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An integral equation of Volterra type with additional compact operator in Banach space is con-
sidered. A special case is an integral equation of contact problem that arises in theory of vis-
coelasticity of mixed Fredholm and Volterra type with spectral parameter depending on time.
In case the initial value of the parameter coincides with some isolated point of the spectrum of
compact operator, the conditions of solvability are established.

1. Introduction

We consider in an arbitrary complex Banach space B the following integral equation:

∫ t

0
K(t, s)u(s)ds +Au(t) − λ(t)u(t) = f(t), t ≥ 0, (1.1)

where u : [0,+∞) → B is unknown function, A : B → B is a linear compact operator,
K : Q → C is the kernel, f : [0,+∞) → B is a given function, and λ : [0,+∞) → C is a
function which we may interpret as spectral parameter. We indicated above by Q the set

Q =
{
(t, s) ∈ R

2 : 0 ≤ s ≤ t < ∞
}
. (1.2)
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The main example is the following integral equation:

∫ t

0
K(t, s)u(x, s)ds +

∫
Ω
R
(
x, y

)
u
(
y, t

)
dy − λ(t)u(x, t) = f(x, t), (1.3)

where x ∈ Ω and t ≥ 0, which we consider in Banach spaces B = Lp(Ω) or B = C(Ω). We
suppose that the set Ω ⊂ R

n is measurable in Lebesgue sense. The equations of such type
are known as partial integral equations and were first considered by Salam [1] (see also [2],
and books [3, 4]). The equation (1.3) arises in the theory of viscoelasticity [5] (see also [6]).
The kernels K(t, s) and R(x, y) are connected with some elastic creeping base and λ(t) is the
given value which describes the elastic properties of deformable body. We may refer also to
work [7], where the more general integral equations in Hilbert space were considered. The
main purpose of the present paper is to find conditions of solvability of (1.1) in case where
λ(0) coincides with some isolated pole of the resolvent Rλ(A) = (A − λI)−1.

2. The Conditions for Solvability on the Spectrum

We suppose that λ(t) is a continuous function. Denote by Λ(t) the range of the function λ(s)
on the interval [0, t]

Λ(t) = {λ(s) : 0 ≤ s ≤ t}. (2.1)

It is clear that because of continuity of the function λ(t) the set Λ(t) for every t ≥ 0 is closed.
We say that u ∈ CB[0,∞) if u is an abstract function u : [0,+∞) → B, which is continuous on
the half-line [0,∞), and set

‖u‖t = sup
0≤s≤t

‖u(s)‖, t ≥ 0. (2.2)

Denote by σ(A) the spectrum of a compact operator A and consider for λ /∈ σ(A) the
resolvent Rλ(A) = (A−λI)−1 of the operatorA. In case where Λ(t)∩σ(A) = 
 for all t ≥ 0 it is
not difficult to show that (1.1) has continuous solution u(t) for any continuous function f(t).
The problem is more complicated when Λ(t) has a common point with spectrum of A and
that is the main idea of our consideration. Note that the case where A is self-adjoint operator
in Hilbert space was studied in [7–9]. In this paper we assume that λ(0) coincides with one
of the points λ0 /= 0 of the spectrum of the operator A. From the mechanical point of view it
means that the initial state of the considered system coincides with resonance. The problem
is how to change the function λ(t) for t > 0 in order to get the existence and uniqueness of the
solution. It was proved in [7] that the answer is almost obvious: λ(t) must go away from the
spectrum as fast as possible. We suppose that λ(t) has m continuous derivatives on the half
line t ≥ 0, where mwill be chosen below. The main assumption is the following:

λ′(0)/= 0. (2.3)
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It is necessary to add some conditions to establish the one-valued solvability of (1.1). It was
shown in [7] that one of these conditions isK(0, 0) = 0. Indeed, ifK(0, 0)/= 0 then there exists
the function λ(t), which satisfies condition (2.3), however the homogeneous equation

∫ t

0
K(t, s)u(s)ds + [A − λ(t)I]u(t) = 0 (2.4)

has nontrivial solution.

