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An analytical quadrilateral p element is developed for solving the free vibrations of piezoelectric-
laminated plates. The formulations of the displacement and strain fields are based on first-order
shear deformation plate theory. The coupling effect between the electrical and stress fields is also
considered. The Legendre orthogonal polynomials are used as the element interpolation functions,
and the analytical integration technique is adopted. It is found that the present p element method
gives high numerical precision results, fast and monotonic convergence rate. In the numerical
cases, the effects of the number of hierarchical terms and mesh size on the convergence rate
are investigated. Examples of square plates with different displacement and potential boundary
conditions are studied. In the comparisons, the solutions of the present element are in good
agreement with those obtained from other classical and finite element methods.

1. Introduction

Various beam/plate problems have been hot research topics for decades (e.g., [1–15]), and
many of them are solved using the finite element method (e.g., [16–21]). Beams/plates
embedded with piezoelectric materials are widely used in various intelligent material
systems for active control because of the electromechanical-coupling properties. For cases of
simple geometric shapes, the two-dimensional (2D) and three-dimensional (3D) analytical
methods that were developed by Benjeddou and Deü [22], Correia et al. [23], Heyliger
and Saravanos [24], and Ding and Chen [25] are effective in analyzing the free vibrations
of piezoelectric-laminated plates and provide clear physical meanings in the analytical
and symbolical formulations. For cases of complex geometries, boundary conditions, and
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loadings, the finite element method (FEM) is more powerful and versatile than classical
solutions. Most of the classical continuum solutions of plates have been limited to single-
or two-mode approximations. This is due to the difficulties in obtaining the general multiple
mode governing equations using Galerkin’s approach, especially for plates with complex
boundary conditions. Hence, Saravanos et al., Lam et al., He et al., and Loja et al. [26–
30] developed the finite-element and finite-strip methods for complicated piezoelectric-
laminated plates. There are two main kinds of theories used for finite-element formulations.
One is the classical plate theory (CPT), and the other one is the shear deformation theory,
which branches out into first-order shear deformation theory (FSDT) and higher order shear
deformation theory (HSDT). In general, theories that consider the shear deformation effect
are more accurate for the analysis of piezoelectric-laminated plates. Thus, one such theory
is used in this paper. The performance of an FEM model can be improved by a finer mesh
(h-version) or refined integrated piezoelectric sensor and actuator interpolation (p-version).
Zienkiewicz and Taylor [31] mentioned that the convergence rates of p-version elements
would be more rapid than those of h-version elements for the same degrees of freedom
(DOFs). The p-version elements that were developed by Houmat [32] and Woo et al. [33]
were demonstrated to have fast monotonic convergence for cases of triangular plates and
thick skew plates. According to the free-vibration analysis of skewMindlin plates that Leung
and Zhu [34] conducted, if the p-version approach is employed, then analytical integration is
preferred in the procedures of setting up the element formulation; otherwise, the numerical
integration errors may adversely affect the accuracy, and monotonic convergence of the
natural frequencies cannot be guaranteed. In the axial free vibration analyses of beams, Leung
and Chan [35] adopted trigonometric interpolation functions and the analytical integration
technique to improve the accuracy. The analytical p element approach has been further
applied to various vibrating plate problems [36–39] such as membrane vibration and thick
plates and laminated plates. Although this kind of element can be applied to the analysis
of plates with triangular and other complicated shapes, it is tedious to set up the mesh and
assemble the elements when compared with quadrilateral elements.

Based on FSDT, the quadrilateral hierarchical element is developed for the free
vibrations of piezoelectric-laminated plates in this paper. Legendre orthogonal polynomials
are adopted in the interpolation functions to improve the accuracy. Comparisons with
published results and case studies show the good accuracy and efficiency of the present
quadrilateral p element.

