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We establish some stability results in 2-normed spaces for the radical quadratic functional equation

f(
√∑n

i=1(xi + yi)
2)+f(

√∑n
i=1(xi − yi)

2) = 2
∑n

i=1(f(xi)+f(yi)) and then use subadditive functions
to prove its stability in p-2-normed spaces.

1. Introduction and Preliminaries

The story of the stability of functional equations dates back to 1925 when a stability result
appeared in the celebrated book by Póolya and Szeg [1]. In 1940, Ulam [2, 3] posed the
famous Ulam stability problem which was partially solved by Hyers [4] in the framework
of Banach spaces. Later Aoki [5] considered the stability problem with unbounded Cauchy
differences. In 1978, Rassias [6] provided a generalization of Hyers’ theorem by proving
the existence of unique linear mappings near approximate additive mappings. Găvruţa [7]
obtained the generalized result of T. M. Rassias’ theorem which allows the Cauchy difference
to be controlled by a general unbounded function. On the other hand, Rassias, Găvruţa, and
several authors proved the Ulam-Gavruta-Rassias stability of several functional equations.
For more details about the results concerning such problems, the reader is referred to [8–30].

Gajda andGer [31] showed that one can get analogous stability results, for subadditive
multifunctions. For further results see [32–42], among others.
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The most famous functional equation is the Cauchy equation f(x + y) = f(x) + f(y)
any solution of which is called additive. It is easy to see that the function f : R → R defined
by f(x) = cx2 with c an arbitrary constant is a solution of the functional equation

f
(
x + y

)
+ f

(
x − y

)
= 2f(x) + 2f

(
y
)
. (1.1)

So, it is natural that each equation is called a quadratic functional equation. In particular,
every solution of the quadratic equation (1.1) is said to be a quadratic function. It is well
known [43, 44] that a function f : X → Y between real vector spaces is quadratic if and only if
there exists a unique symmetric biadditive function B1 : X×X → Y such that f(x) = B1(x, x)
for all x ∈ X. The B1(x, y) = (1/4)(f(x + y) − f(x − y)) for all x, y ∈ X.

We briefly recall some definitions and results used later on in the paper. For more
details, the reader is referred to [45–49]. The theory of 2-normed spaces was first developed
by Gähler [46] in the mid-1960s, while that of 2-Banach spaces was studied later by Gähler
and White [47, 49].

Definition 1.1 (see [45]). Let X be a real linear space over R with dim X > 1 and ‖·, ·‖ : X ×
X → R a function.

Then (X, ‖·, ·‖) is called a linear 2-normed space if

(2N1) ‖x, y‖ > 0 and ‖x, y‖ = 0 if and only if x and y are linearly dependent,

(2N2) ‖x, y‖ = ‖y, x‖,
(2N3) ‖αx, y‖ = |α|‖x, y‖, for any α ∈ R,

(2N4) ‖x, y + z‖ ≤ ‖x, y‖ + ‖x, z‖,

for all x, y, z ∈ X. The function ‖·, ·‖ is called the 2-norm on X.

Let (X, ‖·, ·‖) be a linear 2-normed space. If x ∈ X and ‖x, y‖ = 0, for all y ∈ X,
then x = 0. Moreover, for a linear 2-normed space (X, ‖·, ·‖), the functions x → ‖x, y‖ are
continuous functions of X into R for each fixed y ∈ X (see [48]).

A sequence {xn} in a linear 2-normed spaceX is called a Cauchy sequence if there are
two points y, z ∈ X such that y and z are linearly independent, limn,m→∞‖xn −xm, y‖ = 0 and
limn,m→∞‖xn − xm, z‖ = 0.

A sequence {xn} in a linear 2-normed spaceX is called a convergent sequence if there
is an x ∈ X such that limn→∞‖xn − x, y‖ = 0, for all y ∈ X. If {xn} converges to x, write
xn → x as n → ∞ and call x the limit of {xn}. In this case, we also write limn→∞xn = x.

A linear 2-normed space in which every Cauchy sequence is a convergent sequence
is called a 2-Banach space. For a convergent sequence {xn} in a 2-normed space X,
limn→∞‖xn, y‖ = ‖limn→∞xn, y‖, for all y ∈ X (see [48]).

We fix a real number p with 0 < p ≤ 1, and let Y be a linear space. A p-2-norm is a
function on Y × Y satisfying Definition 1.1; (2N1), (

2N2), and (2N4); the following: ‖αx, y‖ =
|α|p‖x, y‖, for all x, y ∈ Y and all α ∈ R. The pair (Y, ‖·, ·‖) is called a p-2-normed space if ‖·, ·‖
is a p-2-norm on Y. A p-2-Banach space is a complete p-2-normed space.