2.1. Example

Let μ/= 0 be a simple eigenvalue of the operator A and uμ be the corresponding eigenvector:

Auμ = μuμ. (2.5)

Set u(t) = uμ = const/= 0. Then

∫ t

0
K(t, s)u(s)ds + [A − λ(t)I]u(t) =

[
k(t) + μ − λ(t)

]
uμ, (2.6)

where

k(t) =
∫ t

0
K(t, s)ds. (2.7)

Set

λ(t) = μ + k(t). (2.8)

In case where K(0, 0)/= 0 this function satisfies condition (2.3) since

λ′(0) = K(0, 0)/= 0. (2.9)

It is clear that u(t) is a solution of the homogeneous equation (2.4).
Let p be a natural number. We assume that the kernel K(t, s) is defined on the whole

plane R
2, has all partial derivatives of order ≤p, which are continuous on the plane R

2 and
the following conditions:

∂i+jK

∂ti∂sj
(0, 0) = 0, 0 ≤ i + j ≤ p − 1, (2.10)

are fulfilled. For example,K(t, s) = (t±s)pF(t, s), where F(t, s) is an arbitrary smooth enough
function on the plane R

2.
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Let A∗ : B∗ → B∗ be the adjoint operator, where B∗ is a conjugate space (the space of
linear continuous functionals v : B → C). As usual, we set

kerA∗ = {v ∈ B∗ : A∗v = 0}. (2.11)

Further, we say that u ⊥ kerA∗ if u ∈ B and v(u) = 0 for all v ∈ kerA∗.
According to Fredholm-Riesz-Schauder theory, every nonzero point λ0 of the spectrum

of A is an eigenvalue and

dimker(A − λ0I) = dimker(A∗ − λ0I) ≥ 1. (2.12)

It is well known that the resolvent of the compact operator is meromorphic function
and the nonzero eigenvalues of this operator coincide with poles of this function (see, e.g.,
[10], Chapter VIII, Section 8).

3. Solvability on the Spectrum

Definition 3.1. Let m be a natural number and λ0 be an eigenvalue of the compact linear
operator A. We say that λ0 /= 0 is the isolated point of the spectrum of the operator A of the
type m if λ0 is the pole of the resolvent Rλ(A) = (A − λI)−1 of the order m, that is, there exist
C > 0 and δ > 0 so that

‖Rλ(A)‖ ≤ C

|λ − λ0|m
, 0 < |λ − λ0| < δ. (3.1)

We apply also the additional restrictions on the function f and its derivatives at the
point t = 0 and prove the following result. In what follows we assume that the condition
(2.10)with some natural p is fulfilled.

We say that the function λ : [0,+∞) → C belongs to the spaceCm[0,∞), if this function
has m continuous derivatives for t ≥ 0.

Theorem 3.2. Suppose that λ ∈ Cm[0,∞) satisfies condition (2.3). Let λ(0) be an isolated point of
the spectrum σ(A) of the type m ≤ p and λ(t) /∈ σ(A) for all t > 0. If the function f has continuous
derivatives of order ≤m on the half-line t ≥ 0, and the following conditions:

f (k)(0) ⊥ ker(A∗ − λ0I), k = 0, 1, . . . , m − 1, (3.2)

are fulfilled, then the continuous solution of (1.1) exists and is unique.

To prove Theorem 3.2 we consider the following auxiliary equation:

∫ t

0
K(t, s)Rλ(s)(A)v(s)ds + v(t) = f(t), t ≥ 0, (3.3)

which is equivalent to (1.1). At first we find the estimate of resolvent Rλ(t) near to point
λ0 = λ(0).
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Lemma 3.3. Let λ(0) = λ0 be an isolated point of the spectrum σ(A) of the type m and λ(t) /∈ σ(A)
for all t > 0. If the condition (2.3) is fulfilled then for all T > 0 the following inequality:

∥∥Rλ(t)(A)
∥∥ ≤ CT

tm
, 0 < t ≤ T, (3.4)

is valid.