2. Theoretical Formulation

2.1. Analytical Model

Figure 1 shows a laminated plate and the coordinate system defined at the midplane. The
fiber direction is indicated by an angle θ, which is the positive-rotation angle of the principal
material axes from the arbitrary xy axes. The elasticity modulus for a layer parallel to the
fibers is E11, and perpendicular to the fibers is E22. The layers can be piezoelectric or of
composite materials. It is assumed that the potential of the piezoelectric layer varies linearly
through its thickness.

2.2. Displacements and Strains

According to FSDT [40], the displacement fields of the plate are expressed as:
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Figure 1: The configuration of a laminated composite plate.
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where u, v, and w are the displacement components along the x, y, and z axes, respectively,
u, v, and w are the associated midplane displacements, and ψx, ψy are the normal rotations
about the y and x axes, respectively.

The linear strain-displacement relations are given by
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(2.2)

The electrical potential is assumed to be linear through the thickness in each
piezoelectric layer. Hence, the potential of the kth layer φ can be expressed as

φ
(
x, y, z

)
=

hk+1 − z
hk+1 − hk φk

(
x, y

)
+

z − hk
hk+1 − hk φk+1

(
x, y

)
, (2.3)

where φk, φk+1 are the electrical potentials of the bottom and top surfaces of the kth layer,
respectively, and hk and hk+1 are the z-coordinates corresponding to the bottom and top
surfaces.
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Therefore, the electric field in the kth layer can be written as:

Ek = −∇φ = − 1
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In two-dimensional problems, the transverse displacement w can be interpolated
using the following equation (2.5):

w
(
ξ, η
)
=

p+2∑

k=1

q+2∑

l=1

wk,lNk,l

(
ξ, η
)
, (2.5)

where Nk,l(ξ, η) = fk(ξ)fl(η); fk(ξ) and fl(η) are C0 Legendre orthogonal polynomials [40]
(which are also used in the interpolations of displacements u, v, ψx, ψy).

When k, l = 1 and 2, (2.5) represents a typical FEM interpolation. The hierarchical
shape functions, when k or l > 2, lead to zero displacement at the corner nodes. Additional
DOFs appear along the four edges and in the interior of the element. The DOFs at the
four corner nodes are represented by k and l ≤ 2, and the DOFs along the four edges are
represented by k or l > 2. Finally, the DOFs in the interior are represented by k and l > 2.

2.3. Constitutive Relationships

The constitutive relationships for the lamina-oriented arbitrarily, taking into account the
piezoelectric effects are given as follows [25]:

σ = Qε − eTE,

D = eε + pE,
(2.6)

where σ is the stress matrix, ε is the strain vector, D is the electrical displacement vector,
E is the electric field vector, Q is the transformed elastic stiffness coefficient matrix, the
coefficients of which are explicitly given by Reddy [41], p is the permittivity matrix, and
e is the transformed piezoelectric stress coefficient matrix, which is given by

e31 = e31cos2θ + e32sin2θ,

e32 = e31sin2θ + e32cos2θ,

e14 = (e15 − e24) sin θ cos θ,

e15 = e15cos2θ + e24sin2θ,

e24 = e24cos2θ + e15sin2θ,
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Figure 2: The coordinate transformation of a quadrilateral element.

e25 = (e15 − e24) sin θ cos θ,
e36 = (e31 − e32) sin θ cos θ,

(2.7)

where eij are the piezoelectric stress coefficients in the directions parallel and perpendicular
to the fibers, and θ is the fiber direction.

2.4. Finite Element Model

The coordinate systems that are used to define an arbitrary quadrilateral plate element are
shown in Figures 1 and 2 depict the Cartesian plane coordinate system of the element and the
mapped ξ − η square plane region. The Jacobian matrix is expressed in terms of the Cartesian
coordinates at the four corner nodes:

J =

⎡

⎢⎢
⎣

∂x

∂ξ

∂y

∂ξ
∂x

∂η

∂y

∂η

⎤

⎥⎥
⎦ =

[
a + bη d + eη

c + bξ f + eξ

]

, (2.8)

where a = 0.25(x2+x3−x4), b = 0.25(−x2+x3−x4), c = 0.25(−x2+x3+x4), d = 0.25(y2+y3−y4),
e = 0.25(−y2 + y3 − y4), and f = 0.25(−y2 + y3 + y4).

