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The aim of this work is to characterize one-dimensional homogeneous diffusion process, under
the assumption that marginal density of the process is Gaussian. The method considers the
forward Kolmogorov equation and Fourier transform operator approach. The result establishes
the necessary characteristic equation between drift and diffusion coefficients for homogeneous
and nonhomogeneous diffusion processes. The equation for homogeneous diffusion process leads
to characterize the possible diffusion processes that can exist. Two well-known examples using the
necessary characteristic equation are also given.

1. Introduction and Preliminaries

The characterization of drift and diffusion coefficients by considering the marginal density of
stochastic process is one of the known methods of estimating the actual underlying process
and to construct new diffusion processes [1–6]. In this paper, we will consider the forward
Kolmogorov equation and apply the Fourier transform operator to prove necessary charac-
teristic equation between drift and diffusion coefficients for a homogeneous one-dimensional
diffusion process when the marginal density is Gaussian. This equation characterizes the pos-
sible diffusion processes. A similar equation is proved for a nonhomogeneous diffusion pro-
cess. However, the idea is motivated by Hamza and Klebaner [6], who constructed an entire
family of non-Gaussian martingales given that the marginals are Gaussian.

Before stating our main result, we introduce some of the common notations, assum-
ptions, and key facts used in this work.

(i) a(z) and a(z, t) denote the drift coefficient of homogeneous and nonhomogeneous
one-dimensional Itô-diffusion process X = {Xt, t ≥ 0} given Xt = z. Similarly, σ(z)
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and σ(z, t) denote the diffusion coefficient of homogeneous and non-homogeneous
one-dimensional Itô-diffusion process X = {Xt, t ≥ 0} given Xt = z.

(ii) pt,t0(z | y) denotes the density function of (Xt = z | Xt0 = y) with mean μt and var-
iance γt.

(iii) C0(R) denotes the set of all continuous functions with domain R, C2
0(R) denotes the

set of all continuous twice-differentiable functions with domain R, and C2,1
0 (R) de-

notes the set of all continuous twice-differentiable functions in the first variable and
continuous differentiable functions in the second variable with domain R

2.

(iv) f ′
x or f ′(x) denotes the first derivative of function f with respect to x.

(v) The conditional density pt,t0(z | y) is bounded by e−kz
2
.

(vi) The assumption t0 > 0 is considered due to the continuity problem at t = 0. It means
that if the conditional probability distribution of the increments is considered from
time 0, then the method we use is not able to identify those drift and diffusion coef-
ficients that lead us to construct continuous diffusion process.

(vii) f(z) := eizx is considered to use the uniqueness property of the characteristic func-
tion.

We need the following standard forward Kolmogorov equations introduced in [7].

Definition 1.1. Let the homogeneous diffusion process X = {Xt, t ≥ 0} satisfy the one-dimen-
sional stochastic differential equation (SDE)

dXt = a(Xt)dt + σ(Xt)dBt, (1.1)

where {Bt, t ≥ 0} is a standard Brownian motion. Let f(x) be bounded twice continuously
differentiable in x (i.e., C2

0(R)) function, then

d

dt

[
E
[
f(Xt) | Xt0

= y
]]

= E
[
f ′(Xt)a(Xt)

]
+ E

[
f ′′(Xt)

σ2(Xt)
2

]
, (1.2)

where y is any fixed point.

Definition 1.2. Let the non-homogeneous diffusion process X = {Xt, t ≥ 0} satisfy the one-
dimensional stochastic differential equation (SDE)

dXt = a(Xt, t)dt + σ(Xt, t)dBt. (1.3)

Let f(x, t) be bounded twice continuously differentiable in x and continuously differentiable
in t (i.e., C2,1

0 (R)) function, then

∂

∂t

[
E
[
f(Xt, t) | Xt0 = y

]]
= E

[
∂f(Xt, t)

∂Xt
a(Xt, t)

]
+ E

[
∂2f(Xt, t)

∂X2
t

σ2(Xt, t)
2

]
, (1.4)

where y is any fixed point.
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The conditions that ensure the existence and uniqueness of any stochastic differential
equation, following terminology of [8], are as follows.

Definition 1.3. Let the diffusion process X = {Xt, t ≥ 0} satisfy (1.3), then

(1) drift and diffusion coefficients are said to be locally Lipschitz in x and uniformly in t
if for every T and N, there is a constant K depending only on T and N such that
for all |x|, |y| ≤ N and all 0 ≤ t ≤ T ,

∣∣a(x, t) − a
(
y, t

)∣∣ + ∣∣σ(x, t) − σ
(
y, t

)∣∣ < K
∣∣x − y

∣∣, (1.5)

(2) the coefficients satisfy the linear growth condition if

|a(x, t)| + |σ(x, t)| ≤ K(1 + |x|). (1.6)

Definition 1.3 holds in the same way for homogeneous diffusion process.

2. Main Results

In Section 2.1, we obtain the characteristic equation between drift and diffusion coefficients
under the assumption that marginals are Gaussian. In Section 2.2, we identify possible diffu-
sion processes using the characteristic equation.

2.1. Characteristic Equation

We first prove the characteristic equation for homogeneous diffusion process and then extend
our results when the starting positionXt0 is arbitrary. Finally we prove the characteristic equa-
tion in case of non-homogeneous diffusion.

