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This paper develops the optimal fault-tolerant guaranteed cost control scheme for a batch process
with actuator failures. Based on an equivalent two-dimensional Fornasini-Marchsini (2D-FM)
model description of a batch process, the relevant concepts of the fault-tolerant guaranteed cost
control are introduced. The robust iterative learning reliable guaranteed cost controller (ILRGCC),
which includes a robust extended feedback control for ensuring the performances over time and
an iterative learning control (ILC) for improving the tracking performance from cycle to cycle,
is formulated such that it cannot only guarantee the closed-loop convergency along both the
time and the cycle directions but also satisfy both the H∞ performance level and a cost function
having upper bounds for all admissible uncertainties and any actuator failures. Conditions for the
existence of the controller are derived in terms of linear matrix inequalities (LMIs), and a design
procedure of the controller is presented. Furthermore, a convex optimization problem with LMI
constraints is formulated to design the optimal guaranteed cost controller which minimizes the
upper bound of the closed-loop system cost. Finally, an illustrative example of injection molding
is given to demonstrate the effectiveness and advantages of the proposed 2D design approach.

1. Introduction

Though studies on batch process control can be dated back to 1930s [1], the last 10 years
have witnessed a very widespread concern to batch processing technologies that is driven by
the business of manufacturing [2]. The process optimization and control lag far behind the
development of a continuous production process. Advanced control has critical importance
to the quality and quality consistency of batch processes because batch processes are
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the preferred manufacturing choice for low-volume and high-value products. It is necessary
to study the advanced control problem for the batch process.

Meanwhile, the demand for productivity leads increasingly for the chemical plant to
operate under challenging conditions, which consequently exposes the possibility of system
failures. A chemical process typically has a large number of measurements and actuators. If a
failure is not controlled promptly with a proper corrective action, it will degrade the process
performance and even result in safety problems for the plant and personnel. Therefore,
from safety as well as performance point of view, it is interesting in studying the problem
of fault-tolerant control (FTC) for the system with actuator failures. Reliable control is a
popular FTC method [3–5]. Recently, the study of reliable control has received considerable
attention because of the growing demands on reliability. However, most of them are designed
for continuous processes. Batch processes are also suffering from this problem. Due to the
complexity of the batch process, the harm that it suffers is more serious than that a continuous
process does. As early as 1982, Wensley pointed out the importance and urgency of fault-
tolerant control for batch processes. But, as supporting technology is not yet mature, only
limited results on FTC have been available up to now [6–8].

To exploit the repetitive nature of batch processes, iterative learning control (ILC) has
been used widely. In [9], a robust ILC was proposed for an injection mold process with
uncertain initial resetting and disturbances, and the output can track an arbitrary bounded
reference. A systematic method for the analysis and design of ILC systems was presented
in [10], in regard to the frequency domain. A model-based ILC strategy for the tracking
control of product quality in batch processes was proposed in [11]. Presently, Shi et al.
proposed a more general design framework for ILC of batch process: they first proposed
the feedback integrated with ILC scheme for the batch process; then, the batch process
under ILC is modeled as a two-dimensional (2D) system and the design of a robust ILC
for a batch process is transformed to a robust stabilization problem of the 2D system [12–
17]. The aforementioned results are obtained in the normal case. According to faulty cases,
for example, actuator failures, Wang et al. [6] developed a 2D iterative learning reliable
control (ILRC) for batch processes in a 2D Fornasini-Marchsini (2D-FM) model, and the
ILRC controller is designed to guarantee the closed-loop fault-tolerant system’s stability in
terms of linear matrix inequality (LMI); in view of sensor failures, the main results in robust
fault-tolerant control of batch processes are introduced in two classes: passive and active
[7, 8].

In fact, there are two major issues in the robust controller design. The first is con-
cerned with the robust stability of the uncertain closed-loop system, and the other is the
robust performance. Note that the latter is more important since when controlling a system
dependent on uncertain parameters, it is always desirable to design a control system which
is not only stable but also guarantees an adequate level of performance. Since the so-called
guaranteed cost control approach first introduced by Chang and Peng [18], this issue on
one-dimensional (1D) systems has been addressed extensively. In recent years, 2D discrete
systems have found various applications in many areas. The guaranteed cost control problem
for 2D discrete uncertain systems has received considerable attention and a robust controller
design method has been established. Furthermore, an optimization problem is introduced
to select the suboptimal guaranteed cost controller which minimizes the upper bound of
the cost function [19–21]. Although the results can be extended to robust iterative learning
guaranteed cost controller design, the resulted ILC lawwill be dependent on a state feedback.
On the other hand, no results on robust iterative learning fault-tolerant guaranteed cost
control have been available up to now.
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In this paper, according to actuator failures, the authors use the 2D theory to model,
analyze, and design robust iterative learning fault-tolerant control (ILFTC) system. We first
propose a 2D controller, which essentially consists of two types of controls: one is robust
feedback control with extended information, using the real-time information to ensure
the robust control performances along time, and the other is ILC, improving the tracking
performance from cycle to cycle. Then we establish a 2D-FM model serving as a process
model for the proposed design. Thus, sufficient conditions for the existence of the robust
optimal ILRGCC are constructed. Further, a convex optimization problem is introduced to
find the controller which minimizes the upper bound on the cost function. In addition, to
solve the nonrepeatable perturbation, the control law will satisfy the H∞ performance. The
main merits of this work can be summarized on two perspectives. (i) An ILFTC system is
represented equivalently as a 2D model. Based on this, the robust optimal guaranteed cost
control that are related to the ILFTC system can be translated to optimal guaranteed cost
control that are related to a 2D system. This provides a foundation for the design and analysis
of an ILFTC system based on a 2D system. (ii) Robust optimal fault-tolerant guaranteed
cost control along different axes introduced for the 2D system provides a powerful tool for
analyzing robust optimal guaranteed cost control of the ILC system over time and cycles.
Simulation with injection pressure control shows that the proposed 2D-ILRGCC design
method achieves the design objectives well.

