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This paper investigates the mean-square exponential synchronization of stochastic complex net-
works with Markovian switching and time-varying delays by using the pinning control method.
The switching parameters are modeled by a continuous-time, finite-state Markov chain, and the
complex network is subject to noise perturbations, Markovian switching, and internal and outer
time-varying delays. Sufficient conditions for mean-square exponential synchronization are ob-
tained by using the Lyapunov-Krasovskii functional, Itö’s formula, and the linearmatrix inequality
(LMI), and numerical examples are given to demonstrate the validity of the theoretical results.

1. Introduction

A complex network is a structure that is made up of a large set of nodes (also called vertices)
that are interconnected to varying extents by a set of links (also called edges). Coupled
biological systems such as neural networks and socially interacting animal species are simple
examples of complex networks and so too is the Internet and the World Wide Web [1].
Complex networks, indeed, are so ubiquitously found in nature and in the modern world
that it is absolutely essential for us to have a thorough understanding of their dynamical
behavior, and complex networks synchronization holds particular promise for applications
to many fields (e.g., population dynamics, power systems and automatic control [2–6]).
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Chaos synchronization is a phenomenon that has been widely investigated since it
was first discovered by Pecora and Carroll in 1990, and it is a process in which two or
more dynamical systems seek to adjust a certain prescribed property of their motion to a
common behavior in the limit as time tends to infinity [7]. Many synchronization patterns
have been explored (e.g., complete synchronization [8], cluster synchronization [9], phase
synchronization [10], and partial synchronization [11]), and synchronization can be achieved
by the use of adaptive control [12], feedback control [13], intermittent control [14], fuzzy
control [15], impulsive control [16], or pinning control [17–20].

Stochastic perturbations and time delays are important considerations when sim-
ulating realistic complex networks because signals traveling along real physical systems
are usually randomly perturbed by the environmental elements [12] and time-delayed by
chaotic behavior (consider, e.g., a delayed neural network or a delayed Chua’s circuit).
Although some results have recently appeared on the synchronization of complex networks
with coupling delays ([21–27]), most of the stochastically perturbed networks that have
been investigated were one dimensional in the sense that the same noise impacted all the
transmitted signals ([28–30]). Results on the more realistic vector-formed perturbations (in
which different nodes are subject different types of noise disturbances) are scanty with
[12, 31] being the only such results that have been reported on the stochastic synchronization
of coupled neural networks. One popular model for stochastics in the sciences and industries
is the Markovian switching model driven by continuous-time Markov chains ([32–37]), and
Mao [32, 33] considered the stability of stochastic delayed differential equations using this
model while others ([34–36]) discussed the exponential stability of stochastic delayed neural
networks. Liu et al. [37], on the other hand, investigated the synchronization of discrete-time
stochastic complex networks with Markovian jumping and mode-dependent mixed time
delays.

Pinning control is a technique that applies controllers to only a small fraction of the
nodes in a network, and the technique is important because it greatly reduces the number of
controlled nodes for real-world complex networks (which, in most cases, is huge). In fact,
pinning control can be so effective for some networks that a single pinning controller is
required for synchronization, namely, for complex networks that have either a symmetric or
an asymmetric coupling matrix (Chen et al. [17]). Other pinning schemes, on the other hand,
are capable of globally and exponentially stabilizing a network onto a homogeneous state by
using an optimal combination of the number of pinned nodes and the feedback control gain
(Zhao et al. [18]). The dependence of the number of pinned nodes on the coupling strength,
indeed, is also known for networks with a fixed network structure (Zhou et al. [19] and Zhao
et al. [20]).

In this paper, we study the mean-square exponential synchronization of stochastic
time-varying delayed complex networks with Markovian switching by using the pinning
control method. We consider a stochastic complex network with internal time-varying de-
layed couplings, Markovian switching, and Wiener processes. We prove some sufficient
conditions for mean-square exponential synchronization of these networks by applying the
Lyapunov-Krasovskii functional method and the linear matrix inequality (LMI).

This paper is organized as follows. In Section 2, we introduce the general model for
a stochastic complex network with time-varying delayed dynamical nodes and Markovian
switching coupling. We also write down some preliminary definitions and theorems that
will be needed for the rest of the paper. In Section 3, we establish some exponential
synchronization criteria for such complex dynamical networks, and, in Section 4, we discuss
a numerical example of the theoretical results. The paper concludes in Section 5.



