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By means of the Galerkin method and by using a suitable version of the Brouwer fixed-point
theorem, we establish the existence of at least one positive solution of a nonlocal elliptic N-
dimensional system coupled with Dirichlet boundary conditions.

1. Introduction

This paper is devoted to the study of the nonlocal elliptic system

−Δu(x) + a(x)
∫
Ω
b
(
y
)
vp(y)dy = g(u(x), v(x)), x ∈ Ω,

−Δv(x) + c(x)
∫
Ω
d
(
y
)
uq(y)dy = h(u(x), v(x)), x ∈ Ω,

u(x), v(x) > 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω.

(1.1)

Here, Ω ⊂ R
N,N ≥ 2, is a bounded smooth domain, p, q are positive numbers, a, b, c, d ∈

C(Ω), and the nonlinearities g and h will be defined later.
The one-dimensional counterpart of this problem has been considered by Cabada et

al. in [1]. There the authors, by using dual variational methods and Leray-Schauder degree,
with p = q = 1, b ≡ d ≡ 1, and a = c a real parameter, and under suitable assumptions on
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the nonlinear functions g(u, v) ≡ g(v) and h(u, v) ≡ h(u), show the existence of solution (not
necessarily positive) depending upon the parameter a.

In this case, we present a different point of view from the one used in [1]. We note that,
among other things, we assume N ≥ 2.

Motivated by its many applications and the richness of the methods employed to
solve it, this kind of problems has been studied by different authors when only one equation
is considered, see, among others, [2–9]. Indeed, there is a lot of phenomena that may be
modeled by equations of the form

ut −Δu = f(x, u, B(u)), (1.2)

where B is a nonlocal operator which, in some applications, is written in the form

B(u) =
∫
Ω
b(x)[u(x)]βdx. (1.3)

See [10–13] for some surveys on these equations.
In particular, steady-state solutions deliver us to elliptic equations such as

−Δu(x) = f(x, u(x), B(u)), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(1.4)

which, in several cases, have a behaviour quite different from the local one

−Δu(x) = f(x, u(x)), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.
(1.5)

One of the most significant differences between these two types of problems is the
nonexistence, in some particular cases, of maximum principles. For instance, Allegretto and
Barabanova [4] consider the one-dimensional problem

−u′′(x) + η

∫1

0
u
(
y
)
dy = sin(πx), 0 < x < 1,

u(0) = u(1) = 0, η > 0.

(1.6)

It is not difficult to verify that the explicit solution of this problem is given by the
expression

u(x) =
12η

(
x2 − x)(

π3
(
12 + η

)) +
sin(πx)

π2
. (1.7)

So, when the values of the positive parameter η are small, the solution is positive.
However, if η is large enough, function u becomes negative near the end points x = 0 and
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x = 1. That is, sin(πx) > 0 in (0, 1) but, for η large enough, the corresponding solution is not
positive.

This contrasts with the local equation

−u′′(x) + ηu(x) = f(x), 0 < x < 1,

u(0) = u(1) = 0, η > 0,
(1.8)

for which it is very well known, see [14], that, for all η > 0, function u > 0 in (0, 1) whenever
f > 0 in (0, 1).

Remark 1.1. We have to point out that the lack of a general maximum principle seems
to be characteristic of integrodifferential operator. Indeed, in [15], the authors consider a
noncooperative system, arisen in the classical FitzHugh-Nagumo systems, which serves as
a model for nerve conduction. More precisely, it is studied the system

−Δu(x) = f(x, u) − v, x ∈ Ω,

−Δv(x) = δu − γv, x ∈ Ω,

u(x), v(x) > 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

(1.9)

where δ, γ > 0 are constants and f(x, u) is a given function. Taking B ≡ δ(−Δ + γ)−1, under
Dirichlet boundary condition, problem (1.9) is equivalent to the integrodifferential problem

−Δu(x) + Bu = f(x, u), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.
(1.10)

Consider now the problem

−Δu(x) + Bu − λu = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(1.11)

with f ∈ L2(Ω) and f ≥ 0 in Ω.
Let λ1 be the first eigenvalue of operator −Δ in the space H1

0(Ω), and assume that
λ1 >

√
δ − γ . Then, for all λ ∈ (2

√
δ − γ, λ1 + (δ/(γ + λ1 )), problem (1.11) satisfies a maximum

principle, that is, under the above assumptions, the solution u of (1.11) satisfies u ≥ 0 a.e in
Ω. See [15] for the proof of this result.