Throughout this paper, the following notations are used: Rn represents Euclidean n
space, with the norm denoted by ‖·‖. For anymatrixM,M > 0 (M < 0)meansM is a positive
(negative) definite matrix. MT represents the transpose of matrix M. I and 0, respectively,
denote the identity matrix and the zero matrix with appropriate dimensions. The asterisk
notation (∗) represents the symmetric element of a matrix. | · | denotes absolute value of “·”.
For a 2D signal ω(t, k), if ‖ω(·, ·)‖2D−2e =

√∑N1
t=0

∑N2
k=0 ‖ω(·, ·)‖2 < ∞ for any integers N1,

N2 > 0, then ω(t, k) is said to be in �2D−2e space, as denoted by ω(·, ·) ∈ �2D−2e.

2. Problem Description

Consider process
∑

P , repetitively performing a task over a certain period of time
(called a cycle), described by the following discrete-time model with uncertain parameter
perturbations:

∑
P

:

{
x(t + 1, k) = (A + Δa(t, k))x(t, k) + Bu(t, k)
y(t, k) = Cx(t, k)

for x(0, k) = x0,k; t = 0, 1, 2, . . . , T ; k = 1, 2, . . . ,

(2.1)

where k indicates the cycle; t is the time index; x(t, k) ∈ Rn, y(t, k) ∈ Rl, and u(t, k) ∈ Rm are,
respectively, the state, output, and input of the process at time t in the kth cycle; x0,k is the
initial condition of the kth cycle. {A,B,C} are constant matrices of appropriate dimensions,
and Δa(t, k) denotes some perturbations at time t in the kth cycle and may be specified as
Δa(t, k) = EΔ(t, k)F with ΔT (t, k)Δ(t, k) ≤ I, 0 ≤ t ≤ T , k = 1, 2, . . ., where {E, F} are known
constant matrices. Δ(t, k) is generally represented as the functions of both time t and cycle
k. If Δ(t, k) depends on time t only, then the uncertain parameter perturbations are called
repeatable, otherwise nonrepeatable. For any two sequential cycles, δ(Δa(t, k)) = Δa(t, k) −
Δa(t, k − 1) denotes the cycle-to-cycle parameter perturbation.
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For control input ui(t, k) (where i = 1, 2, . . . , m), let uF
i (t, k) denote the signal from the

failed actuator. The following failure model is expressed as

uF
i (t, k) = αiui(t, k) (for i = 1, 2, . . . , m), (2.2)

where

0 ≤ αi ≤ αi ≤ αi (for i = 1, 2, . . . , m). (2.3)

The terms αi (αi ≤ 1) and αi (αi ≤ 1) are known scalars.
Denote

uF =
[
uF
1 , u

F
2 , . . . , u

F
m

]T
,

α = diag[α1, α2, . . . , αm],

α = diag
[
α1, α2, . . . , αm

]
,

α = diag[α1, α2, . . . , αm].

(2.4)

Hence, a batch process with state delay and actuator failures can be described by

∑
P−F

: x(t + 1, k) = (A + Δa(t, k))x(t, k) + Bαu(t, k),

y(t, k) = Cx(t, k),

x(t, k) = x0,k; t = 0, 1, 2, . . . , T ; k = 1, 2, . . . .

(2.5)

The control objective is to design a fault-tolerant guaranteed cost control law such that
the output of the process tracks a given trajectory, yd(t), as closely as possible, even with
actuator failures. Introduce the following notations:

β = diag
[
β1, β2, . . . , βm

]
, (2.6a)

β0 = diag
[
β10, β20, . . . , βm0

]
, (2.6b)

with

βi =
αi + αi

2
, βi0 =

αi − αi

αi + αi

(for i = 1, 2, . . . , m). (2.6c)

From (2.4) and (2.6a)–(2.6c), we know that there exists an unknown matrix α0 such that

α = (I + α0)β (2.7)
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with

|α0| ≤ β0 ≤ I, (2.8)

where

α0 � diag[α01, α02, . . . , α0m], |α0| � diag[|α01|, |α02|, . . . , |α0m|]. (2.9)

3. Iterative Learning Reliable Guaranteed Cost Control

3.1. Equivalent 2D Model Representation

For process
∑

P , use an ILC law with the following form:

∑
ilc

: u(t, k) = u(t, k − 1) + r(t, k) (for u(t, 0) = 0, t = 0, 1, 2, . . . , T), (3.1)

where u(t, 0) is the initial value of iteration and r(t, k) ∈ Rm is called the updating law of
the ILC to be determined. The objective for ILC design is to establish a procedure for the
design of optimal guaranteed cost controller (3.1) (or equivalent updating law r(t, k)) such
that y(t, k) tracks yd(t) as well as guarantees the closed-loop system preserving an adequate
control performance.

Design

δk
(
f(t, k)

)
= f(t, k) − f(t, k − 1),

e(t, k) = y(t, k) − yd(t).
(3.2)

It follows from (2.1) along with the definition of (3.2) that

δk(x(t + 1, k)) = (A + Δa(t, k))δk(x(t, k)) + Bαr(t, k) +ω(t, k), (3.3a)

e(t + 1, k) = y(t + 1, k) − yd(t) = e(t + 1, k − 1) + Cδk(x(t + 1, k))

= e(t + 1, k − 1) + C(A + Δa(t, k))δk(x(t, k)) + CBαr(t, k) + Cω(t, k),
(3.3b)

where

ω(t, k) = δk(Δa(t, k))x(t, k − 1).
(3.3c)

Obviously, for repeatable parameter perturbations, ω(t, k) = 0; for a nonrepeatable disturb-
ance, ω(t, k)/= 0.

