in the strongly topology.
Since the operator A is (s,w)-continuous on K, hence

〈Au0, u0 − v〉 − α

2
‖u0 − v‖2 = lim

n

[
〈Aun, un − vn〉 − α

2
‖un − vn‖2

]
≤ lim

n
εn = 0. (4.10)

By Lemma 2.7, we know u0 ∈ Γ. Thus, Δ ⊆ Γ. It follows from (4.6) and (4.7) that
limε→ 0e(Qε,Γ) = 0. It follows from the compactness of Γ and Theorem 4.3(a) that (QVIP)
is α-well-posed in the generalized sense. The proof is completed.

Theorem 4.5. LetK be a nonempty, compact, and convex subset of E, let the set-valued mapping S be
nonempty convex-valued, and, for each sequence (un)n in K converging to u0, the sequence (S(un))n
Lower Semi-Mosco converges to S(u0), and the operator A is (s,w)-continuous on K. Then, (QVIP)
is α-well-posed in the generalized sense.
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Proof. Let (un)n be an α-approximating sequence for (QVIP). Since the setK is compact, there
exists subsequence (unk)k of (un)n strongly converging to a point u0 ∈ K. Reasoning as in
Theorem 3.3, we get u0 ∈ S(u0) and u0 solves (QVIP). Therefore, (QVIP) is α-well-posed in
the generalized sense.

Theorem 4.6. Let the following assumptions hold:

(i) the set-valued mapping S is nonempty convex-valued, and, for each sequence (un)n in K
converging to u0, the sequence (S(un))n Lower Semi-Mosco converges to S(u0);

(ii) the operator A is (s,w)-continuous and monotone on K.

Then, (QVIP) is L-α-well-posed in the generalized sense if and only if

Lε /= ∅, ∀ε > 0, lim
ε→ 0

μ(Lε) = 0. (4.11)

Proof. Assume that (QVIP) is L-α-well-posed in the generalized sense. It follows from
Lemma 2.7 and the monotonicity of A that Γ ⊂ Lε, for all ε > 0. And so Lε /= ∅, for each
ε > 0. By Theorem 4.3(b), we can get e(Lε,Γ) → 0 as ε → 0. From the proof of Theorem 4.4,
we also obtain

μ(Lε) ≤ 2H(Lε,Γ) + μ(Γ) = 2H(Lε,Γ) = 2e(Lε,Γ). (4.12)

Thus, limε→ 0μ(Lε) = 0.
Conversely, assume (4.11) holds. Then, for any ε > 0, cl(Lε) is nonempty closed and

increasing with ε > 0. By (4.11), limε→ 0μ(cl(Lε)) = limε→ 0μ(Lε) = 0, where cl(Lε) is the
closure of Lε. By the generalized Cantor theorem [11, page 412], we know that

lim
ε→ 0

H(cl(Lε),Δ) = 0, as ε −→ 0, (4.13)

where Δ =
⋂

ε>0 cl(Lε) is nonempty compact.
Now we show that

Γ = Δ. (4.14)

It follow from Lemma 2.7 and the monotonicity of A that Γ ⊆ Δ. So we need to prove that
Δ ⊆ Γ. Indeed, let u0 ∈ Δ. Then d(u0, Lε) = 0 for every ε > 0. Given εn > 0, εn → 0, for every
n, there exists un ∈ Lεn such that d(u0, un) < εn. Hence, un → u0 and

d(un, S(un)) ≤ εn, (4.15)

〈Av, un − v〉 ≤ εn +
α

2
‖un − v‖2, ∀v ∈ S(un). (4.16)

It follows from (4.15), xn → x0, and the proof of Theorem 3.2 that u0 ∈ S(u0).
Since S(un) Lower Semi-Mosco converges to S(u0), for every v ∈ S(u0), there exists a

sequence vn ∈ S(un), for all n ∈ N, such that limnvn = v in the strong topology.
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Since the operator A is (s,w)-continuous on K, hence

〈Av, u0 − v〉 − α

2
‖u0 − v‖2 = lim

n

[
〈Avn, un − vn〉 − α

2
‖un − vn‖2

]
≤ lim

n
εn = 0. (4.17)

By Lemma 2.6 we know that u0 ∈ S(u0), such that

〈Au0, u0 − v〉 − α

2
‖u0 − v‖2 ≤ 0, ∀v ∈ S(u0). (4.18)

It follow from Lemma 2.7 that u0 ∈ Γ. Thus, Δ ⊆ Γ. It follows from (4.13) and (4.14) that
limε→ 0e(Lε,Γ) = 0. It follows from the compactness of Γ and Theorem 4.3(b) that (QVIP) is
L-α-well-posed in the generalized sense. The problem is completed.

Remark 4.7. It is easy to see that if α = 0, then by the main results in our paper, we can recover
the corresponding results in [9] with the weaker condition that S(xn) Lower Semi-Mosco
converges to S(x0) instead of the condition that S is (s,w)-closed and (s,w)-subcontinuous,
and (s, s)-lower semicontinuous.
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