Abstract and Applied Analysis 3

2. Preliminaries

2.1. Notations

Throughout this paper, R
n shall denote the n-dimensional Euclidean space and R

n×n the set
of all n × n real matrices. The superscript T shall denote the transpose of a matrix or a vector,
Tr(·) the trace of the corresponding matrix As = (A + AT )/2 and 1n = (1, 1, . . . , 1)T ∈ R

n and
In the n-dimensional identity matrix. For square matrices M, the notation M > 0 (resp., < 0)
shall mean that M is a positive-definite (resp., negative-definite) matrix and λmax(A), and
λmin(A) shall denote the greatest and least eigenvalues of a symmetric matrix, respectively.

Let (Ω,F, {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0 that is
right continuous with F0 containing all the P-null sets. C([−τ, 0];Rn) shall denote the family
of continuous functions φ from [−τ, 0] to R

n with the uniform norm ‖φ‖ = sup−τ≤s≤0|φ(s)|
andC2

F0
([−τ, 0];Rn) the family of allF0 measurable,C([−τ, 0];Rn)-valued stochastic variables

ξ = {ξ(θ) : −τ ≤ θ ≤ 0} such that
∫0
−τ E|ξ(s)|2ds ≤ ∞, where E stands for the correspondent

expectation operator with respect to the given probability measure P.
Consider a complex network consisting of N identical nodes with nondelayed and

time-varying delayed linear coupling and Markovian switching

dxi(t) =

⎧
⎨

⎩
f(t, xi(t), xi(t − τ(t))) +

N∑

j=1,i /= j

aij

(
raij (t)

)
Σ
(
xj(t) − xi(t)

)

+
N∑

j=1,i /= j

bij
(
rbij (t)

)
Σ
(
xj(t − τc(t)) − xi(t − τc(t))

)
⎫
⎬

⎭
dt

+ σi(t, x(t), x(t − τ(t)), x(t − τc(t)), rσi(t))dwi(t), i = 1, 2, . . . ,N,

(2.1)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))
T ∈ R

n is the state vector of the ith node of the network,
f(t, xi(t), xi(t − τ(t))) = [f1(t, xi(t), xi(t − τ(t))), f2(t, xi(t), xi(t − τ(t))), . . . , fn(t, xi(t), xi(t −
τ(t)))]T is a continuous vector-valued function, Σ = diag(�1, �2, . . . , �n) is an inner coupling
of the networks that satisfies �j > 0, j = 1, 2, . . . , n, and raij (t), rbij (t) and rσi(t) are the
continuous-time Markov processes that describe the evolution of the modes at time t. Here,
A(ra(t)) = [aij(raij (t))] ∈ R

n×n and B(rb(t)) = [bij(rbij (t))] ∈ R
n×n are the outer coupling

matrices of the network at time t at nodes raij (t), t − τc(t) and rbij (t), respectively, such
that aij(raij (t)) ≥ 0 for i /= j, aii(raii(t)) = −∑N

j=i,j /= i aij(raij (t)), bij(rbij (t)) ≥ 0 for i /= j, and
bii(rbii(t)) = −∑N

j=i,j /= i bij(rbij (t)). τ(t) is the inner time-varying delay satisfying τ ≥ τ(t) ≥ 0
and τc(t) is the coupling time-varying delay satisfying τc ≥ τc(t) ≥ 0. Finally, σi(t, x(t), x(t −
τ(t)), x(t−τc(t)), rσi(t)) = σi(t, x1(t), . . . , xn(t), x1(t−τ(t)), . . . , xn(t−τ(t)), x1(t−τc(t)), . . . , xn(t−
τc(t)), rσi(t)) ∈ R

n×n and wi(t) = (wi1(t), wi2(t), . . . , win(t))
T ∈ R

n is a bounded vector-form
Weiner process, satisfying

Ewij(t) = 0, Ew2
ij(t) = 1, Ewij(t)wij(s) = 0 (s /= t). (2.2)

In this paper, A(ra(t)) is assumed to be irreducible in the sense that there are no isolated
nodes.
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The initial conditions associated with (2.1) are

xi(s) = ξi(s), −τ̌ ≤ s ≤ 0, i = 1, 2, . . . ,N, (2.3)

where τ̌ = max{τ(t), τc(t)}, ξi ∈ Cb
F0
([−τ̌ , 0],Rn) with the norm ‖ξi‖2 = sup−τ̌≤s≤0ξi(s)

T ξi(s),
and our objective is to control system (2.1) so that it stays in the trajectory s(t) ∈ R

n of the
system

ds(t) = f(t, s(t), s(t − τ(t)))dt (2.4)

by adding pinning controllers to some of the nodes. Without loss of generality, let the first l
nodes be controlled. Then the network is described by

dxi(t) =

⎧
⎨

⎩
f(t, xi(t), xi(t − τ(t))) +

N∑

j=1,i /= j

aij

(
raij (t)