Proof. It is not difficult to show that the estimate

|λ(t) − λ0| ≥ c(T)t, 0 ≤ t ≤ T, (3.5)

follows from assumption (2.3). According to condition (3.1), for all λ near to λ0 the estimate

∥∥Rλ(t)(A)
∥∥ ≤ C

|λ(t) − λ0|m
(3.6)

is valid, and (3.4) follows from (3.5) and (3.6).

Lemma 3.4. Let the conditions (2.10) be fulfilled. Then for m ≤ p the following equality

K(t, s) = tmKm(t, s), (3.7)

is valid, where the function Km(t, s) is bounded on every compact set E ⊂ Q.

Proof. The assertion follows from equality

K(t, s) =
∑

i+j≤m

1
i!j!

∂i+jK(0, 0)
∂ti∂sj

tisj + Rm(t, s)

=
∑

i+j=m

1
i!j!

∂i+jK(0, 0)
∂ti∂sj

tisj + Rm(t, s) = tmKm(t, s).
(3.8)

We are taking into account that 0 ≤ s ≤ t and, hence,

tisj = tm ·
(s
t

)j
= O(tm), i + j = m. (3.9)

Lemma 3.5. Let the function g be continuous on the open half-line (0,+∞) and bounded on the closed
half-line [0,+∞). Then for every T > 0 the solution of the equation

∫ t

0

(s
t

)m
K(t, s)Rλ(s)(A)w(s)ds +w(t) = g(t), 0 ≤ t ≤ T, (3.10)

exists, is unique, continuous, and bounded on the interval (0, T].
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Proof. According to Lemma 3.4, we may state that the function

Km(t, s) = t−mK(t, s) (3.11)

is bounded for 0 ≤ s ≤ t ≤ T . Set

B(t) = tmRλ(t)(A) for t > 0, B(0) = 0. (3.12)

Then, (3.10) takes the form

∫ t

0
Km(t, s)B(s)w(s)ds +w(t) = g(t), 0 ≤ t ≤ T. (3.13)

Note that, according to Lemma 3.3,

‖B(t)w(t)‖ ≤ C‖w(t)‖, 0 ≤ t ≤ T. (3.14)

Now it is clear that the integral operator on the left side (3.13) is quasi-nilpotent. Hence
(3.13) has required unique solution, which is given by Neumann series.

Lemma 3.6. Let f(t) = tmg(t), where the function g is continuous on the half-line [0,∞). Then the
continuous solution of (1.1) exists and is unique.

Proof. Set

v(t) = tmw(t), (3.15)

where w(t) is a solution to (3.10). Then v(t) is a solution to (3.3). Hence, the function u(t) =
Rλ(t)(A)v(t) is the required solution of (1.1).

For an arbitrary T > 0 this solution exists on the interval [0, T], and because of uni-
queness we may state that this solution belongs to CB[0,∞).

Lemma 3.7. Let fk ∈ B and

fk ⊥ ker(A∗ − λ0I), k = 0, 1, . . . , m − 1. (3.16)

Then there exist the elements θkj ∈ B, 0 ≤ k ≤ m − 1, 0 ≤ j ≤ m − k − 1, so that

θkj ⊥ ker(A∗ − λ0I) (3.17)

and the functions

vk(t) = tk
(
θk0 + tθk1 + t2θk2 + · · · + tm−k−1θk,m−k−1

)
(3.18)
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which satisfy the following equations:

[A − λ(t)I]vk(t) = tkfk + tmβk(t), (3.19)

where the functions βk(t) are continuous on the half-line [0,+∞) and

βk(t) ⊥ ker(A∗ − λ0I), t ≥ 0. (3.20)

Proof. We construct the elements θkj using the back induction and begin with the case k =
m − 1. It is clear that we may choose element θm−1 ⊥ ker(A∗ − λ0I) so that

[A − λ0I]θm−1 = fm−1. (3.21)

Set

vm−1(t) = tm−1θm−1. (3.22)

Then

[A − λ(t)I] vm−1(t) = [A − λ0I]vm−1(t) − [λ(t) − λ0]vm−1(t)