The determinant of the Jacobian matrix is |J| = (ae − bd)ξ + (bf − ce)η + af − cd, and

J−1 =
1
|J|

[
f + eξ −(d + eη

)

−(c + bξ) a + bη

]

. (2.9)
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The displacement fields u, v, w, ψx, and ψy and the electric potential φk are
interpolated using the C0 Legendre orthogonal polynomials as
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(2.10)

where δe is the vector of generalized DOFs, φke is the nodal electric potential in the bottom
surface of the kth layer, and I is the 5 × 5 identity matrix. Substituting the expressions of the
displacement fields into (2.2) and (2.4) gives
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where Φe = [φe1, . . . , φ
e
k, φ

e
k+1, . . . , φ

e
n+1]

T, n is the total number of layers.
The potential energies of the element include the elastic strain energy, the piezoelectric

energy, and the electrical energy, which are given as
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The kinetic energy of the element is given by
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The Hamilton principle is adopted in the derivation of the equation of the eigenvalue
problem, which is as follows:
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In the procedure of coordinate mapping, the derivative in Bu and Bφ should be replaced by
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Figure 3: The 3 meshes adopted for the square plate.

Table 1: Elastic, piezoelectric, and dielectric properties of the materials.

Property G-1195N Ti-6A1-4V PZT-4 Aluminum G/E Property PZT-5H

E1 (Gpa) 63 105.7 81.3 68.3 132.38 cE11 (GPa) 126

E2 63 105.7 81.3 68.3 10.756 cE33 117

v12 0.3 0.2981 0.329 0.3 0.24 cE44 230

G23 24.23 40.71 25.6 3.606 cE66 23.5

G31 24.23 40.71 25.6 5.6537 cE12 79.5

G12 24.23 40.71 30.6 5.6537 cE13 84.1

e24 (C/m2) 12.72
εs33/ε0
(C/m2)

1700

e31 22.86 −5.20 εs11//ε0 1400

e32 22.86 −5.20 e31 (F/m2) −6.55
p11/p0 1695 1475 3.5 e33 23.3

p22/p0 1695 1475 3.0 e15 17

p33/p0 1695 1300 3.0

ρ (kg/m3) 7600 4429 7600 2698 1578 ρ (kg/m3) 7500

Note that analytic integration is adopted in (2.16). Hence, the analytic integrations of the
stiffness and mass matrices are in the form of ξiηj/(Aξ + Bη + C), where A, B, and C are
constants.

3. Numerical Results and Discussions

In this section, case studies are carried out to show the performance of the quadrilateral p
element. The elastic, piezoelectric, and dielectric material properties that are adopted in the
case studies are given in Table 1. There are two sets of electric boundary conditions for the
outer surface of the piezoelectric layers: a closed circuit condition Φ = 0, (i.e., the potential is
grounded) and an open circuit condition Dz = 0, (i.e., the electric displacement is zero). Un-
less otherwise stated, the number of the hierarchical term p is 4, and the mesh in Figure 3(c)
is used.
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Figure 4: The comparisons between (a) the transverse normal stress, (b) transverse displacement, and (c)
in-plane stress results of a sensor plate from the proposed method and [8].

Table 2: Fundamental frequency parameter λ(= ωa2ρ1/2/2000πh) of a simply supported sandwich square
plate (Φ = 0, a/h = 10, ρ = ρihi/h).