)
Σ
(
xj(t) − xi(t)

)

+
N∑

j=1,i /= j

bij
(
rbij (t)

)
Σ
(
xj(t − τc(t)) − xi(t − τc(t))

)
+ ui(t)

⎫
⎬

⎭
dt

+ σi(t, x(t), x(t − τ(t)), x(t − τc(t)), rσi(t))dwi(t), i = 1, 2, . . . ,N,

(2.5)

where ui(t) (i = 1, 2, . . . ,N) are the linear state feedback controllers that are defined by

ui(t) =

{
−εi(xi(t) − s(t)), i = 1, 2, . . . , l,
0, i = l + 1, l + 2, . . . ,N,

(2.6)

where εi > 0 (i = 1, 2, . . . , l) are the control gains, denoted by Ξ = diag{ε1, ε2, . . . , εl, 0, . . . , 0} ∈
R

n×n. Define ei(t) = xi(t) − s(t) (i = 1, 2, . . . ,N) as the synchronization error. Then, according
to the controller (2.6), the error system is

dei(t) =

⎧
⎨

⎩
f(t, xi(t), xi(t − τ(t))) − f(t, si(t), si(t − τ(t))) +

N∑

j=1,i /= j

aij

(
raij (t)

)
Σ
(
ej(t) − ei(t)

)

+
N∑

j=1,i /= j

bij
(
rbij (t)

)
Σ
(
ej(t − τc(t)) − ei(t − τc(t))

)
+ ui(t)

⎫
⎬

⎭
dt

+ σi(t, e(t), e(t − τ(t)), e(t − τc(t)), rσi(t))dwi(t), i = 1, 2, . . . ,N.

(2.7)

Remark 2.1. Since the Markov chains raij (t), rbij (t), and rσi(t) are independent, we have an
equivalent system as follows.
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Let r(t), t > 0 be a right-continuous Markov chain on a probability space that takes
values in a finite state space S = 1, 2, . . . ,M with a generator Γ = [γij] ∈ R

M×M given by

P
{
r(t + Δ) = j | r(t) = i

}
=

{
γijΔ + o(Δ) if i /= j,

1 + γiiΔ + o(Δ) if i = j,
(2.8)

for some Δ > 0. Here γij = 0 is the transition rate from i to j if i /= j and γii = −∑i /= j γij ,

dei(t) =

⎧
⎨

⎩
f(t, xi(t), xi(t − τ(t))) − f(t, si(t), si(t − τ(t))) +

N∑

j=1

aij(r(t))Σej(t)

+
N∑

j=1

bij(r(t))Σej(t − τc(t)) + ui(t)

⎫
⎬

⎭
dt

+ σi(t, e(t), e(t − τ(t)), e(t − τc(t)), r(t))dwi(t), i = 1, 2, . . . ,N.

(2.9)

Definition 2.2. The complex network (2.5) is said to be exponentially synchronized in mean square
if the trivial solution of system (2.9) is such that

N∑

i=1

E‖ei(t, t0, ξi)‖2 ≤ Ke−κt, (2.10)

for some K > 0 and some κ > 0 for any initial data ξi ∈ Cb
F0
([−τ, 0];Rn).

Definition 2.3 (see [12]). A continuous function f(t, x, y) : [0,+∞] × R
n × R

n → R
n is said

to belong to the function class QUAD, denoted by f ∈ QUAD(P,Δ, η, θ) for some given
matrix Σ = diag{�1, �2, . . . , �n} if there exists a positive definite diagonal matrix P =
diag{p1, p2, . . . , pn}, a diagonal matrix Δ = diag{δ1, δ2, . . . , δn}, and a constant η > 0, θ > 0
such that f(·) satisfies the condition
(
x − y

)T
P
((
f(t, x, z) − f

(
t, y,w

)) −ΔΣ
(
x − y

)) ≤ −η(x − y
)T(

x − y
)
+ θ(z −w)T (z −w)

(2.11)

for all x, y, z,w ∈ R
n.

Remark 2.4. The function class QUAD includes almost all the well-known chaotic systems
with or without delays such as the Lorenz system, the Rössler system, the Chen system, the
delayed Chua’s circuit, the logistic delayed differential system, the delayed Hopfield neural
network, and the delayed CNNs. We shall simply write

p̌ = max
{
p1, p2, . . . , pn

}
, p̂ = min

{
p1, p2, . . . , pn

}
, δ̌ = max{δ1, δ2, . . . , δn}. (2.12)

The following assumptions will be used throughout this paper for establishing the
synchronization conditions.
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(H1) τ(t), and τc(t) are bounded and continuously differentiable functions such that 0 <
τ(t) ≤ τ , τ̇(t) < τ < 1, 0 < τc(t) ≤ τc and τ̇c(t) < τc < 1. Let τ̌ = max{τ, τc}.