After that, it is proved in [16], by using semigroup theory, that this maximum principle
does not hold for all λ < 2

√
δ−γ . Indeed, the approach used in [16]may be used to prove that

a general maximum principle for the problem (1.6) is not valid. In view of this, the method
of sub- and supersolution should be used carefully by considering a relation between the
growth of the nonlinearity and the parameters of the problem.
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Remark 1.2. It is worthy to remark that problem (1.1) has no variational structure even in the
scalar case. So the most usual variational techniques cannot be used to study it.

To attack problem (1.1), we will use the Galerkin method through the following
version of the Brouwer fixed-Point Theorem whose proof may be found in Lions [17, Lemma
4.3].

Proposition 1.3. Let F : R
m → R

m be a continuous function such that

〈F(ξ), ξ〉 > 0 if |ξ| = r, (1.12)

for some r > 0, where 〈·, ·〉 is the Euclidian Scalar product and | · | = 〈·, ·〉1/2 is the corresponding
Euclidian norm in R

m. Then, there exists ξ0 ∈ R
m, |ξ0| ≤ r such that F(ξ0) = 0.

2. A Sublinear Problem

In this section, we consider the problem

−Δu(x) + λ

∫
Ω
vp(y)dy = uα(x) + vβ(x), x ∈ Ω,

−Δv(x) + λ

∫
Ω
uq(y)dy = uγ(x) + vδ(x), x ∈ Ω,

u(x), v(x) > 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω.

(2.1)

Here, λ is a real parameter and α, β, γ, δ are positive constants whose properties will
be precised later.

In order to use Proposition 1.3, we have to introduce a suitable setup. First of all, we
consider an orthonormal Hilbertian basis B = {ϕ1, ϕ2, . . .} in H1

0(Ω) whose norm is the usual
one

‖u‖2 =
∫
Ω

∣∣∇u(y)∣∣2 dy, ∀u ∈ H1
0(Ω). (2.2)

Next, let Vm be the finite dimensional vector space

Vm =
[
ϕ1, . . . , ϕm

] ⊂ B, (2.3)

equipped with the norm induced by the one inH1
0(Ω).

Thus, if u ∈ Vm, there is a unique ξ = (ξ1, . . . , ξm) ∈ R
m such that

u =
m∑
j=1

ξjϕj , (2.4)
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and, as a consequence,

‖u‖2 = |ξ|2. (2.5)

So, the spaces Vm and R
m are isomorphic and isometric by

Vm ←→ R
m,

u =
m∑
j=1

ξjϕj ←→ ξ = (ξ1, . . . , ξm).
(2.6)

From now on, we identify, with no additional comments, u↔ ξ via this isometry.
In order to obtain a nontrivial solution of problem (2.1), let ε > 0 be a constant and

consider the auxiliary problem

−Δu(x) + λ

∫
Ω
(v+)p

(
y
)
dy = (u+)α(x) + (v+)β(x) + ε, x ∈ Ω,

−Δv(x) + λ

∫
Ω
(u+)q

(
y
)
dy = (u+)γ(x) + (v+)δ(x), x ∈ Ω,

u(x), v(x) > 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω.

(2.7)

Theorem 2.1. Assume thatΩ is a boundedC2 domain ofRN and the constants p, q, α, β, γ, δ ∈ (0, 1).
Then, for all λ < 0, problem (2.1) has at least one solution in (C2(Ω) ∩ C(Ω)) × (C2(Ω) ∩ C(Ω)).