On the other hand, for the ILC scheme, the use of more learning information may lead
to a better control performance. An advantage of using the design framework proposed in
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this paper is that the learning information used by the ILC law can be flexibly extended,
along the time and/or the cycle. In order to achieve steady-state tracking error along the time
direction to be of fast convergence, here assume that the general model of the feedback/feed-
forward control to be extended is described by the following linear dynamical model:

∑
e

: xe(t + 1, k) = Aexe(t, k) + Bee(t, k), (3.4)

where xe(t, k) is an extended state dynamically determined by e(t, k) and {Ae, Be} are
parameters that are specified based on the structure of the feedback and/or feed-forward
controls to be extended. In this paper, an integral feedback control can be extended by simply
specifying Ae = Be = I.

Thereby, an equivalent 2D system description of the previous batch process,
combination of the extended model

∑
e with (3.3a)–(3.3c), can be expressed as

∑
2D−ep−F

:

⎧
⎪⎪⎨
⎪⎪⎩

X(t + 1, k) = (A1 + ΔA1(t, k))X(t, k) +A2X(t + 1, k − 1) + Bαr(t, k) +Gω(t, k)

= A1(t, k)X(t, k) +A2X(t + 1, k − 1) + Bαr(t, k) +Gω(t, k),

Z(t, k) � e(t, k) = HX(t, k),
(3.5)

where

X(t, k) =

⎡
⎣
δk(x(t, k))
xe(t, k)
e(t, k)

⎤
⎦, A1 =

⎡
⎣

A 0 0
0 I I

CA 0 0

⎤
⎦, A2 =

⎡
⎣
0 0 0
0 0 0
0 0 I

⎤
⎦, B =

⎡
⎣

B
0
CB

⎤
⎦,

ΔA1(t, k) =

⎡
⎣

Δa(t, k) 0 0
0 0 0

CΔa(t, k) 0 0

⎤
⎦, ΔA1(t, k) = EΔ(t, k)F, E =

⎡
⎣

E
0
CE

⎤
⎦,

F =
[
F 0 0

]
, G =

⎡
⎣
I
0
C

⎤
⎦, H =

[
0 0 I

]
.

(3.6)

Model
∑

2D−ep−F is a typical 2D-FM model with uncertain perturbations; because this
model equivalently represents the dynamical behavior of the tracking error of the system
(2.1), it is called the equivalent 2D tracking error model of system (2.1). Therefore, it is
clear that the design of the updating law r(t, k) for system (2.1) is equivalent to the design
of a fault-tolerant guaranteed cost control law for the equivalent 2D tracking error model∑

2D−ep−F . Design a controller as follows:

r(t, k) = K

[
X(t, k)

X(t + 1, k − 1)

]
=
[
K1 K2

][ X(t, k)
X(t + 1, k − 1)

]
. (3.7)
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The closed-loop 2D-FM system then is given by

∑
2D−ep−F−C

:

⎧
⎨
⎩
X(t + 1, k) = A1kX(t, k) +A2kX(t + 1, k − 1) +Gω(t, k),

Z(t, k) � e(t, k) = HX(t, k),
(3.8)

where A1k = A1(t, k) + BαK1 and A2k = A2 + BαK2.
For 2D system

∑
2D−ep−F , assume that it has a finite set of initial conditions that is, there

exists two positive integers t, k such that

X(t, 0) = 0, t ≥ r1; X(0, k) = 0, k ≥ r2, (3.9a)

where r1 < ∞ and r2 < ∞ are positive integers. HereX(t, 0) andX(0, k) are calledK-boundary
and T -boundary, respectively, and the initial boundary conditions are arbitrary but belong to
the set

S =
{
X(t, 0), X(0, k) ∈ Rn : X(t, 0) = Θv1, X(0, k) = Θv2, vt

Tvt ≤ I, (t = 1, 2)
}
, (3.9b)

where Θ is a given matrix.
Associated with 2D system (3.5) is the following cost function:

J =
N1∑
t=0

N2∑
k=1

[
XT (t, k)U1X(t, k) +XT (t + 1, k − 1)U2X(t + 1, k − 1) + rT (t, k)U3r(t, k)

]

=
N1∑
t=0

N2∑
k=1

ϕT (t, k)
[
U1 +KT

1U3K1 KT
1U3K2

KT
2U3K1 U2 +KT

2U3K2

]
ϕ(t, k),

(3.10)

where U1 > 0, U2 > 0, U3 > 0, and ϕT (t, k) = [ X(t,k) XT (t+1,k−1) ].
Introduce the following definitions to establish a procedure for the design of updating

law r(t, k) which guarantees the closed-loop system both robust stable and preserving a
adequate control performance.

Definition 3.1. DenoteXr = sup{‖X(t, k)‖ : t+k = r, t, k ≥ 1}; consider the uncertain 2D system
(3.5) and the cost function (3.10); for any bounded boundary conditions satisfying (3.9b), all
admissible uncertainties, and any admissible actuator faults, if there exists a controller r∗(t, k)
and some specified constant J∗ such that the state of the resulting closed-loop system (3.8)
satisfies limr→∞ Xr = 0 and its cost function (3.10) satisfies J ≤ J∗, then J∗ is said to be a fault-
tolerant guaranteed cost and r∗(t, k) is said to be a fault-tolerant guaranteed cost control law
for the uncertain 2D system (3.5).

Definition 3.2. Assume that the K-boundary X(t, 0) = 0; for any T -boundary X(0, k) ∈ S, any
integer N > 0, all admissible uncertainties, and any admissible actuator faults, if there exists
a controller r∗(t, k) and some specified constant J

∗
1 such that the resulting closed-loop system

(3.8) satisfies limt→∞
∑N

k=1 ‖Xr‖ = 0 and its cost function (3.10) satisfies J ≤ J
∗
1, then J

∗
1 is said
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to be a T -fault-tolerant guaranteed cost and r∗(t, k) is said to be a T -fault-tolerant guaranteed
cost controller for the 2D system (3.5).