(H2) Let σ(t, e(t), e(t − τ(t)), e(t − τc(t)), r) = σ(t, e1(t), . . . , eN(t), e1(t − τ(t)), . . . , eN(t −
τ(t)), e1(t − τc(t)), . . . , eN(t − τc(t)), r). Then there exist positive definite constant
matrices Υr

i1, Υ
r
i2, and Υr

i3 for i = 1, 2, . . . ,N and r = 1, 2, . . . ,M such that

Tr
[
σi(t, e(t), e(t − τ(t)), e(t − τc(t)), r)Tσi(t, e(t), e(t − τ(t)), e(t − τc(t)), r)

]

≤
N∑

j=1

ej(t)TΥr
i1ej(t) +

N∑

j=1

ej(t − τ(t))TΥr
i2ej(t − τ(t)) +

N∑

j=1

ej(t − τc(t))TΥr
i3ej(t − τc(t)).

(2.13)

Lemma 2.5 (see [32, 33, the generalized Itô formula]). Consider a stochastic delayed differential
equation with Markovian switching of the form

dx(t) = f(t, x(t), x(t − τ), r(t))dt + σ(t, x(t), x(t − τ), r(t))dω(t) (2.14)

on t ≥ 0 with initial value x0 = ξ ∈ Cb
F0
([−τ, 0];Rn), where

f : R
n × R+ × S −→ R

n, σ : R
n × R+ × S −→ R

n×m. (2.15)

Let C2,1(R+ × R
n;R+) be the family of all the nonnegative functions V (t, x, r) on R+ × R

n × S that
are twice continuously differentiable in x and once differentiable in t. Let V ∈ C2,1(R+ × R

n × S;R+).
Define an operator LV from R

n × R+ × S to R
n by

LV (t, x, r) = Vt(t, x, r) + Vx(t, x, r)f(t, x, r) +
1
2
Tr
[
σ(t, x, r)TVxxσ(t, x, r)

]
+

M∑

j=1

γijV
(
t, x, j

)
,

(2.16)

where Vt(t, x, r) = ∂V (t, x, r)/∂t, Vx(t, x, r) = (∂V (t, x, r)/∂x1, . . . , ∂V (t, x, r)/∂xn),
Vxx(t, x, r) = (∂2V (t, x, r)/∂xixj)n×n. If V ∈ C2,1(R+ × R

n × S;R+), then

EV (t, x(t), r) = EV (t0, x(t0), r) + E

∫ t

t0

LV (s, x(s), r)ds, (2.17)

for all ∞ > t > t0 ≥ 0, as long as the expectations of the integrals exist.
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3. Main Result

Theorem 3.1. Let assumptions (H1) and (H2) be true and let f ∈QUAD(P,Δ, η, θ). If there exist
positive constants αr and βr such that

⎡

⎢
⎣
A(r)s + δ̌IN − Ξ + αrIN

B(r)
2

B(r)T

2
−βrIN

⎤

⎥
⎦ ≤ 0, for r = 1, 2, . . . ,M, (3.1)

τ̌ ≤ θT, τ̌ ≤ (1 − θ)T, 0 ≤ τ̌ ≤ 1−
q̌
(
b̌ + č

)

1 + θ
, (3.2)

(
1

b1 + c1
,

1
b2 + c2

, . . . ,
1

bM + cM

)
> Γ̃−11M, (3.3)

where γ > 0 is the greatest root of the equation

q̌γ−(1 + θ) +
b̌q̌

1 − τ
eγτ +

čq̌

1 − τc
eγτc = 0, (3.4)

Γ̃ = diag{a1, a2, . . . , aM} − Γ,

ar =
λmin

(
2ηIn − p̌

∑N
i=1 Υ

r
i1 + 2α1PΣ

)

p̌
, ǎ = max

r∈S
ar,

br =
λmax

(∑N
i=1 PΥ

r
i2 + 2ζIN

)

p̂
, b̌ = max

r∈S
br ,

cr =
λmax

(∑N
i=1 PΥ

r
i3 + 2β2PΣ

)

p̂
, č = max

r∈S
cr .

(3.5)

Then the solutions x1(t), x1(t), . . . and xN(t) of system (2.9) are globally and exponentially stable.