= tm−1[A − λ0I]θm−1 − [λ(t) − λ0]tm−1θm−1

= tm−1fm−1 + tmβm−1(t),

(3.23)

where

βm−1(t) = −λ(t) − λ0
t

θm−1, t > 0,

βm−1(0) = −λ′(0)θm−1.
(3.24)

It is clear that βm−1(t) satisfies condition (3.20).
Now assume that Lemma 3.3 is valid for some k < m and prove it for k − 1, that is,

show that there exist θk−1,j so that the function

vk−1(t) = tk−1
(
θk−1,0 + tθk−1,1 + t2θk−1,2 + · · · + tm−kθk−1,k

)
(3.25)

satisfies equation

[A − λ(t)I]vk−1(t) = tk−1fk−1 + tmβk−1(t). (3.26)
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If we change fk to fk−1 (3.18) then, we may state that there exists the function uk(t) so
that

uk(t) = tk
(
θ̃k0 + tθ̃k1 + t2θ̃k2 + · · · + tm−k−1θ̃k,m−k−1

)
, (3.27)

[A − λ(t)I]uk(t) = tkfk−1 + tmβ̃k(t). (3.28)

Set for t ≥ 0

vk−1(t) = tk−1
(
θ̃k0 + tθ̃k1 + t2θ̃k2 + · · · + tm−k−1θ̃k,m−k−1 + tm−kθ∗

)
, (3.29)

where θ∗ will be defined below. Taking into account (3.27)we may write for t > 0

vk−1(t) =
1
t
uk(t) + tm−1θ∗. (3.30)

Then, according to (3.28),

[A − λ(t)I]vk−1(t) =
1
t
[A − λ(t)I]uk(t) + tm−1[A − λ(t)I]θ∗

= tk−1fk−1 + tm−1β̃k(t) + tm−1[A − λ(t)I]θ∗

= tk−1fk−1 + tm−1β̃k(t) + tm−1[A − λ0I]θ∗ − tm−1[λ(t) − λ0]θ∗.

(3.31)

If we choose θ∗ ⊥ ker(A∗ − λ0I) so that

(A − λ0I)θ∗ = −β̃k(0), (3.32)

then

[A − λ(t)I]vk−1(t) = tk−1fk−1 + tm−1
[
β̃k(t) − β̃k(0)

]
− tm−1[λ(t) − λ0]θ∗

= tk−1fk−1 + tmβk−1(t),
(3.33)

where

βk−1(t) =
β̃k(t) − β̃k(0)

t
− λ(t) − λ0

t
θ∗ for t > 0,

βk−1(0) = β̃′k(0) − λ′(0)θ∗.

(3.34)

It is clear that the function vk−1(t) satisfies both conditions (3.25) and (3.26).
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Now, let us give the proof of Theorem 3.2.

Proof. Set

fk =
f (k)(0)

k!
. (3.35)

According to (3.2) these elements satisfy conditions (3.16) of Lemma 3.7. Let vk(t) be
the solutions of (3.19) from Lemma 3.7. Set

v(t) =
m−1∑
k=0

vk(t). (3.36)

Then, according to Lemma 3.7,

[A − λ(t)I]v(t) =
m−1∑
k=0

tk
f (k)(0)

k!
+ tmβ(t), (3.37)

where β(t) ∈ C[0,∞). Hence,

∫ t

0
K(t, s)v(s)ds + [A − λ(t)I]v(t) =

m−1∑
k=0

f (k)(0)
k!

tk + tmh(t), (3.38)

where

h(t) = β(t) +
∫ t

0
Km(t, s)v(s)ds (3.39)

and the kernel Km(t, s) is defined by (3.7).
Set

f̃(t) = f(t) −
∫ t

0
K(t, s)v(s)ds − [A − λ(t)I]v(t). (3.40)

According to (3.38),

f̃(t) = f(t) −
m−1∑
k=0

f (k)(0)
k!

tk − tmh(t) = tmg(t), (3.41)

where, obviously, g ∈ C[0,∞) and

g(0) =
f (m)(0)
m!