Definition 3.3. Assume that the T -boundary X(0, k) = 0. For anyK-boundary X(t, 0) ∈ S, any
integer N > 0, all admissible uncertainties, and any admissible actuator faults, if there exists
a controller r∗(t, k) and some specified constant J

∗
2 such that the resulting closed-loop system

(3.8) satisfies limk→∞
∑N

t=1 ‖Xr‖ = 0 and its cost function (3.10) satisfies J ≤ J
∗
2, then J

∗
2 is said

to be aK-fault-tolerant guaranteed cost and r∗(t, k) is said to be aK-fault-tolerant guaranteed
cost controller for the 2D system (3.5).

Definition 3.4. For a given scalar γ > 0, control law r∗(t, k) is a robust H∞ fault-tolerant
guaranteed cost control law for the uncertain 2D system (3.5); if the following conditions
hold for all admissible parameter uncertainties:

(1) the resulting closed-loop system (3.8) with ω(t, k) = 0 is asymptotically stable;

(2) with the zero initial condition, the controlled output z(t, k) satisfies

‖z‖2D−2e ≤ γ‖ω‖2D−2e; (3.11)

(3) in the case when ω(t, k) = 0, the cost function for the resulting closed-loop system
(3.8) satisfies J ≤ J∗.

Lemma 3.5. The 2D closed-loop system
∑

2D−ep−F−C is 2D-fault-tolerant guaranteed cost control if
there is a function V (·) that satisfies the following conditions:

(a) V (x) ≥ 0 for x ∈ Rn, and V (x) = 0 ↔ x = 0;

(b) V (x) → ∞ as ‖x‖ → ∞;

(c) for any boundary conditions, any admissible actuator faults satisfy (2.3) and for all T0 >
0, K0 > 0, i > 0,

∑
t+k=T0+K0+i+1

T0≤t≤T0+i
K0≤k≤K0+i

V (x(t, k)) <
∑

t+k=T0+K0+i
T0≤t≤T0+i
K0≤k≤K0+i

V (x(t, k)). (3.12)

Similar results can be obtained for T -fault-tolerant guaranteed cost control and K-
fault-tolerant guaranteed cost control.

Lemma 3.6. The 2D closed-loop system
∑

2D−ep−F−C is T -fault-tolerant guaranteed cost control if
there is a function V (·) that satisfies the following conditions:

(a) V (x) ≥ 0 for x ∈ Rn, and V (x) = 0 ↔ x = 0;

(b) V (x) → ∞ as ‖x‖ → ∞;
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(c) for any T -boundaryX(0, k), any integerN > 0, a zeroK-boundaryX(t, 0), any admissible
actuator faults satisfy (2.3) and for all t > 0

N∑
k=1

V (x(t + 1, k)) <
N∑
k=1

V (x(t + 1, k)). (3.13)

Lemma 3.7. The 2D closed-loop system
∑

2D−ep−F−C is K-fault-tolerant guaranteed cost control if
there is a function V (·) that satisfies the following conditions:

(a) V (x) ≥ 0 for x ∈ Rn, and V (x) = 0 ↔ x = 0;

(b) V (x) → ∞ as ‖x‖ → ∞;

(c) for anyK-boundaryX(t, 0), any integerN > 0, a zero T -boundaryX(0, k), any admissible
actuator faults satisfy (2.3) and for all k > 0

N∑
t=1

V (x(t, k + 1)) <
N∑
t=1

V (x(t, k)). (3.14)

3.2. Reliable Guaranteed Cost Controller Design and System Structure

In this section, we will design a reliable updating law r(t, k) such that the resulting closed-
loop system (3.8) is 2D-fault-tolerant guaranteed cost control and the cost function of closed-
loop system is lower than a specified upper bound.

Lemma 3.8 (see [22]). For any matrices D ∈ Rn×nf , E ∈ Rnf×n, and F ∈ Rnf×nf with ‖F‖ ≤ 1, and
scalar ε > 0, the following inequality holds:

DFE + ETFTDT ≤ ε−1DDT + εETE. (3.15)

Lemma 3.9 ((Schur Complement) [23]). Assume thatW , L, and V are given matrices with appro-
priate dimensions, whereWand V are positive definite matrices; then

LTVL −W < 0. (3.16)

if and only if

[−W LT

L −V −1

]
< 0 or

[−V −1 L
LT −W

]
< 0. (3.17)

Theorem 3.10. Consider the 2D system (3.5) with the initial condition (3.9a)-(3.9b) and cost
function (3.10); assume ω(t, k) = 0; if there exist positive definite symmetric (PDS) matrices
S1, S2,Ω ∈ R(n+l)×(n+l), matrices Y1, Y2 ∈ Rm×(n+l), and positive scalars εi (i = 1, 2) such that the
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following LMI (3.18) holds, then there exists a 2D static-state feedback controller r(t, k) = K1X
(t, k) +K2X(t + 1, k − 1) that solves the addressed robust guaranteed cost control problem:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−S1 0 ΩAT
1 + YT

1 βB
T

YT
1 YT

1 β ΩF
T

Ω 0

∗ −S2 ΩAT
2 + YT

2 βB
T

YT
2 YT

2 β 0 0 Ω

∗ ∗ −Ω + ε1Bβ
2
0B

T
+ ε2EE

T
0 0 0 0 0

∗ ∗ ∗ −U−1
3 0 0 0 0

∗ ∗ ∗ ∗ −ε1I 0 0 0
∗ ∗ ∗ ∗ ∗ −ε2I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −U−1

1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −U−1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (3.18)

In this situation, a suitable control law is given by

K = [K1 K2] =
[
Y1Ω−1 Y2Ω−1

]
. (3.19)

Moreover, the corresponding cost function of the resulting closed-loop 2D system
∑

2D−ep−F−C (3.8)
satisfies

J ≤
N2∑
k=1

XT (0, k)PS1PxX(0, k) +
N1∑
t=0

XT (t + 1, 0)PS2PX(t + 1, 0) = J∗. (3.20)

Proof. Design the following quadratic Lyapunov function:

V[·](X(t, k)) = ‖X(t, k)‖[·] � XT (t, k)[·]X(t, k), (3.21)

where [·] is any PDS matrix with appropriate dimensions. For PDS matrices P , Q1, and Q2,
all functions VP (·), VQ1(·), and VQ2(·) satisfy conditions (a) and (b) of Lemmas 3.5, 3.6, and
3.7. Because ω(t, k) = 0, we have

ΔV (X(t, k)) = VP (X(t + 1, k)) − VQ1(X(t, k)) − VQ2(X(t + 1, k − 1))

= ‖X(t + 1, k)‖P − ‖X(t, k)‖Q1
− ‖X(t + 1, k − 1)‖Q2

.
(3.22)

Along the trajectory of the closed-loop system (3.8), we obtain

ΔV (X(t, k)) + ϕT (t, k)
[
U1 +KT

1U3K1 KT
1U3K2

KT
2U3K1 U2 +KT

2U3K2

]
ϕ(t, k)

= ϕT (t, k)

⎛
⎝

[−Q1 0
0 −Q2

]
+

⎡
⎣
AT

1k

AT
2k

⎤
⎦P[A1k A2k

]
+
[
U1 +KT

1U3K1 KT
1U3K2

KT
2U3K1 U2 +KT

2U3K2

]⎞
⎠ϕ(t, k).

(3.23)
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Pre- and postmultiplying the left-hand side matrix in (3.18) by the matrix diag[P, P, I, I,
I, I, I, I], respectively, it follows that the matrix inequality (3.18) is equivalent to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−PS1P 0 PΩAT
1 + PYT

1 βB
T

PYT
1 PYT

1 β PΩF
T

PΩ 0

∗ −PS2P PΩAT
2 + PYT

2 βB
T

PYT
2 PYT

2 β 0 0 PΩ

∗ ∗ −Ω + ε1Bβ
2
0B

T
+ ε2EE

T
0 0 0 0 0

∗ ∗ ∗ −U−1
3 0 0 0 0

∗ ∗ ∗ ∗ −ε1I 0 0 0
∗ ∗ ∗ ∗ ∗ −ε2I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −U−1

1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −U−1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (3.24)

Using the definitions Ω = P−1, S1 = P−1Q1P
−1, S2 = P−1Q2P

−1, Y1 = K1P
−1, and Y2 = K2P

−1,
and then using Lemmas 3.8 and 3.9, we conclude that (3.24) is equivalent to

[−Q1 0
0 −Q2

]
+

⎡
⎣
AT

1k

AT
2k

⎤
⎦P[A1k A2k

]
+

[
U1 +KT

1U3K1 KT
1U3K2

KT
2U3K1 U2 +KT

2U3K2

]
< 0. (3.25)

So, we have

ΔV (X(t, k)) + ϕT (t, k)

[
U1 +KT

1U3K1 KT
1U3K2

KT
2U3K1 U2 +KT

2U3K2

]
ϕ(t, k) < 0. (3.26)

It follows that

ΔV (X(t, k)) < −ϕT (t, k)

[
U1 +KT

1U3K1 KT
1U3K2

KT
2U3K1 U2 +KT

2U3K2

]
ϕ(t, k). (3.27)

Since
[
U1+KT

1U3K1 KT
1U3K2

KT
2U3K1 U2+KT

2U3K2

]
> 0, it means that the following inequality is effective:

VP (X(t + 1, k)) < VQ1(X(t, k)) + VQ2(X(t + 1, k − 1)). (3.28)

Without loss of generality, suppose thatQ1 = λP ,Q2 = (1−λ)P ; it has thatQ1 = P −Q2, which
leads to

Vp(X(t + 1, k)) ≤ VP (X(t, k)) − VQ2(X(t, k)) + VQ2(X(t + 1, k − 1)). (3.29)
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For any integers T0, K0, i > 0, the following inequalities hold:

Vp(X(T0 + 1, K0 + i)) ≤ VP (X(T0, K0 + i)) − VQ2(X(T0, K0 + i)) + VQ2(X(T0 + 1, K0 + i − 1)),

Vp(X(T0 + 2, K0 + i − 1)) ≤ VP (X(T0 + 1, K0 + i − 1)) − VQ2(X(T0 + 1, K0 + i − 1))

+ VQ2(X(T0 + 2, K0 + i − 2))
...

Vp(X(T0+i, K0+1)) ≤ VP (X(T0+i−1, K0+1))−VQ2(X(T0+i−1, K0+1))+VQ2(X(T0+i, K0)).
(3.30)

The sum of these inequalities leads to

∑
t+k=T0+K0+i+1

T0≤t=T0+i
K0≤k=K0+i

V (t, k) ≤
∑

t+k=T0+K0+i
T0≤t=T0+i
K0≤k=K0+i

V (t, k)−VQ2(X(T0, K0+i))+VQ2(X(T0+i, K0))−VP (X(T0+i, K0))

≤
∑

t+k=T0+K0+i
T0≤t=T0+i
K0≤k=K0+i

V (t, k) − VQ2(X(T0, K0 + i)) − VQ1(X(T0 + i, K0))

≤
∑

t+k=T0+K0+i
T0≤t=T0+i
K0≤k=K0+i

V (t, k).

(3.31)

It is clear that the sum of the Lyapunov functional value decreases along the state trajectories.
We conclude from Definition 3.1 that limt+k→∞ X(t, k) → 0 holds. Consequently, the system
(3.5) is asymptotically stable. Moreover, condition (c) of Lemma 3.5 is satisfied, which implies
that the resulting closed-loop system (3.8) is guaranteed cost control.

Since the inequality (3.27) holds, there can be obtained

N1∑
t=0

N2∑
k=1

ΔV (X(t, k)) ≤
N1∑
t=0

N2∑
k=1

− ϕT (t, k)

[
U1 +KT

1U3K1 KT
1U3K2

KT
2U3K1 U2 +KT

2U3K2

]
ϕ(t, k). (3.32)

It follows from (3.32) and the definitions of Q1 and Q2 that

N2∑
k=1

(
VQ1(N1, k) − VQ1(0, k)

)
+

N1∑
t=0

(
VQ2(t + 1,N2) − VQ2(t + 1, 0)

)

≤
N1∑
t=0

N2∑
k=1

− ϕT (t, k)

[
Q1 +KT

1UK1 KT
1UK2

KT
2UK1 Q2 +KT

2UK2

]
ϕ(t, k).