Proof. First of all, we consider a map (F,G) : R
m × R

m → R
m × R

m, (F,G) = (F1, . . . ,
Fm,G1, . . . , Gm), defined, for all i = 1, . . . , m, as

Fi

(
ξ, η

)
=
∫
Ω
∇u∇ϕi + λ

∫
Ω
(v+)p

∫
Ω
ϕi −

∫
Ω
(u+)αϕi −

∫
Ω
(v+)βϕi − ε

∫
Ω
ϕi,

Gi

(
ξ, η

)
=
∫
Ω
∇v∇ϕi + λ

∫
Ω
(u+)q

∫
Ω
ϕi −

∫
Ω
(u+)γϕi −

∫
Ω
(v+)δϕi,

(2.8)

where we are identifying (u, v) ∈ Vm × Vm, u =
∑m

j=1 ξjϕj , v =
∑m

j=1 ηjϕj , with (ξ, η) ∈ R
m ×

R
m, ξ = (ξ1, . . . , ξm), η = (η1, . . . , ηm).

Now, we have that, for all i = 1, . . . , m, the following equations hold:

Fi

(
ξ, η

) · ξi =
∫
Ω
∇u · ∇(ξiϕi

)
+ λ

∫
Ω
(v+)p

∫
Ω
ξiϕi −

∫
Ω
(u+)α

(
ξiϕi

)

−
∫
Ω
(v+)β

(
ξiϕi

) − ε
∫
Ω
ξiϕi,

Gi

(
ξ, η

) · ηi =
∫
Ω
∇v · ∇(ηiϕi

)
+ λ

∫
Ω
(u+)q

∫
Ω
ηiϕi −

∫
Ω
(u+)γ

(
ηiϕi

) −
∫
Ω
(v+)δ

(
ηiϕi

)
.

(2.9)
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Therefore,

〈
(F,G)

(
ξ, η

)
,
(
ξ, η

)〉
=
∫
Ω
|∇u|2 +

∫
Ω
|∇v|2 + λ

∫
Ω
(v+)p

∫
Ω
u −

∫
Ω
(u+)αu

−
∫
Ω
(v+)βu − ε

∫
Ω
u + λ

∫
Ω
(u+)q

∫
Ω
v −

∫
Ω
(u+)γv −

∫
Ω
(v+)δv.

(2.10)

Denoting as ‖(x, y)‖2 = |x|2 + |y|2 for all x, y ∈ R
m, using the isometry between Vm

and R
m, and the inequalities of Hölder, Poincaré, and Sobolev, we arrive at the following

estimations:

(∫
Ω
(v+)p

)∫
Ω
u ≤ C

(∫
Ω
(|v|p)2/p

)p/2

· ‖u‖ ≤ C‖(u, v)‖p+1, (I1)

∫
Ω
(v+)βu ≤

(∫
Ω
|v|2β

)1/2

|u|2 ≤ C‖(u, v)‖β+1, (I2)

and, in a similar way,

∫
Ω
(u+)αu ≤ C‖(u, v)‖α+1, (I3)

∫
Ω
(u+)q

∫
Ω
v ≤ C‖(u, v)‖q+1, (I4)

∫
Ω
(u+)γv ≤ ‖(u, v)‖γ+1, (I5)

∫
Ω
(v+)δv ≤ C‖(u, v)‖δ+1. (I6)

We note that the positive constant C depends on Ω, but it does not depend on the rest
of the parameters involved in problem (2.7).
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Using the previous estimations (I1)–(I6) together with the fact that λ < 0, we deduce
that

〈
(F,G)

(
ξ, η

)
,
(
ξ, η

)〉 ≥ ‖(u, v)‖2 + λC‖(u, v)‖p+1 − C‖(u, v)‖β+1

− ε C‖(u, v)‖ + λC‖(u, v)‖q+1 − C‖(u, v)‖γ+1

− C‖(u, v)‖δ+1 − C‖(u, v)‖γ+1 − C‖(u, v)‖α+1.

(2.11)

Now, since 0 < p, q, α, β, γ, δ < 1, there is r > 0 such that

〈
(F,G)

(
ξ, η

)
,
(
ξ, η

)〉
> 0 if

∥∥(ξ, η)∥∥ > r. (2.12)

In view of Proposition 1.3, there exists r > 0 that does not depend on m, and a pair
(um, vm) ∈ Vm × Vm, such that ‖um‖, ‖vm‖ ≤ r, and satisfies the following equalities for all
i = 1, . . . , m :

∫
Ω
∇um∇ϕi + λ

∫
Ω
(v+

m)
p
∫
Ω
ϕi −

∫
Ω
(u+

m)
αϕi −

∫
Ω
(v+

m)
αϕi − ε

∫
Ω
ϕi = 0,

∫
Ω
∇vm∇ϕi + λ

∫
Ω
(u+

m)
q
∫
Ω
ϕi −

∫
Ω
(u+

m)
γϕi −

∫
Ω
(v+

m)
δϕi = 0.