We recall that a subadditive function is a function ϕa : A → B, having a domain A
and a codomain (B,≤) that are both closed under addition, with the following property:

ϕa

(
x + y

) ≤ ϕa(x) + ϕa

(
y
)
, (1.2)
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for all x, y ∈ A. Let � ∈ {−1, 1} be fixed. If there exists a constant L with 0 < L < 1 such that a
function ϕa : A → B satisfies

�ϕa

(
x + y

) ≤ �L�(ϕa(x) + ϕa

(
y
))
, (1.3)

for all x, y ∈ A, then we say that ϕa is contractively subadditive if � = 1, and ϕa is expansively
superadditive if � = −1. It follows by the last inequality that ϕa satisfies the following
properties:

ϕa

(
2�x

)
≤ 2�Lϕa(x), ϕa

(
2�kx

)
≤
(
2�L

)k
ϕa(x), (1.4)

for all x ∈ A and integers k ≥ 1.
Now, we consider the radical quadratic functional equation

f

⎛
⎝

√√√√ n∑
i=1

(
xi + yi

)2
⎞
⎠ + f

⎛
⎝

√√√√ n∑
i=1

(
xi − yi

)2
⎞
⎠ = 2

n∑
i=1

(
f(xi) + f

(
yi

))
, (1.5)

where n ∈ N is a fixed integer and prove generalized Ulam stability, in the spirit of
Găvruta (see [7]), of this functional equation in 2-normed spaces. Moreover, in this paper, we
investigate new results about the generalized Ulam stability by using subadditive functions
in p-2-normed spaces for the radical quadratic functional equation (1.5).

2. Main Results

In this section, let X be a linear space, and let R and R
+ denote the sets of real and positive

real numbers, respectively. If a mapping f : R → X satisfies the functional equation (1.5), by
letting xi = yi = 0 (1 ≤ i ≤ n) in (1.5), we get f(0) = 0. Setting xi = yi = x(1 ≤ i ≤ n) in (1.5)
and using f(0) = 0, we get

f
(√

4nx2
)
= 4nf(x), (2.1)

for all x ∈ R. Putting xi = 2x, yi = 0 (1 ≤ i ≤ n) in (1.5) and using f(0) = 0, we get

2f
(√

4nx2
)
= 2nf(2x), (2.2)

for all x ∈ R. It follows from (2.1) and (2.2) that

f(2mx) = 4mf(x), (2.3)
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for all x ∈ R and integers m ≥ 1. Setting yn = −yn in (1.5) and then comparing it with (1.5),
we obtain f(−yn) = f(yn), for all yn ∈ R. Letting xi = yi = 0 (2 ≤ i ≤ n) in (1.5), we get

f

(√(
x1 + y1

)2) + f

(√(
x1 − y1

)2) = 2f(x1) + 2f
(
y1
)
, (2.4)

for all x1, y1 ∈ R. It follows from (2.4) and the evenness of f that f satisfies (1.1). So we have
the following lemma.

Lemma 2.1. If a mapping f : R → X satisfies the functional equation (1.5), then f is quadratic.

Corollary 2.2. If a mapping f : R → X satisfies the functional equation (1.5), then there exists a
symmetric biadditive mapping B1 : R × R → X such that f(x) = B1(x, x), for all x ∈ R.

Hereafter, we will assume that X is a 2-Banach space. First, using an idea of Găvruţa
[7], we prove the stability of (1.5) in the spirit of Ulam, Hyers, and Rassias.

Let φ be a function from R
2n+1 to R

+ ∪ {0}. A mapping f : R → X is called a φ-
approximatively radical quadratic function if

∥∥∥∥∥∥
f

⎛
⎝

√√√√ n∑
i=1

(
xi + yi

)2
⎞
⎠ + f

⎛
⎝

√√√√ n∑
i=1

(
xi − yi

)2
⎞
⎠ − 2

n∑
i=1

(
f(xi) + f(yi)

)
, z

∥∥∥∥∥∥
X

≤ φ
(
x1, . . . , xn, y1, . . . , yn, z

)
,

(2.5)

for all x1, . . . , xn, y1, . . . , yn, z ∈ R, where n ∈ N is a fixed integer.