(3.33)

For N1,N2 → ∞, it follows from Definition 3.1 and (3.9a)-(3.9b) that

N1∑
t=0

N2∑
k=1

ϕT (t, k)
[
U1 +KT

1U3K1 KT
1U3K2

KT
2U3K1 U2 +KT

2U3K2

]
ϕ(t, k) ≤

N2∑
k=1

VQ1(0, k) +
N1∑
t=0

VQ2(t + 1, 0). (3.34)
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Therefore, it follows fromDefinition 3.1 that the result of Theorem 3.10 is true. This completes
the proof.

In addition, according to the definitions of Q1 and Q2 and (3.28), the following ine-
qualities hold:

VQ1(X(t + 1,N)) + VQ2(X(t + 1,N)) ≤ VQ1(X(t,N)) + VQ2(X(t + 1,N − 1)),

VQ1(X(t + 1,N − 1)) + VQ2(X(t + 1,N − 1)) ≤ VQ1(X(t,N − 1)) + VQ2(X(t + 1,N − 2))
...

VQ1(X(t + 1, 1)) + VQ2(X(t + 1, 1)) ≤ VQ1(X(t, 1)) + VQ2(X(t + 1, 0)).

(3.35)

From Definition 3.2 and summing the previous inequalities, we obtain

N∑
k=1

VQ1(X(t + 1, k)) ≤
N∑
k=1

VQ1(X(t, k)). (3.36)

Obviously, the system (3.5) is T-asymptotically stable; condition (c) of Lemma 3.6 is
satisfied, which means that the resulting closed-loop system (3.8) is T-guaranteed cost con-
trol. Using (3.25), for any integers N1,N2 > 0, from Definition 3.3 and (3.9a)-(3.9b), it leads
to

N1∑
t=0

N2∑
k=1

ϕT (t, k)
[
U1 +KT

1U3K1 KT
1U3K2

KT
2U3K1 U2 +KT

2U3K2

]
ϕ(t, k) ≤

N2∑
k=1

Vh(0, k). (3.37)

This completes the proof of T-guaranteed cost control. Similarly, K-guaranteed cost
control can be easily proved. As we all know, the results of the previous discussion are about
repetitive disturbances. The following conclusion is given based on nonrepetitive perturba-
tions.

Theorem 3.11. The robust H∞ guaranteed cost control problem of the 2D system (3.5) is solvable
via a 2D static-state feedback controller r(t, k) = K1X(t, k) + K2X(t + 1, k − 1) if there exist PDS
matrices S1, S2,Ω ∈ R(n+l)×(n+l), matrices Y1, Y2 ∈ Rm×(n+l), and positive scalars εi (i = 1, 2), γ such
that the following LMI holds:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−S1 0 ΩAT
1 + YT

1 βB
T

YT
1 YT

1 β ΩF
T

Ω 0 ΩHT 0

∗ −S2 ΩAT
2 + YT

2 βB
T

YT
2 YT

2 β 0 0 Ω 0 0

∗ ∗ −Ω + ε1Bβ
2
0B

T
+ ε2EE

T
0 0 0 0 0 0 G

∗ ∗ ∗ −U−1
3 0 0 0 0 0 0

∗ ∗ ∗ ∗ −ε1I 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −ε2I 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −U−1

1 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −U−1

2 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (3.38)
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In this case, the robust H∞ guaranteed cost control law can be still chosen as (3.19) and the corre-
sponding cost function of the resulting closed-loop 2D system

∑
2D−ep−F−C (3.8) still satisfies (3.20).

Proof. To solve the H∞ guaranteed cost control scheme of the 2D system (3.5) with zero
boundary conditions for any nonzero ω(t, k) ∈ l2{[0,∞], [0,∞]}, we define

J1 = ΔV (X(t, k)) + γ−1zT (t, k)z(t, k) − γωT (t, k)ω(t, k), (3.39)

where

ΔV (X(t, k)) = Vp(X(t + 1, k)) − VQ1(X(t, k)) − VQ2(X(t + 1, k − 1)). (3.40)

For any integers N1,N2 > 0, from the definitions of Q1 and Q2, and the assumption that all
boundary conditions of system

∑
2D−ep−F−C are zeros, it is obtained that

M1∑
t=0

M2∑
k=1

ΔV (X(t, k)) =
M1∑
t=0

M2∑
k=1

[
Vp(X(t + 1, k)) − VQ1(X(t, k)) − VQ2(X(t + 1, k − 1))

]

=
M1∑
t=1

M2∑
k=1

Vp−Q1−Q2(X(t, k))+
M2−1∑
k=1

Vp−Q2(X(M1+1, k))+Vp(X(M1+1,M2))≥0.

(3.41)

Then, for any nonzero ω(t, k) ∈ l2{[0,∞], [0,∞]}, it has

M1∑
t=0

M2∑
k=1

[
γ−1zT (t, k)z(t, k) − γωT (t, k)ω(t, k)

]

≤
M1∑
t=0

M2∑
k=1

J1 =
M1∑
t=0

M2∑
k=1

[
γ−1zT (t, k)z(t, k) − γωT (t, k)ω(t, k) + ΔV (X(t, k))

]
,

(3.42)

because

γ−1zT (t, k)z(t, k) − γωT (t, k)ω(t, k) + ΔV (X(t, k))

=
[
ϕ(t, k)
ω(t, k)

]T
Γ
[
ϕ(t, k)
ω(t, k)

]
− ϕT (t, k)

[
U1 +KT

1U3K1 KT
1U3K2

KT
2U3K1 U2 +KT

2U3K2

]
ϕ(t, k),

(3.43)
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where

Γ =

⎡
⎣
−Q1 + γ−1HTH 0 0

0 −Q2 0
0 0 −γI

⎤
⎦ +

⎡
⎢⎢⎢⎢⎣

AT
1k

AT
2k

GT

⎤
⎥⎥⎥⎥⎦
P

⎡
⎢⎢⎢⎢⎣

AT
1k

AT
2k

GT

⎤
⎥⎥⎥⎥⎦

T

+

⎡
⎣
U1 +KT

1U3K1 + γ−1HTH KT
1U3K2 0

KT
2U3K1 U2 +KT

2U3K2 0
0 0 0

⎤
⎦.