(2.13)

So, for all ϕ ∈ Vm, it is satisfied that

∫
Ω
∇um∇ϕ + λ

∫
Ω
(v+

m)
p
∫
Ω
ϕ −

∫
Ω
(u+

m)
αϕ −

∫
Ω
(v+

m)
αϕ − ε

∫
Ω
ϕ = 0,

∫
Ω
∇vm∇ϕ + λ

∫
Ω
(u+

m)
q
∫
Ω
ϕ −

∫
Ω
(u+

m)
γϕ −

∫
Ω
(v+

m)
δϕ = 0.

(2.14)

In view of the boundedness of the approximate solutions um, vm in H1
0(Ω), we have,

perhaps for subsequences, that um ⇀ uε and vm ⇀ vε inH1
0(Ω).

Fixing k < m and making m → +∞ in the last two equalities, we obtain, after using
Sobolev immersions, that the following equalities hold for all ϕ ∈ Vk:

∫
Ω
∇uε∇ϕ + λ

∫
Ω
(v+

ε )
p
∫
Ω
ϕ −

∫
Ω
(u+

ε )
αϕ −

∫
Ω
(v+

ε )
αϕ − ε

∫
Ω
ϕ = 0,

∫
Ω
∇vε∇ϕ + λ

∫
Ω
(u+

ε )
q
∫
Ω
ϕ −

∫
Ω
(u+

ε )
γϕ −

∫
Ω
(v+

ε )
δϕ = 0.

(2.15)

Since k is arbitrary, the last two identities are valid for all ϕ ∈ H1
0(Ω). Consequently,

(uε, vε) ∈ H1
0(Ω) ×H1

0(Ω) is a weak solution of the auxiliary problem (2.7).
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Now, since λ < 0 and ε > 0, we have, from (2.7), that −Δuε ≥ ε and −Δvε ≥ 0 on
Ω. This fact, together with the Dirichlet boundary conditions, says that uε, vε > 0 on Ω. In
consequence, the following equalities hold for all ϕ ∈ H1

0(Ω):

∫
Ω
∇uε∇ϕ + λ

∫
Ω
v
p
ε

∫
Ω
ϕ −

∫
Ω
uαϕ −

∫
Ω
vαϕ − ε

∫
Ω
ϕ = 0,

∫
Ω
∇vε∇ϕ + λ

∫
Ω
u
q
ε

∫
Ω
ϕ −

∫
Ω
u
γ
εϕ −

∫
Ω
vδ
εϕ = 0.

(2.16)

That is to say, (uε, vε) is a weak solution of problem

−Δu(x) + λ

∫
Ω
vp(y)dy = uα(x) + vβ(x) + ε, x ∈ Ω,

−Δv(x) + λ

∫
Ω
uq(y)dy = uγ(x) + vδ(x), x ∈ Ω,

u(x), v(x) > 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω.

(2.17)

In particular, it satisfies the following inequalities:

−Δuε(x) ≥ uα
ε (x), x ∈ Ω,

−Δvε(x) ≥ vδ
ε (x), x ∈ Ω,

uε(x), vε(x) > 0, x ∈ Ω,

uε(x) = vε(x) = 0, x ∈ ∂Ω.

(2.18)

Let uα, vδ > 0 be the unique solution of the problem

−Δu(x) = uα(x), x ∈ Ω,

−Δv(x) = vδ(x), x ∈ Ω,

u(x), v(x) > 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω.

(2.19)

We point out that the existence and uniqueness of the solutions of each of the above
equations follow from [18, 19] because 0 < α, δ < 1.

In the sequel, we use the following comparison result, due to Ambrosetti, Brezis, and
Cerami.
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Lemma 2.2. [20, Lemma 3.3]. Assume that f(t) is a continuous function such that t−1f(t) is
decreasing for t > 0. Let v and w satisfy

−Δv(x) ≤ f(v(x)), x ∈ Ω,

v(x) > 0, x ∈ Ω,

v(x) = 0, x ∈ ∂Ω,

−Δw(x) ≥ f(w(x)), x ∈ Ω,

w(x) > 0, x ∈ Ω,

w(x) = 0, x ∈ ∂Ω.