Proof. By (3.3), there exists a sufficiently small constant θ > 0 such that

(
1

b1 + c1
,

1
b2 + c2

, . . . ,
1

bM + cM

)
≥ (1 + θ)Γ̃−11. (3.6)

Set (1 + θ)Γ̃−11 = q = (q1, q2, . . . , qM)T . Then

Γ̃q = (1 + θ)1M, (3.7)

that is,

(br + cr)qr ≤ 1, arqr −
M∑

s=1

γsrqr = 1 + θ. (3.8)
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For 1 ≤ r ≤ M, define the Lyapunov-Krasovskii function

V (t, e(t), r) = qr
1
2

N∑

i=1

ei(t)TPei(t) (3.9)

and let ẽk(t) = (e1k(t), e2k(t), . . . , eNk(t))
T , k = 1, 2, . . . , n. By Lemma 2.5, we have

LV (t, e(t), r) = qr
N∑

i=1

ei(t)TP

⎧
⎨

⎩
f(t, xi(t), xi(t − τ(t))) − f(t, s(t), s(t − τ(t)))

+
N∑

j=1

aij(r)Σej(t) +
N∑

j=1

bij(r)Σej(t − τc(t)) + ui(t)

⎫
⎬

⎭

+
1
2
qr

N∑

i=1

Tr
{
σi(t, x(t), x(t − τ(t)), x(t − τc(t)), r)TPσi

×(t, x(t), x(t − τ(t)), x(t − τc(t)), r)
}
+

M∑

s=1

γrsqs
1
2

N∑

i=1

ei(t)TPei(t)

= qr
N∑

i=1

ei(t)TP
{
f(t, xi(t), xi(t − τ(t))) − f(t, s(t), s(t − τ(t))) −ΔΣei(t)

}

+ qr
N∑

i=1

ei(t)TPΔΣei(t) + qr
N∑

i=1

N∑

j=1

aij(r)ei(t)TPΣej(t)

+ qr
N∑

i=1

N∑

j=1

bij(r)ei(t)TPΣej(t − τc(t)) − qr
l∑

i=1

εiei(t)TPΣei(t)

+
1
2
qr Tr

{
σi(t, x(t), x(t − τ(t)), x(t − τc(t)), r)TPσi

×(t, x(t), x(t − τ(t)), x(t − τc(t)), r)
}
+

M∑

s=1

γrsqs
1
2

N∑

i=1

ei(t)TPei(t)

≤ qr

{

−η
N∑

i=1

ei(t)Tei(t) + θ
N∑

i=1

ei(t − τ(t))Tei(t − τ(t)) +
n∑

k=1

pk�kδkẽ
k(t)T ẽk(t)

+
n∑

k=1

pk�kẽ
k(t)TA(r)ẽk(t) +

n∑

k=1

pk�kẽ
k(t)TB(r)ẽk(t − τc(t))

−
n∑

k=1

pk�kẽ
k(t)TΞẽk(t)
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+
1
2
p̌

N∑

j=1

[
N∑

i=1

ei(t)TΥr
j1ei(t) +

N∑

i=1

ei(t − τ(t))TΥr
j2ei(t − τ(t))

+
N∑

i=1

ei(t − τc(t))TΥr
j3ei(t − τc(t))

]}

+
M∑

s=1

γrsqs
1
2

N∑

i=1

ei(t)TPei(t)

= qr

⎧
⎨

⎩
−η

N∑

i=1

ei(t)Tei(t) + θ
N∑

i=1

ei(t − τ(t))Tei(t − τ(t)) +
1
2
p̌

N∑

i=1

N∑

j=1

ei(t − τc(t))T

× Υr
j3ei(t − τc(t))

⎫
⎬

⎭
+

M∑

s=1

γrsqs
1
2

N∑

i=1

ei(t)TPei(t)

+ qr

⎧
⎨

⎩

n∑

k=1

pk�kẽ
k(t)TA(r)ẽk(t)+

n∑

k=1

pk�kẽ
k(t)TB(r)ẽk(t − τc(t))

−
n∑

k=1

pk�kẽ
k(t)TΞẽk(t)

+
1
2
p̌

⎡

⎣
N∑

i=1

N∑

j=1

ei(t)TΥr
j1ei(t) +

N∑

i=1

N∑

j=1

ei(t − τ(t))TΥr
j2ei(t − τ(t))

⎤

⎦

+
n∑

k=1

pk�kδkẽ
k(t)T ẽk(t)

}

= qr

⎧
⎨

⎩

N∑

i=1

ei(t)T
⎛

⎝−ηIN +
1
2
p̌

N∑

j=1

Υr
j1 − αrPΣ

⎞

⎠ei(t) +
N∑

i=1

ei(t − τ(t))T

×
⎛

⎝θ +
1
2
p̌

N∑

j=1

Υr
j2

⎞

⎠ei(t − τ(t))+
N∑

i=1

ei(t − τc(t))T
⎛

⎝1
2
p̌

N∑

j=1

Υr
j3 + βrPΣ

⎞

⎠

×ei(t − τc(t))