− h(0). (3.42)
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Consider the following equation:

∫ t

0
K(t, s)w(s)ds + [A − λ(t)I]w(t) = f̃(t), (3.43)

where f̃(t) = tmg(t). According to Lemma 3.6, the solution w(t) exists and is unique.
Recall that according to definition (3.40), the function v(t) satisfies equation

∫ t

0
K(t, s)v(s)ds + [A − λ(t)]v(t) = f(t) − f̃(t). (3.44)

Now we can prove the existence of the solution by setting

u(t) = v(t) +w(t). (3.45)

Uniqueness follows from Lemma 3.6.

3.1. Remark

Note that assumption (3.2) of Theorem 3.2 is important. If this is not satisfied then existence
of the continuous solution is not guaranteed.

In order to show this, it is enough to consider the finite-dimensional operator with
corresponding Jordan matrix whose diagonal and subdiagonal elements are equal to 1 and
all other elements are equal to 0. The next example makes clear this statement.

3.2. Example

Let us consider (1.3) for Ω = [0, π] and for kernel

R
(
x, y

)
=

m∑
k=1

gk
(
y
)
sin kx, 0 ≤ x ≤ π, 0 ≤ y ≤ π, (3.46)

where

gk
(
y
)
=

2
π

[
sin ky + sin(k − 1)y

]
. (3.47)

Define the matrix ‖ajk‖with elements

ajk =
∫π

0
gj(x) sin kx dx. (3.48)
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It is clear that

ajj = 1, j = 1, 2, . . . , m, aj(j−1) = 1, j = 2, 3, . . . , m, (3.49)

and ajk = 0 otherwise.
Let u(x) be the solution to the equation

(A − λI)u(x) = f(x), (3.50)

or

λu(x) =
m∑
k=1

(
u, gk

)
sin kx − f(x), (3.51)

where, as usual,

(u, v) =
∫π

0
u(x)v(x)dx. (3.52)

Set

ck =
(
u, gk

)
, fk =

(
f, gk

)
. (3.53)

Then (3.51) takes the form

λcj =
m∑
k=1

ajkck − fj , j = 1, 2, . . . , m. (3.54)

We suppose that λ/= 0 and λ/= 1. Then the solution of this algebraic system is

ck = −
k∑
j=1

(λ − 1)j−k−1fj , k = 1, 2, . . . , m. (3.55)

Hence, the solution of the integral equation (3.51) equals

u(x) =
1
λ

m∑
k=1

ck sin kx − 1
λ
f(x). (3.56)

Assume that

f(x, t) = ϕ(t) sinx. (3.57)
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Then, obviously,

f1(t) = f2(t) = ϕ(t),

f3 = f4 = · · · = fm = 0.
(3.58)

In this case, according to (3.55),

ck = − ϕ(t)

(λ − 1)k
− ϕ(t)

(λ − 1)k−1
= − λ

(λ − 1)k
ϕ(t), k = 1, 2, . . . , m. (3.59)

Thus, the function

u(x, t) = − ϕ(t)
m∑
k=1

sin kx

(λ − 1)k
− ϕ(t)

λ
sinx (3.60)

satisfies (3.50)with right-hand side f(x, t) defined by (3.57).
Now it is easy to construct (1.3) so that its right-hand side satisfies conditions (3.2) for

k = 1, 2, . . . , m − 2 and does not satisfy this condition for k = m − 1, and because of that this
equation has no continuous solution.

For example, in the simplest case K(t, s) ≡ 0 we may set λ(t) = 1 + t and ϕ(t) = tm−1.
The function (3.57) equals f(x, t) = tm−1 sinx and satisfies conditions (3.2) for all k except
k = m − 1. According to (3.60), there exists only one solution

u(x, t) = − 1
t

m∑
k=1

tm−k sin kx − tm−1

1 + t
sinx, (3.61)

and it is clear that this solution does not belong to C[0,∞).

3.3. Remark

We may note that the estimate of the solution may be obtained using the properties of some
entire functions just as in [11].
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