Theorem 2.3. Let � ∈ {−1, 1} be fixed, and let f : R → X be a φ- approximatively radical quadratic
function with f(0) = 0. If the function φ : R

2n+1 → R
+ ∪ {0} satisfies

Φ(x, z) :=
∞∑

j=(1−�)/2

1
4�j

⎛
⎜⎝φ

⎛
⎜⎝

2n︷ ︸︸ ︷
2�jx, . . . , 2�jx, z

⎞
⎟⎠ +

1
2
φ

⎛
⎜⎝

n︷ ︸︸ ︷
21+�jx, . . . , 21+�jx,

n︷ ︸︸ ︷
0, . . . , 0, z

⎞
⎟⎠

⎞
⎟⎠ < ∞,

(2.6)

and limm→∞(1/4�m)φ(2�mx1, . . . , 2�mxn, 2�my1, . . . , 2�myn, z) = 0, for all x, x1, . . . , xn,
y1, . . . , yn, z ∈ R, then there exists a unique quadratic mapping F : R → X, satisfies (1.5) and
the inequality

∥∥f(x) − F(x), y∥∥X ≤ 1
4n

Φ
(
x, y

)
, (2.7)

for all x, y ∈ R.
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Proof. Letting xi = x + y, yi = x − y (1 ≤ i ≤ n) in (2.5), we get

∥∥∥∥f
(√

4nx2
)
+ f

(√
4ny2

)
− 2nf(x + y) − 2nf(x − y), z

∥∥∥∥
X

≤ φ

⎛
⎝

n︷ ︸︸ ︷
x + y, . . . , x + y,

n︷ ︸︸ ︷
x − y, . . . , x − y, z

⎞
⎠,

(2.8)

for all x, y, z ∈ R. Setting xi = yi = x (1 ≤ i ≤ n) in (2.5), we get

∥∥∥f
(√

4nx2
)
− 4nf(x), z

∥∥∥
X
≤ φ

⎛
⎝

2n︷ ︸︸ ︷
x, . . . , x, z

⎞
⎠, (2.9)

for all x, z ∈ R. Replacing y by x in (2.8), we obtain

∥∥∥f
(√

4nx2
)
− nf(2x), z

∥∥∥
X
≤ 1

2
φ

⎛
⎝

n︷ ︸︸ ︷
2x, . . . , 2x,

n︷ ︸︸ ︷
0, . . . , 0, z

⎞
⎠, (2.10)

for all x, z ∈ R. It follows from (2.9) and (2.10) that

∥∥4f(x) − f(2x), y
∥∥
X ≤ 1

n
φ

⎛
⎝

2n︷ ︸︸ ︷
x, . . . , x, y

⎞
⎠ +

1
2n

φ

⎛
⎝

n︷ ︸︸ ︷
2x, . . . , 2x,

n︷ ︸︸ ︷
0, . . . , 0, y

⎞
⎠, (2.11)

for all x, y ∈ R. Thus,

∥∥∥∥f(x) −
1
4
f(2x), y

∥∥∥∥
X
≤ 1

4n
φ

⎛
⎝

2n︷ ︸︸ ︷
x, . . . , x, y

⎞
⎠ +

1
8n

φ

⎛
⎝

n︷ ︸︸ ︷
2x, . . . , 2x,

n︷ ︸︸ ︷
0, . . . , 0, y

⎞
⎠,

∥∥∥f(x) − 4f
(x
2

)
, y

∥∥∥
X
≤ 1

n
φ

⎛
⎜⎜⎝

2n︷ ︸︸ ︷
x

2
, . . . ,

x

2
, y

⎞
⎟⎟⎠ +

1
2n

φ

⎛
⎝

n︷ ︸︸ ︷
x, . . . , x,

n︷ ︸︸ ︷
0, . . . , 0, y

⎞
⎠,

(2.12)

for all x, y ∈ R. Hence,

∥∥∥∥
1
4�k

f
(
2�kx

)
− 1
4�r

f
(
2�rx

)
, y

∥∥∥∥
X

≤ 1
4n

r−(1+�)/2∑
j=k+(1−�)/2

1
4�j

⎛
⎜⎝φ

⎛
⎜⎝

2n︷ ︸︸ ︷
2�jx, . . . , 2�jx, y

⎞
⎟⎠ +

1
2
φ

⎛
⎜⎝

n︷ ︸︸ ︷
21+�jx, . . . , 21+�jx,

n︷ ︸︸ ︷
0, . . . , 0, y

⎞
⎟⎠

⎞
⎟⎠

(2.13)
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for all x, y ∈ R and integers r > k ≥ 0. Thus, {(1/4�m)f(2�mx)} is a Cauchy sequence
in the 2-Banach space X. Hence, we can define a mapping F : R → X by F(x) :=
limm→∞(1/4�m)f(2�mx), for all x ∈ R. That is,

lim
m→∞

∥∥∥∥
1

4�m
f
(
2�mx

)
− F(x), y

∥∥∥∥
X
= 0, (2.14)

for all x, y ∈ R. In addition, it is clear from (2.5) that the following inequality:

∥∥∥∥∥∥
F
⎛
⎝

√√√√ n∑
i=1

(
xi + yi

)2
⎞
⎠ + F

⎛
⎝

√√√√ n∑
i=1

(
xi − yi

)2
⎞
⎠ − 2

n∑
i=1

(F(xi) + F(yi)
)
, z

∥∥∥∥∥∥
X

= lim
m→∞

1
4�m

∥∥∥∥∥∥
f

⎛
⎝

√√√√4�m
n∑
i=1

(
xi + yi

)2
⎞
⎠ + f

⎛
⎝

√√√√4�m
n∑
i=1

(
xi − yi

)2
⎞
⎠

−2
n∑
i=1

(
f
(
2�mxi

)
+ f

(
2�myi

))
, z

∥∥∥∥∥
X

≤ lim
m→∞

1
4�m

φ
(
2�mx1, . . . , 2�mxn, 2�my1, . . . , 2�myn, z

)
= 0

(2.15)

holds for all x1, . . . , xn, y1, . . . , yn, z ∈ R, and so by Lemma 2.1, the mapping F : R → X
is quadratic. Taking the limit r → ∞ in (2.13) with k = 0, we find that the mapping F is
quadratic mapping satisfying the inequality (2.7) near the approximate mapping f : R → X
of (1.5). To prove the aforementioned uniqueness, we assume now that there is another
quadratic mapping G : R → X which satisfies (1.5) and the inequality (2.7). Since the
mapping G : R → X satisfies (1.5), then

G
(
2�x

)
= 4�G(x), G

(
2�mx

)
= 4�mG(x) (2.16)

for all x ∈ R and integers m ≥ 1. Thus, one proves by the last equality and (2.7) that

∥∥∥∥
1

4�m
f(2�mx) − G(x), y

∥∥∥∥
X
=

1
4�m

∥∥∥f(2�mx) − G(2�mx), y
∥∥∥
X
≤ 1

4m�+1n
Φ
(
2�mx, y

)
, (2.17)

for all x, y ∈ R and integers m ≥ 1. Therefore, from m → ∞, one establishes F(x) − G(x) = 0
for all x ∈ R.

Corollary 2.4. Let � ∈ {−1, 1} be fixed. If there exist nonnegative real numbers pi, qi, q with
�
∑n

i=1(pi + qi) < 2� such that a mapping f : R → X satisfies the inequality

∥∥∥∥∥∥
f

⎛
⎝

√√√√ n∑
i=1

(
xi + yi

)2
⎞
⎠ + f

⎛
⎝

√√√√ n∑
i=1

(
xi − yi

)2
⎞
⎠ − 2

n∑
i=1

(
f(xi) + f(yi)

)
, z

∥∥∥∥∥∥
X

≤ θ
n∏
i=1

|xi|pi
∣∣yi

∣∣qi |z|q,
(2.18)
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for all x1, . . . , xn, y1, . . . , yn, z ∈ R and some θ ≥ 0, then there exists a unique quadratic mapping
F : R → X, satisfies (1.5) and the inequality

∥∥f(x) − F(x), y∥∥X ≤ 1
�n

(
4 − 2λ

)θ|x|λ∣∣y∣∣q, (2.19)

for all x, y ∈ R, where λ :=
∑n

i=1(pi + qi).

Corollary 2.5. Let � ∈ {−1, 1} be fixed. If there exist nonnegative real numbers s, t with �s < 2�
such that a mapping f : R → X satisfies the inequality

∥∥∥∥∥∥
f

⎛
⎝

√√√√ n∑
i=1

(
xi + yi

)2
⎞
⎠ + f

⎛
⎝

√√√√ n∑
i=1

(
xi − yi

)2
⎞
⎠ − 2

n∑
i=1

(
f(xi) + f(yi)

)
, z

∥∥∥∥∥∥
X

≤ θ
n∑
i=1

(|xi|s +
∣∣yi

∣∣s)|z|t,

(2.20)

for all x1, . . . , xn, y1, . . . , yn, z ∈ R and some θ ≥ 0, then there exists a unique quadratic mapping
F : R → X satisfies (1.5) and the inequality

∥∥f(x) − F(x), y∥∥X ≤ 1 + 2s−2

�
(
2 − 2s−1

)θ|x|s∣∣y∣∣t, (2.21)

for all x, y ∈ R.