(2.20)

Then, w(x) ≥ v(x) for all x ∈ Ω.

So we conclude that uε ≥ uα > 0 and vε ≥ vδ > 0 in Ω.
Taking limits on both members of (2.16) and (2.6) as ε → 0+, we deduce that uε ⇀ u

and vε ⇀ v, for some u, v ∈ H1
0(Ω) such that u, v > 0 in Ω.

Proceeding as before, by using Sobolev embeddings and elliptic regularity, we
conclude that (u, v) is a classical solution of the system (2.1).

Remark 2.3. We note that, from the fact that problem (1.6) is a one-dimensional particular
case of problem (2.1), when λ > 0, we cannot ensure that, in general, the problem (2.1) has a
positive solution in Ω.

Remark 2.4. We should point out that we may consider a more general system than (2.1). To
be more precise, we may consider a system like

−Δmu(x) + λ

∫
Ω
vp(y)dy = uα(x) + vβ(x), x ∈ Ω,

−Δnv(x) + λ

∫
Ω
uq(y)dy = uγ(x) + vδ(x), x ∈ Ω,

u(x), v(x) > 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

(2.21)

where −Δmu = − div (|∇u|m−2∇u) and −Δnu = − div (|∇u|n−2∇u) are, respectively, the
m-Laplacian and n-Laplacian. Although the proof of the existence of solution follows similar
ideas as those used in Theorem 2.1, the calculations are more complicated because we have to
work with Schauder’s basis inW1,m

0 (Ω) andW1,n
0 (Ω) and these spaces do not enjoy a Hilbert

space structure.
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If we would like to dare a little more, we may consider a system like

−Δm(x)u(x) + λ

∫
Ω
vp(x)(y)dy = uα(x) + vβ(x), x ∈ Ω,

−Δn(x)v(x) + λ

∫
Ω
uq(x)(y)dy = uγ(x) + vδ(x), x ∈ Ω,

u(x), v(x) > 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

(2.22)

where

−Δm(x)u = −div
(
|∇u|m(x)−2∇u

)
,

−Δn(x)u = −div
(
|∇u|n(x)−2∇u

) (2.23)

are, respectively, the m(x)-Laplacian and n(x)-Laplacian and p(x), α(x), β(x), n(x), q(x),
γ(x), δ(x) are continuous functions on Ω satisfying suitable conditions. In this case, we
have to work in the generalized Lebesgue-Sobolev spaces W

1,m(x)
0 (Ω) and W

1,n(x)
0 (Ω). See,

for example, [21, 22] and the references therein, for more detailed information on this subject.

3. A Singular Problem

The Galerkin methodmay also be used to attack a singular version of the problem (2.1). More
precisely, let us consider a simple version of a singular problem as

−Δu(x) + λ

∫
Ω
vp(y)dy =

1
uα(x)

, x ∈ Ω,

−Δv(x) + λ

∫
Ω
uq(y)dy = vδ(x), x ∈ Ω,

u(x), v(x) > 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω

(3.1)

with α, δ > 0.
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We should point out that other combinations of u and v may be considered, including
convection terms like |∇u|γ , γ > 0. More precisely, we may consider problems like

−Δu(x) + λ

∫
Ω
vp(y)dy =

1
uα(x)

+ |∇u(x)|γ , x ∈ Ω,

−Δv(x) + λ

∫
Ω
uq(y)dy = vδ(x), x ∈ Ω,

u(x), v(x) > 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

(3.2)

or

−Δu(x) + λ

∫
Ω
vp(y)dy =

1
uα(x)

+ |∇u(x)|γ , x ∈ Ω,

−Δv(x) + λ

∫
Ω
uq(y)dy =

1
vδ(x)

, x ∈ Ω,

u(x), v(x) > 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω.

(3.3)

However, for the sake of simplicity and to illustrate the method, we restrict our
discussion to the problem (3.1).