(3.44)

Proof. Similar to Theorem 3.10, pre- and postmultiplying the left-hand side matrix in (3.38)
by the matrix diag[P, P, I, I, I, I, I, I, I, I], respectively, using Lemmas 3.8 and 3.9, it can be

obtained that (3.38) is equivalent to Γ < 0. For
[
U1+KT

1U3K1 KT
1U3K2

KT
2U3K1 U2+KT

2U3K2

]
> 0, it implies

∑M1
t=0∑M2

k=1 J1 ≤ 0. In other words, if (3.38) holds, ‖z(t, k)‖2D−2e ≤ γ‖ω(t, k)‖2D−2e is guaranteed. This
completes the proof of Theorem 3.11.

The closed-loop system (3.8) can be depicted by Figure 1, where the dotted arrowed
lines denote the information flow of the last cycle from the storages, whereas the solid
arrowed lines represent the flow of real-time feedback information. This block diagram can
be explained from two different angles: one is as a 2D system; the other is as a batch process.
From the 2D system point of view, the closed-loop system consists of a 2D model

∑
2D−ep−F

and a 2D state feedback controller
∑

C. Plant
∑

2D−ep−F clearly is a 2D system that is composed
of a repetitive process and an iterative loop. From the perspective of a batch process, the
system consists of a plant

∑
P and a 2D ILC law

∑
2D−ILRGCC. From (3.1) and (3.7), the 2D ILC

law
∑

2D−ILRGCC can be decomposed as follows:

∑
2D−ILRGCC

: u(t, k) = ul(t, k − 1) + ur(t, k), (3.45)

where ul(t, k − 1) = u(t, k − 1) + K2X(t + 1, k − 1) is an iterative learning control law for the
performance improvement along the cycle direction, and ur(t, k) = K1X(t, k) is a real-time
state feedback control law for ensuring control performance over time.

3.3. Procedure Design of the Controller

From the definitions of Q1 and Q2: Q1 = λP , Q2 = (1 − λ)P , and Theorem 3.10, we have

J ≤
N2∑
k=1

XT (0, k)PS1PxX(0, k) +
N1∑
t=0

XT (t + 1, 0)PS2PX(t + 1, 0)

=
N2∑
k=1

XT (0, k)λΩ−1X(0, k) +
N1∑
t=0

XT (t + 1, 0)(1 − λ)Ω−1X(t + 1, 0).

(3.46)
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∑
2D-ILRGCC

X(t + 1, k − 1) ∑
C(K)

r(t, k)

u(t, k − 1)

u(t, k)

x(t, k)

x(t, k − 1)

∑
P

y(t, k)

yd(t)

e(t, k)

xe(t, k)

+

−

Memory

+

Memory

Memory
X(t, k)

+

Guaranted cost control for batch processes



∑
2D−ep−F

Figure 1: Schematic diagram of the structure of a closed-loop system.

Note that the upper bound of cost function in Theorem 3.10 depends on the initial conditions
satisfying (3.5). For any N1 ≥ r1 and N2 ≥ r2, the boundary conditions satisfy (3.9a)-(3.9b).
So the cost bound (3.46) leads to

J ≤ r2λβ + r1(1 − λ)β, (3.47)

where

[−βI ΘT

Θ −L
]
< 0. (3.48)

In order to obtain the controller r(t, k) = Y1L
−1X(t, k) + Y2L

−1X(t + 1, k − 1) and
achieves as far as possible the least guaranteed cost value J∗, we have to solve the following
optimization problem:

min r2λβ + r1(1 − λ)β

s.t. 0 < λ < 1, (3.24), (3.48).
(3.49)

When 0 < λ < 1 is given, the previous optimization problem is a convex optimization problem
(3.49)which can be solved by the solver mincx in the LMI toolbox. Furthermore, we can find
the optimal scalar λ∗ such that the guaranteed cost bound (3.46) is minimized.
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It can be seen from Theorem 3.11 that although the upper bound of cost function in
Theorem 3.11 is similar to that in Theorem 3.10, the constraint condition is different from that
in Theorem 3.10. The optimization problem is

min r2λβ + r1(1 − λ)β

s.t. 0 < λ < 1, (3.38), (3.48).
(3.50)

For the LMI that is described by (3.38), γ > 0 should be regarded as an optimization variable,
and the design objective is such that γ is as small as possible. At the same time, we will find
the optimal scalar λ∗ such that the guaranteed cost bound (3.50) is minimized. In this paper, in
order to obtain the minimum guaranteed cost bound, there are no constraints to γ . The ideal
λ∗ can be obtained by using the following method: given a larger λ, solve the inequalities
(3.38). If there is a feasible solution, then given a smaller λ, go on; otherwise stop.