⎫
⎬

⎭
+

M∑

s=1

γrsqs
1
2

N∑

i=1

ei(t)TPei(t)

+ qr

{
n∑

k=1

pk�kẽ
k(t)T

[
A(r) − Ξ +

(
δ̌ + αr

)
IN
]
ẽk(t)

+
n∑

k=1

pk�kẽ
k(t)TB(r)ẽk(t − τc(t)) −

n∑

k=1

pk�kẽ
k(t − τc(t))Tβr ẽk(t − τc(t))

}

≤ qr

⎧
⎨

⎩

N∑

i=1

ei(t)T
⎛

⎝−ηIN +
1
2
p̌

N∑

j=1

Υr
j1 − αrPΣ

⎞

⎠ei(t)+
N∑

i=1

ei(t − τ(t))T



10 Abstract and Applied Analysis

×
⎛

⎝βrIN +
1
2
p̌

N∑

j=1

Υr
j2

⎞

⎠ei(t − τ(t)) +
N∑

i=1

ei(t − τc(t))T
⎛

⎝1
2
p̌

N∑

j=1

Υr
j3 + βrPΣ

⎞

⎠

×ei(t − τc(t))

⎫
⎬

⎭
+

M∑

s=1

γrsqs
1
2

N∑

i=1

ei(t)TPei(t).

(3.10)

Let

E(t) =
1
2

N∑

i=1

ei(t)TPei(t). (3.11)

Then we have

LV (t) ≤ −arqrE(t) + brqrE(t − τ(t)) + crqrE(t − τc(t)) +
M∑

s=1

γrsqsE(t), (3.12)

and by (3.8), we have

LV (t) ≤ −(1 + θ)E(t) + b̌q̌E(t − τ(t)) + čq̌E(t − τc(t)). (3.13)

Define

W(t) = eγtV (t) (3.14)

and use (3.13) to compute the operator

LW(t) = eγt
[
γV (t) +LV (t)

]

≤ eγt
[
γp̌E(t) − (1 + θ)E(t) + b̌q̌E(t − τ(t)) + čq̌E(t − τc(t))

]
,

(3.15)

which, after applying the generalized Itô’s formula, gives

qre
γt

EE(t) = qre
γt0EE(t0) + E

∫ t

t0

LW(s)ds (3.16)
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for any t > t0 ≥ 0. Hence we have

qre
γt

EE(t) ≤ q̌EE(0) + E

∫ t

0
eγs

[
γE(s) − (1 − θ)E(s) + b̌q̌E(s − τ(s)) + čq̌E(s − τc(s))

]
ds

≤ p̌q̌

2

N∑

i=1

E‖ξi‖2 +
(
γ − (1 + θ)

)
∫ t

0
eγsEE(s)ds + b̌q̌eγτ

∫ t

0
eγ(s−τ(s))EE(s − τ(s))ds

+ čq̌eγτc
∫ t

0
eγ(s−τc(s))EE(s − τc(s))ds,

(3.17)

which, by using the change of variables s − τ(s) = u, gives

∫ t

0
eγ(s−τ(s))EE(s − τ(s))ds =

∫ t−τ(t)

−τ(0)
eγuEE(u)

du

1 − τ̇(t)

≤ p̌τ

2(1 − τ)

N∑

i=1

E‖ξi‖2 + 1
1 − τ

∫ t

0
eγuEE(u)du,

(3.18)

and a further change of variables s − τc(s) = u gives

∫ t

0
es−τc(s)EE(s − τc(s))ds =

∫ t−τc(t)

−τc(0)
eγuEE(u)

du

1 − τ̇c(t)

≤ p̌τc
2(1 − τc)

N∑

i=1

E‖ξi‖2 + 1
1 − τc

∫ t

0
eγuEE(u)du.

(3.19)

By Condition (3.4), we obtain

EE(t) ≤ p̌q̌

2

(

1 +
b̌q̌τ

1 − τ
eγτ +

čq̌τc
1 − τc

eγτc

)
N∑

i=1

E‖ξi‖2e−γt (3.20)

so that

E‖e(t)‖2 ≤ p̌q̌

2p̂

(

1 +
b̌q̌τ

1 − τ
eγτ +

čq̌τc
1 − τc

eγτc

)
N∑

i=1

E‖ξi‖2e−γt. (3.21)

The proof is hence complete.