To approach problem (3.1), we consider a nonsingular perturbation as

−Δu(x) + λ

∫
Ω
(v+)p

(
y
)
dy =

1
((u+(x)) + ε)α

, x ∈ Ω,

−Δv(x) + λ

∫
Ω
(u+)q

(
y
)
dy = (v+(x))δ, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

(3.4)

with ε > 0, to obtain approximate solutions (uε, vε). In this way, we avoid the singular term.
We have the following result.

Theorem 3.1. Let 0 < α, δ < 1 be real numbers and λ < 0 a real parameter. Then, problem (3.1)
possesses a positive solution (u, v) ∈ (C2(Ω) ∩ C(Ω)) × (C2(Ω) ∩ C(Ω)).

Proof. Reasoning as in the proof of Theorem 2.1 we obtain, for each ε > 0, a solution (uε, vε)
of problem (3.4). So, since λ < 0, we obtain

−Δuε(x) ≥ 1
((u+

ε (x)) + ε)α
> 0, x ∈ Ω,

−Δvε(x) ≥ (v+
ε (x))

δ ≥ 0, x ∈ Ω,

uε(x) = vε(x) = 0, x ∈ ∂Ω.

(3.5)
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In view of the maximum principle, we obtain that uε > 0 in Ω and vε ≥ 0 in Ω.
Consequently,

−Δuε(x) + λ

∫
Ω
v
p
ε

(
y
)
dy =

1
(uε(x) + ε)α

, x ∈ Ω,

−Δvε(x) + λ

∫
Ω
u
q
ε

(
y
)
dy = vδ

ε (x), x ∈ Ω,

uε(x) = vε(x) = 0, x ∈ ∂Ω.

(3.6)

If vε ≡ 0, we obtain, in view of (3.6), that
∫
Ω u

q
ε(y)dy = 0, which contradicts the fact

that uε > 0 in Ω. Thus, vε /≡ 0 and, because vε ≥ 0, the maximum principle gives vε > 0 in Ω.
The solution of problem (3.1) will be obtained by studying the limit when ε → 0.

Thus, we may suppose that 0 < ε < 1. In view of this, we obtain from (3.6) that

−Δuε(x) >
1

(uε(x) + 1)α
, x ∈ Ω,

uε(x) = 0, x ∈ ∂Ω.

(3.7)

Let ωε be the unique positive solution of

−Δωε(x) =
1

(uε(x) + 1)α
, x ∈ Ω,

ωε(x) = 0, x ∈ ∂Ω.

(3.8)

From the maximum principle, we deduce that uε > ωε > 0 in Ω. Since 1/(uε + 1)α

is bounded, by using interior elliptic regularity, we obtain that there is ω ∈ C2(Ω) such that
ωε → ω in C2(Ω′), for all Ω′ ⊂⊂ Ω.

Using the Galerkin method and reasoning as in the proof of Theorem 2.1, we deduce
that the approximate solutions uε, vε are uniformly bounded inH1

0(Ω)with respect to 0 < ε <
1. In consequence, we conclude that uε ⇀ u and vε ⇀ v in H1

0(Ω) in the weak sense. Hence,
in view of (3.8), we obtain

−Δω(x) =
1

(u(x) + 1)α
, x ∈ Ω,

ω(x) = 0, x ∈ ∂Ω.

(3.9)

Invoking again the maximum principle, we get ω > 0 in Ω. Since uε > ωε in Ω, we
conclude that u ≥ ω > 0 inΩ. Reasoning as before, v > 0 inΩ, and (u, v) is a classical solution
of problem (3.1), which finishes the proof of this result.
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4. On a Superlinear Problem

At last we will make some remarks on a superlinear problem. In order to simplify the
exposition, let us consider the one equation case

−Δu(x) + λ

∫
Ω
up(y)dy = uα(x) + f(x), x ∈ Ω,

u(x) > 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

(4.1)

where 1 < p, α < (N + 2)/(N − 2), N ≥ 3 and f ∈ L2(Ω), f ≥ 0, f /≡ 0. Such a function f is
introduced in order to ensure that the solution is nonnegative and nontrivial. Note that u ≡ 0
is a solution of

−Δu(x) + λ

∫
Ω
up(y)dy = uα(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

(4.2)

and we do not have at our disposal the results in [19, 20].