Mesh 1 rectangular 2 quadrilateral 4 quadrilateral
p = 1 230.930 228.647 224.015
p = 2 224.341 220.846 217.495
p = 3 217.327 217.333 217.294
p = 4 217.301 217.298 217.291
p = 5 217.291 217.291 217.291

2D solution [22] 216.602
3D solution [42] 214.933

3.1. Convergence Study of a Square Plate

The free vibration of a simply supported hybrid sandwich square plate is investigated here.
The accuracy of the present element can be seen in this convergence study. The lamina
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Table 3: Natural frequencies (Hz) of a three-ply square plate (a = 0.4m, Φ = 0).

Mode No.
SSSS CCCC CFFF

Reference
[28] This paper Reference

[28] This paper Reference
[28] This paper

1 144.25 142.05 262.53 258.16 25.78 24.56
2 359.00 354.91 533.83 526.10 62.75 60.18
3 359.00 354.92 533.83 526.14 157.20 150.54
4 564.10 567.39 774.20 774.55 200.19 192.23
5 717.80 710.20 957.32 948.70 228.22 218.80
6 717.80 710.67 963.04 952.89 397.58 382.63
7 908.25 922.13 1172.70 1183.11 452.26 433.06
8 908.25 923.67 1172.70 1188.36 472.76 454.12
9 1223.14 1208.09 1535.81 1522.02 522.91 501.67
10 1223.14 1216.77 1535.81 1530.89 677.28 657.42

Table 4:Nondimensional frequencies (ωa2ρ1/2/2000πh) of a simple supported square plate with different
potential boundary conditions.

Mode No. Dz = 0 Φ = 0
Reference [22] This paper Reference [22] This paper

1 246.07 236.96 246.07 234.97
2 559.62 536.14 559.62 530.74
3 693.61 678.30 693.60 674.10
4 967.16 938.32 967.14 930.60
5 1091.5 1051.69 1091.46 1040.93

configuration is PZT-4/GE/PZT-4. The thicknesses of the layers are 0.1 h, 0.8 h, 0.1 h,
respectively. The close circuit condition is considered. The plate is meshed into one, two,
or four quadrilateral elements, as shown in Figure 3. The fundamental frequency parameter
is shown in Table 2 for different numbers of hierarchical terms. It can be observed that the
monotonic convergence rate is very fast with respect to the number of hierarchical terms, and
the results are in good agreement with those obtained from the 2D analytical method [22] and
the 3D state space method [42]. It should be noted that the electrical potentials in [22, 42] are
assumed to be quadratic through the plate thickness, whereas they are linear in the present
method. Thus, there is a small difference between the results.

3.2. Square Plates with Different Displacement Boundary Conditions

The first ten frequencies of a three-ply piezoelectric-laminated square plate (G-1195N/Ti-
6A1-4V/G-1195N, 0.1mm/0.48mm/0.1mm) are computed for three boundary conditions:
simply supported (SSSS), fully clamped (CCCC), and cantilevered (CFFF). The electric
boundary condition is a closed circuit. He et al. [28] derived finite element solutions using a
traditional laminated plate element and CPT. A comparison of the results of our element and
those of the traditional elements is shown in Table 3. Besides, a comparison for a static case is
shown in Figure 4. The transverse normal stress, transverse displacement, and in-plane stress
results of the sensor plate from the proposed method reasonably agree with those from [8].
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Table 5: Natural frequencies (Hz) of the aluminum trapezoidal plates with a top and a bottom PZT-5H
layers.

Lc/La Lb/La β degree Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
CFFF

0.4 1
0 973.25 3453.32 5008.23 8766.12 12533.2

16.70∗ 1012.18 3593.01 5054.03 9450.83 12505.7
30 977.83 3471.64 5015.1 8848.56 12546.9

0.4 2
0 254.19 1305.3 1603 3402.94 4021.24

8.53∗ 258.77 1335.07 1586.97 3499.12 3991.47
30 2285.42 1149.58 1605.29 2970.13 4028.11

0.6 1
0 897.68 2764.03 4863.96 7820.35 10630.2

11.31∗ 916 2805.25 4907.47 8118.05 10327.9
30 856.46 2670.14 4742.59 7284.49 11111.1