When the time-varying delays are constant (i.e., τ(t) = τ , τc(t) = τc), we obtain the
following corollary.
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Corollary 3.2. Let assumptions (H1) and (H2) be true and let f ∈ QUAD (P,Δ, η, θ). If there exist
positive constants αr and βr such that

⎡

⎢
⎣
A(r)s + δ̌IN − Ξ + αrIN

B(r)
2

B(r)T

2
−βrIN

⎤

⎥
⎦ ≤ 0, for r = 1, 2, . . . ,M,

τ̌ ≤ θT, τ̌ ≤ (1 − θ)T,
(

1
b1 + c1

,
1

b2 + c2
, . . . ,

1
bM + cM

)
> Γ̃−11M ,

(3.22)

where γ > 0 is the greatest root of the equation

q̌γ − (1 + θ) + b̌q̌eγτ + čq̌eγτc = 0,

Γ̃ = diag{a1, a2, . . . , aM} − Γ,

ar =
λmin

(
2ηIn − p̌

∑N
i=1 Υ

r
i1 + 2α1PΣ

)

p̌
, ǎ = max

r∈S
ar,

br =
λmax

(∑N
i=1 PΥ

r
i2 + 2ζIN

)

p̂
, b̌ = max

r∈S
br,

cr =
λmax

(∑N
i=1 PΥ

r
i3 + 2β2PΣ

)

p̂
, č = max

r∈S
cr ,

(3.23)

then the solutions x1(t), x1(t), . . . and xN(t) of system (2.9) are globally and exponentially stable.

When A(r(t)) = A, B(r(t)) = B, and σi(t, e(t), e(t − τ(t)), e(t − τc(t)), r(t)) = σi(t, e(t),
e(t − τ(t)), e(t − τc(t))), we can get the following corollary.

Corollary 3.3. Let assumptions (H1) and (H2) be true, and let f ∈ QUAD (P,Δ, η, θ). If there
exist positive constants αr and βr such that

⎡

⎢
⎣
As + δ̌IN − Ξ + αrIN

B

2
BT

2
−βrIN

⎤

⎥
⎦ ≤ 0,

τ̌ ≤ θT, τ̌ ≤ (1 − θ)T, 0 ≤ τ̌ ≤ 1 −

(
b̌ + č

)

1 + θ
,

(3.24)
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where

ar =
λmin

(
2ηIn − p̌

∑N
i=1 Υ

r
i1 + 2α1PΣ

)

p̌
, ǎ = max

r∈S
ar,

br =
λmax

(∑N
i=1 PΥ

r
i2 + 2ζIN

)

p̂
, b̌ = max

r∈S
br,

cr =
λmax

(∑N
i=1 PΥ

r
i3 + 2β2PΣ

)

p̂
, č = max

r∈S
cr ,

(3.25)

then the solutions x1(t), x1(t), . . . and xN(t) of system (2.9) are globally and exponentially stable.

4. Numerical Simulation

In this section, we present some numerical simulation results that validate the theorem of the
previous section.

Consider the chaotic delayed neural network

ds(t) =
[−Cs(t) +Af(s(t)) + Bg(s(t − τ(t)))

]
dt, (4.1)

where f(s) = g(s) = tanh(s), τ(t) = 1,

C =
[
1 0
0 1

]
, A =

[
2 −0.1
−5 4.5

]
, B =

[−1.5 −0.1
−0.2 −4

]
. (4.2)

Taking P = diag{1, 2} and Δ = diag{5, 11, 5}, we have η = 0.15 and θ = 3.25 so that Condition
(2.11) is satisfied. Thus

dxi(t) =

⎧
⎨

⎩
f(t, xi(t), xi(t − τ(t))) +

5∑

j=1

ar
ijΣxj(t) +

5∑

j=1

brijΣxj(t − τc(t)) − εi(xi(t) − s(t))

⎫
⎬

⎭
dt

+ σr
i (t, x(t), x(t − τ(t)), x(t − τc(t)))dwi(t), i = 1, 2, . . . , 5, r = 1, 2, 3,

(4.3)
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A1 =
[
a1
ij

]
= 20

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−3 1 1 1 0
1 −4 1 1 1
1 1 −4 1 1
1 1 1 −4 1
0 1 1 1 −3

⎤

⎥
⎥
⎥
⎥
⎥
⎦
, A2 =

[
a2
ij

]
= 15

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−4 1 1 1 1
1 −3 1 1 0
1 1 −4 1 1
1 1 1 −4 1
1 0 1 1 −3

⎤

⎥
⎥
⎥
⎥
⎥
⎦
,

A3 =
[
a3
ij

]
= 37

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−2 1 1 0 0
1 −3 1 1 0
1 1 −3 0 1
0 1 0 −1 0
0 0 1 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎦
, B1 =