Theorem 4.1. Suppose that 1 < p, α < (N + 2)/(N − 2), N ≥ 3 and λ < 0. Then, for each f ∈
L2(Ω), with ‖f‖2 sufficiently small, problem (4.1) possesses a nonnegative and nontrivial solution.

Proof. First of all, let us consider the auxiliary problem

−Δu(x) + λ

∫
Ω
(u+)p

(
y
)
dy = (u+(x))α + f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

(4.3)

As before, let us consider F : R
m → R

m, F = (F1, . . . , Fm), defined, for all i = 1, . . . , m,
as

Fi(ξ) =
∫
Ω
∇u∇ϕi + λ

∫
Ω
(u+)p

∫
Ω
ϕi −

∫
Ω
(u+)αϕi −

∫
Ω
f ϕi, (4.4)

where we are using the previous identifications.
For all i = 1, . . . , m, the following equations hold

Fi(ξ) · ξi =
∫
Ω
∇u · ∇(ξiϕi

)
+ λ

∫
Ω
(u+)p

∫
Ω
ξiϕi −

∫
Ω
(u+)α

(
ξiϕi

) −
∫
Ω
f ξiϕi, (4.5)

and so

〈F(ξ), ξ〉 =
∫
Ω
|∇u|2 + λ

∫
Ω
(u+)p

∫
Ω
u −

∫
Ω
(u+)αu −

∫
Ω
f u. (4.6)
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Using the classical immersions, we get

〈F(ξ), ξ〉 ≥ ‖u‖2 + λC‖u‖p+1 − C‖u‖α − C∥∥f∥∥2‖u‖ (4.7)

for all u ∈ Vm.
We now consider the function

g(t) = t2 + λCtp+1 − Ctα+1, t ≥ 0, (4.8)

and note that

g(t) = t2
(
1 + λCtp−1 − Ctα−1

)
. (4.9)

So, we may find a t0 > 0, sufficiently small, such that

g(t0) = t20

(
1 + λCt

p−1
0 − Ctα−10

)
> 0. (4.10)

As consequence, we can choose ‖f‖2, small enough, such that

g(t0) = t20

(
1 + λCt

p−1
0 − Ctα−10

)
> C

∥∥f∥∥2t0, (4.11)

and, taking u ∈ Vm such that ‖u‖ = t0, we get

〈F(ξ), ξ〉 > 0, |ξ| = ‖u‖ = t0, u ∈ Vm, (4.12)

and note that such a t0 does not depend on m.
Proceeding as in the proof of Theorem 2.1, we obtain, for each m ∈ N, an approximate

solution um ∈ Vm satisfying ‖um‖ ≤ t0 and, for all i = 1, . . . , m,

∫
Ω
∇um∇ϕi + λ

∫
Ω
(u+

m)
p
∫
Ω
ϕi −

∫
Ω
(u+

m)
αϕi −

∫
Ω
f ϕi = 0. (4.13)

Thus, for all ϕ ∈ Vm, we have

∫
Ω
∇um∇ϕ + λ

∫
Ω
(u+

m)
p
∫
Ω
ϕ −

∫
Ω
(u+

m)
αϕ −

∫
Ω
f ϕ = 0. (4.14)

Since we are working in the superlinear and subcritical case and using the previous
arguments, we obtain that there is a function u ∈ H1

0(Ω) satisfying

∫
Ω
∇u∇ϕ + λ

∫
Ω
(u+)p

∫
Ω
ϕ −

∫
Ω
(u+)αϕ −

∫
Ω
f ϕ = 0 (4.15)

for all ϕ ∈ H1
0(Ω).
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We now use the weak maximum principle to conclude that u ≥ 0 in Ω. From the fact
that f /≡ 0, the solution is not the trivial one. Then, u is a solution of our original problem
(4.1).

Remark 4.2. Note that, when we are working with a problem with variational structure the
function f may be discarded because we may use the Mountain Pass Theorem. In this case
the critical level given by this theorem is positive and so we may conclude that the solution
obtained in this way is not null. However, in our case, we can not dispose of the variational
techniques. In view of this and to show that we obtain a nontrivial solution, we had to
introduce the function f .
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