Now, we are going to establish the modified Hyers-Ulam stability of (1.5).

Theorem 2.6. Let � ∈ {−1, 1} be fixed, let Y be a p-2-Banach space, and, f : R → Y be a φ-
approximatively radical quadratic function with f(0) = 0. Assume that the map φ is contractively
subadditive if � = 1 and is expansively superadditive if � = −1with a constant L satisfying 2�(1−3p)L <
1, where 3�p ≤ �, then there exists a unique quadratic mapping F : R → Y which satisfies (1.5) and
the inequality

∥∥f(x) − F(x), y∥∥Y ≤ 1
�
(
4p − 21−pL�

)Ψ(
x, y

)
, (2.22)

for all x, y ∈ R, where

Ψ
(
x, y

)
:=

1
np

φ

⎛
⎝

2n︷ ︸︸ ︷
x, . . . , x, y

⎞
⎠ +

1
(2n)p

φ

⎛
⎝

n︷ ︸︸ ︷
2x, . . . , 2x,

n︷ ︸︸ ︷
0, . . . , 0, y

⎞
⎠. (2.23)
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Proof. Using the same method as in the proof of Theorem 2.3, we have

∥∥∥∥f(x) −
1
4
f(2x), y

∥∥∥∥
Y
≤ 1

4p
Ψ
(
x, y

)
,

∥∥∥f(x) − 4f
(x
2

)
, y

∥∥∥
Y
≤ 2pΨ

(x
2
,
y

2

)
,

(2.24)

for all x, y ∈ R. Hence

∥∥∥∥
1
4�k

f
(
2�kx

)
− 1
4�r

f
(
2�rx

)
, y

∥∥∥∥
Y
≤ 1

4p

r−(1+�)/2∑
j=k+(1−�)/2

1
23�pj

Ψ
(
2�jx, 2�jy

)

≤ 1
4p

r−(1+�)/2∑
j=k+(1−�)/2

(
2�L

)j

23�pj
Ψ
(
x, y

)

=
Ψ
(
x, y

)

4p

r−(1+�)/2∑
j=k+(1−�)/2

(
2�(1−3p)L

)j
,

(2.25)

for all x, y ∈ R and integers r > k ≥ 0. Thus, {(1/4�m)f(2�mx)} is a Cauchy sequence
in the p-2-Banach space Y. Hence, we can define a mapping F : R → Y by F(x) :=
limn→∞(1/4�n)f(2�nx), for all x ∈ R. Also

∥∥∥∥∥∥
F
⎛
⎝

√√√√ n∑
i=1

(
xi + yi

)2
⎞
⎠ + F

⎛
⎝

√√√√ n∑
i=1

(
xi − yi

)2
⎞
⎠ − 2

n∑
i=1

(F(xi) + F(yi)
)
, z

∥∥∥∥∥∥
Y

= lim
m→∞

∥∥∥∥∥∥
1

4�m
f

⎛
⎝

√√√√4�m
n∑
i=1

(
xi + yi

)2
⎞
⎠ +

1
4�m

f

⎛
⎝

√√√√4�m
n∑
i=1

(
xi − yi

)2
⎞
⎠

− 2
4�m

n∑
i=1

(
f
(
2�mxi

)
+ f

(
2�myi

))
, z

∥∥∥∥∥
Y

≤ lim
m→∞

1
23�pm

φ
(
2�mx1, . . . , 2�mxn, 2�my1, . . . , 2�myn, 2�mz

)

≤ lim
m→∞

(
2�(1−3p)L

)m
φ
(
x1, . . . , xn, y1, . . . , yn, z

)
= 0

(2.26)

holds for all x1, . . . , xn, y1, . . . , yn, z ∈ R, and so by Lemma 2.1, the mapping F : R → Y
is quadratic. Taking the limit r → ∞ in (2.25) with k = 0, we find that the mapping F is
quadratic mapping satisfying the inequality (2.22) near the approximate mapping f : R → Y
of (1.5). The remaining assertion goes through in a similar way to the corresponding part of
Theorem 2.3.



Abstract and Applied Analysis 9

References
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