[
b1ij

]
= 0.1

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−2 1 1 0 0
0 −2 1 1 0
0 1 −2 1 0
0 1 1 −2 0
0 1 1 0 −2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

B2 =
[
b2ij

]
= 0.2

⎡

⎢
⎢
⎢
⎢⎢
⎣

−1 0 0 1 0
0 −1 0 1 0
0 1 −1 0 0
0 1 0 −1 0
0 0 0 1 −1

⎤

⎥
⎥
⎥
⎥⎥
⎦
, B3 =

[
b3ij

]
= 0.7

⎡

⎢
⎢
⎢
⎢⎢
⎣

−1 0 1 0 0
1 −1 0 0 0
0 0 −1 1 0
0 0 1 −1 0
1 0 0 0 −1

⎤

⎥
⎥
⎥
⎥⎥
⎦

Ξ = 100

⎡

⎢⎢⎢⎢⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥⎥⎥⎥⎥
⎦
, Γ =

⎡

⎣
−3 1 2
2 −4 2
2 3 −5

⎤

⎦, τc(t) = 0.1
et

1 + et

σ1
i (t, x(t), x(t − τ(t)), x(t − τc(t))) = 0.1diag{xi1(t) − xi+1,1(t), xi2(t) − xi+1,2(t)},

σ2
i (t, x(t), x(t − τ(t)), x(t − τc(t))) = 0.1diag{xi1(t − τ(t)) − xi+1,1(t − τ(t)), xi2(t − τ(t))

−xi+1,2(t − τ(t))},
σ3
i (t, x(t), x(t − τ(t)), x(t − τ(t))) = 0.1diag{xi1(t − τc(t)) − xi+1,1(t − τc(t)), xi2(t − τc(t))

−xi+1,2(t − τc(t))}.
(4.4)

Computations then yield τ = 1, τ = 0, τc = 0.1, τc = 0.1, Υij = 0.01I2 for i = 1, 2, . . . ,N, and
j = 1, 2. Let J = {1, 2} and the control strength εi = 100 for i = 1, 2. Then the solutions of
(3.1)–(3.3) are (by using the MATLAB LMI toolbox): α1 = 3.5000, β1 = 0.0020, a1 = 7.1351,
b1 = 6.5300, c1 = 0.0379; α2 = 3.6000, β2 = 0.0088, a2 = 7.3351, b2 = 6.5300, c2 = 0.0651;
α3 = 3.7000, β3 = 0.0852, a3 = 7.5351, b3 = 6.5300, c3 = 0.3709. So θ = 0.003, and

Γ̃−1 =

⎡

⎣
0.10526 0.014337 0.019082
0.022486 0.095174 0.018773
0.022176 0.025065 0.087313

⎤

⎦. (4.5)

Therefore

q = [0.1391, 0.1368, 0.1350]T , (4.6)

and, after solving (3.4), we obtain γ = 0.0349.
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Figure 1: The trajectories of the state variables of xi1 and xi2 (i = 1, 2, . . . , 5) in system (4.3) under pinning
control.
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Figure 2: The time evolution of ei1 and ei2 (i = 1, 2, . . . , 5) in system (4.3) under pinning control.
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Figure 3: The trajectories of the state variables of xi1 and xi2 (i = 1, 2, . . . , 5) in system (4.3) under pinning
control.

The initial conditions for this simulation are xij(t0) = −6 + 2i + j, i = 1, 2, . . . , 5,
j = 1, 2 and s(t0) = [−5,−4]T for all t0 ∈ [−1, 0] and the trajectories of the periodically
intermittent pinning control gains are shown in Figure 1. Figure 2 shows the time evolution
of the synchronization errors with periodically intermittent pinning control.

Next, let tc(t) = 0.1, we get the γ = 0.0402. The initial conditions for this simulation
are xij(t0) = −6 + 2i + j, i = 1, 2, . . . , 5, j = 1, 2 and s(t0) = [−5,−4]T for all t0 ∈ [−1, 0] and
the trajectories of the periodically intermittent pinning control gains are shown in Figure 3.
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Figure 4: The time evolution of ei1 and ei2 (i = 1, 2, . . . , 5) in system (4.3) under pinning control.

Figure 4 shows the time evolution of the synchronization errors with periodically intermittent
pinning control.

5. Conclusion

In this paper, we investigated the synchronization problem for stochastic complex networks
withMarkovian switching and nondelayed and time-varying delayed couplings. Specifically,
we achieved global exponential synchronization by applying a pinning control scheme to a
small fraction of the nodes and derived sufficient conditions for global exponential stability
of synchronization in mean square. Finally, we considered some numerical examples that
illustrate the theoretical analysis.
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