0.6 2
0 229 1218.28 1300.72 3295.31 3528.89

5.71∗ 231.29 1238.89 1289.27 3389.2 3460.19
30 199.23 1028.21 1314.46 2697.62 3588.43

FFFF (exclude rigid body)

0.4 1
0 3751.02 5081.51 7227.24 8855.43 12778.2

16.70∗ 4451.76 4829.61 6826.49 9817.23 12464.5
30 3817.43 5072.35 7192.89 8949.32 12759.9

0.4 2
0 1232.02 2244.2 3311.34 4476.95 6100.56

8.53∗ 1264.08 2241.91 3412.1 4483.82 6086.82
30 1046.53 2225.88 2814.41 4341.84 5257.84

0.6 1
0 3531.18 4795.26 6657.03 8273.77 11532.4

11.31∗ 3757.89 4763.2 6469.25 8660.78 11502.7
30 3137.3 4788.39 6705.12 7939.43 11502.7

0.6 2
0 1229.73 1884.67 3329.66 3938.8 5896.75

5.71∗ 1245.76 1880.09 3396.07 3915.9 5860.11
30 973.25 1921.31 2571.67 3959.41 4738.01

CCCC

0.4 1
0 11972.1 18409.3 23380.9 26724.3 31304.3

16.70∗ 11527.9 18338.3 22439.7 27022 30731.8
30 11908 18391 23266.4 26747.2 31258.5

0.4 2
0 8440.94 11415.7 14477.4 17653.6 18326.9

8.53∗ 8326.44 11312.6 14397.2 17678.8 17994.8
30 9247.02 12159.9 15084.2 17999.4 20069.6

0.6 1
0 9867.61 16105.6 20005.4 24434.3 26701.4

11.31∗ 9695.86 16169.7 19492.5 25235.8 25762.5
30 10309.6 16075.8 21104.6 23884.7 27731.9

0.6 2
0 7346.32 9395.87 11756.9 14912.5 16565.9

5.71∗ 7295.94 9350.07 11731.7 14930.8 16444.5
30 8418.04 10405.8 12455.3 14958.3 17976.5

∗Symmetric trapezoidal plates.

3.3. Square and Trapezoidal Plates with
Different Potential Boundary Conditions

To study the validity of the present element for different potential boundary conditions,
a five-ply simply supported plate, which is made of three plies of G/E with the laminate
sequence (0◦, 90◦, 0◦)and two surface-bonded PZT-4 piezoelectric layers, is considered. The
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Figure 5: The 3 meshes adopted for the 10mm aluminum trapezoidal plates with 1mm PZT-5H layers
perfectly bonded on both the upper and lower surfaces having various boundary conditions (the number
of Fourier terms: p = q = 5, La = 0.1m).

thickness of both piezoelectric layers is 0.1 h, and all G/E layers have the same thickness.
The unit density is adopted for fair comparison. The solutions of the present method are
presented in Table 4 and are comparedwith the 3D exact solution. Besides, Figure 5 shows the
trapezoidal plates with PZT-5H layers perfectly bonded on both the upper and lower surfaces
having various boundary conditions (the number of Fourier terms used are p = q = 5). The
thicknesses of the trapezoidal plates and PZT-5H layers are 10mm and 1mm, respectively.
Table 5 shows the natural frequencies of the aluminum trapezoidal plates with PZT-5H
layers.

4. Conclusion

A quadrilateral p element with analytical integration for the free vibration of piezoelectric-
laminated composite plates is presented. The Legendre orthogonal polynomials are used as
the element interpolation functions, and the analytical integration technique is adopted. The
monotonic convergence rate of the present element is very fast with respect to the number
of hierarchical terms. Comparisons between the solutions that are obtained from our method
and those of other methods show that the element is accurate and efficient for free-vibration
analyses of piezoelectric-laminated plates.
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