4. Numerical Example

Injection molding, which is a batch process, mainly consists of three phases: filling, packing,
and cooling [9]. For the packing/holding phase, nozzle pressure is a key process variable that
could be controlled to follow a preset profile to ensure product quality and consistency from
cycle to cycle. Variations of working conditions may make injection molding particularly
packing-holding viewed as a batch process with uncertain parameter perturbations. In
each cycle, the transition of different phases, for example, from filling to packing/holding,
leads to uncertain initial values of the nozzle pressure. This makes the conventional ILC
not applicable. On the other hand, the control performance is typically poor when a slow
hydraulic valve is used. Pure feedback control, such as PID (proportional integrative de-
rivative) control and adaptive control, cannot improve control performance from cycle to
cycle. It is necessary to design a robust and\or H∞ 2D controller that can ensure improving
both the performances over time and the tracking performance from cycle to cycle. Based
on the open-loop test and analysis, identifying the nozzle packing pressure response to the
hydraulic control valve opening, the state-space model seen as the state variables [17] is
adopted:

∑
P

: x(t + 1, k) =

⎛
⎝

⎡
⎣
1.607 −0.6086 0.9282
1 0 0
0 0 0

⎤
⎦ + ΔA

⎞
⎠x(t, k) +

⎡
⎣
1.239
0
1

⎤
⎦u(t, k),

y(t, k) =
[
1 0 0

]
x(t, k),

(4.1)

where parameter perturbations expressed as EΔ(t)F and EΔ(t)Fb are E =
[ 0.1 0 0

0 0.1 0
0 0 0.1

]
, F =

[ 0.104 −0.204 −0.264
0 0 0
0 0 0

]
, Δ(t) =

[
δ1 0 0
0 δ2 0
0 0 δ3

]
, and |δi| ≤ 1, i = 1, 2, 3. Assume that there exists an un-

known actuator failure α; however, we know that 0.8 = α ≤ α ≤ α = 1. Using (2.6a)–(2.6c),
β = 0.9 and β0 = 0.1 are obtained. Here the set-point takes the following form:

yd(t) = 15 (for 0 ≤ t ≤ 100),

yd(t) = 30 (for 100 ≤ t ≤ 200).
(4.2)
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The initial state satisfies condition (3.9a)-(3.9b) for r1 = r2 = 10 and belongs to the set
S(dM, 0) where

Θ =

⎡
⎣
20 0 0
0 20 0
0 0 20

⎤
⎦. (4.3)

Choose the weighting matrices

Q1 = Q2 =

⎡
⎣
1 0 0
0 1 0
0 0 1

⎤
⎦, U = 1. (4.4)

Case 1 (repetitive uncertainty). In this simulation case, we first consider repetitive parameter
perturbations, that is,ω(t, k) = 0. For different λ, solve the optimization problem (3.49), fit the
guaranteed cost J∗, and show them by Figure 2(a). When λ = 0.731, the least upper bound of
the corresponding closed-loop cost function is J∗ = 1.6752e+005 for the resulting closed-loop
system, and we obtain the optimal guaranteed cost controller as follows:

r∗(t, k + 1) = [−1.4641 0.5996 0.9146 − 0.2080 − 0.2081]X(t, k)

+ [0.0000 − 0.0000 − 0.0000 0.0000 − 0.8356]X(t + 1, k − 1).
(4.5)

To show tracking results, we choose the extended optimal ILRGCC (4.5) to stabilize the
system (4.1) and use the output tracking error in terms of root-sum-squared-error (REES)
criterion. The results are shown in Figure 3(a); here {δi : |δi| < 1}i=1.2.3 are assumed to vary
randomly within [0, 1] along time direction. From Figure 3(a), we can see that the tracking
performance is improved from cycle to cycle; although after fault occurs, the tracking
performance experiences degradation, the tracking performance can achieve a perfect level
again some cycles later and even restore to the original level.

Case 2 (nonrepetitive uncertainty). In this case, according to nonrepeatable perturbations
{δi : |δi| < 1}i=1.2.3 which are taken as random variables within [0, 1] along batch direction,
we design a γ-optimal 2DH∞ ILRGCC for system (4.1). From the constraints, we can see that
we must first continue to adjust a suitable value of λ which will directly affect the optimal
performance. On the other hand, the H∞-performance index, γ , will be obtained by solving
the LMI (3.38), rather than by solving some constraints. Solving the optimization problem
(3.50) for different λ, the corresponding guaranteed cost J∗ andH∞-performance index γ via
different λ are shown in Figures 2(b) and 2(c), respectively. From the two figures we can
see that although J∗ will be the least, γ may be not the least one. This present paper is to
design the H∞ guaranteed cost controller such that corresponding guaranteed cost J∗ is the
least. So, when λ = 0.83, the least guaranteed cost is J∗ = 7.9856e + 005. Correspondingly,
H∞-performance index γ equals 899.0908, and the optimal guaranteed cost controller is

r∗(t, k + 1) = [−1.3490 0.5286 0.8062 − 0.1910 − 0.1910]X(t, k)

+ [−0.0000 − 0.0000 − 0.0000 − 0.0000 − 0.8100]X(t + 1, k − 1).
(4.6)
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Figure 2: (a) The guaranteed cost J∗ via different λ. (b) The guaranteed cost J∗ via different λ for every
corresponding solvable γ . (c) Different λ for every corresponding solvable γ .
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Figure 3: (a) Tracking performances in Case 1. (b) Tracking performances in Case 2.
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From these results it can be distinctly seen that the system performance is indeed decreased
when the system is affected by the interference. Figure 3(b) also shows the effect. It is seen
that the proposed method holds the good robustness and convergence of the designed con-
trol system against some degree of nonrepetitive uncertainty by using controller (4.6) even
though the system performance is decreased.

5. Conclusion

By an LMI framework, the optimal fault-tolerant guaranteed cost control problem via a
robust and\or H∞ 2D-ILRGCC has been proposed for a batch process. The process has
been transformed to an equivalent 2D-FM model, based on which relevant concepts on the
optimal guaranteed cost control design with extended information have been presented.
Through solving the corresponding LMI constraints, the optimal robust and\or H∞ 2D
guaranteed cost controller has been explicitly formulated, together with preserving robust
control performance levels. The proposed robust and\or H∞ 2D-LRGCC can have control
performance improvement not only along the time direction but also along the cycle
direction, under the normal case as well as the actuator fault case. An injection pressure
control has been developed to demonstrate the effectiveness and merits of the proposed ILC
method.
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