Theorem 2.1. Let the homogeneous diffusion processX = {Xt, t ≥ 0} satisfy the stochastic differential
equation (1.1), a(Xt) ∈ C0(R), σ(Xt) ∈ C2

0(R), and both a(Xt) and σ(Xt) satisfy the linear-growth
and local Lipschitz conditions:

(i) assume (Xt = z | Xt0 = y) ∼ N(y + μt, γt) where t0 > 0 and t > t0, μt ∈ C0(R) and
γt ∈ C0(R), then the necessary equation on drift and diffusion coefficients obtained by condi-
tioning on Xt = z is given by

a(z) = μ′
t +

(
σ2(z)

)′
z

2
+
(
z − y − μt

)(γt
′ − σ2(z)
2γt

)
, (2.1)

(ii) assumeXt0 is arbitrary and E[pt(z | Xt0)] ∼ N(μt, γt), where t0 > 0 and t > t0, μt ∈ C0(R)
and γt ∈ C0(R), then the necessary equation on drift and diffusion coefficients by condi-
tioning on Xt = z is (2.1).
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Proof (i). Using (1.2),

d

dt

(∫∞

−∞
f(z)pt,t0

(
z | y)dz

)
=
∫∞

−∞

(
df(z)
dz

a(z)
)
pt,t0

(
z | y)dz

+
∫∞

−∞

((
d2f(z)/dz2

)
σ2(z)

2

)
pt,t0

(
z | y)dz.

(2.2)

Under the assumption

ξ :=
(
Xt = z | Xt0 = y

) ∼ N
(
y + μt, γt

)
, (2.3)

which implies

pt(ξ) = pt,t0
(
z | y) :=

1√
2πγt

e−(z−y−μt)
2/2γt , (2.4)

consider a function f : R → R, that is,

f(z) := eizx. (2.5)

Thus

∫∞

−∞
eizxpt,t0

(
z | y)dz = e(ix(y+μt))−((x2γt)/2). (2.6)

Substituting in (2.2) and simplification yields

x

2
√
2πγt

∫∞

−∞

(
σ2(z) − γ ′t

)
eizxe−(z−y−μt)

2/2γtdz =
i√
2πγt

∫∞

−∞

(
a(z) − μ′

t

)
eizxe−(z−y−μt)

2/2γtdz.

(2.7)

Consider left-hand side of (2.7) and define

G(z) :=
(
σ2(z) − γ ′t

)
e−(z−y−μt)

2/2γt . (2.8)

Clearly G(z) is dominated by e−Kz2/2. Thus, integration by parts and using property of char-
acteristic function, we obtain

e−(z−y−μt)
2/2γt

(
σ(z)(σ(z))′z −

(
z − y − μt

)

2γt

(
σ2(z) − γ ′t

))
=
(
a(z) − μ′

t

)
e−(z−y−μt)

2/2γt
, (2.9)
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and it further implies that

a(z) = μ′
t +

(σ2(z))
′
z

2
−
(
z − y − μt

)

2γt

(
σ2(z) − γ ′t

)
. (2.10)

Proof (ii). Consider

E
[
E
[
f(Xt+Δt) | Xt0

]]
= E

[∫∞

−∞
E
(
f(Xt+Δt) | Xt = z

)
pt(z | Xt0)dz

]

=
∫∫∞

−∞
E
(
f(Xt+Δt) | Xt = z

)
pt
(
z | Xt0 = y

)
pt0

(
y
)
dzdy,

(2.11)

provided that E[f(Xt+Δt)] < ∞. By Fubini’s theorem, interchanging the integrals gives

E
[
E
[
f(Xt+Δt) | Xt0

]]
=
∫∞

−∞
E
(
f(Xt+Δt) | Xt = z

) ∫∞

−∞
pt
(
z | Xt0 = y

)
pt0

(
y
)
dy dz

=
∫∞

−∞
E
(
f(Xt+Δt) | Xt = z

)
E
(
pt(z | Xt0)

)
dz.

(2.12)

Now, using Taylor’s expansion around Xt = z and then Itô’s formula, we reach the same for-
ward Kolmogorov equation, that is,

d

dt

(
E
[
E
(
f(Xt) | Xt0

)])
=
∫∞

−∞

(
f ′(z)a(z) +

f ′′(z)
2

σ2(z)
)
E
(
pt(z | Xt0)

)
dz, (2.13)

where

E
[
E
(
f(Xt) | Xt0

)]
= E

(∫∞

−∞
f(z)pt(z | Xt0)dz

)

=
∫∫∞

−∞
f(z)pt

(
z | Xt0 = y

)
pt0

(
y
)
dzdy

=
∫∞

−∞
f(z)

∫∞

−∞
pt
(
z | Xt0 = y

)
pt0

(
y
)
dy dz

=
∫∞

−∞
f(z)E

(
pt(z | Xt0)

)
dz,

(2.14)

and therefore,

d

dt

(∫∞

−∞
f(z)E

(
pt(z | Xt0)

)
dz

)
=
∫∞

−∞

(
f ′(z)a(z) +

f ′′(z)
2

σ2(z)
)
E
(
pt(z | Xt0)

)
dz, (2.15)
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under the assumption

E
[
pt(z | Xt0)

]
=

1√
2πγt

e−(z−μt)
2/2γt . (2.16)

The remaining proof follows the same arguments as (i).

Theorem 2.2. Let the non-homogeneous diffusion process X = {Xt, t ≥ 0} satisfy the stochastic diff-
erential equation (1.3), a(Xt, t) ∈ C0(R), σ(Xt) ∈ C2,1

0 (R), and both a(Xt, t) and σ(Xt, t) satisfy the
linear-growth and local Lipschitz conditions. Assuming (Xt = z | Xt0 = y) ∼ N(y + μt, γt) where
t0 > 0 and t > t0, μt ∈ C0(R) and γt ∈ C0(R), then the necessary equation on drift and diffusion co-
efficients by conditioning on Xt = z is given by

a(z, t) = μ′
t +

(
σ2(z, t)

)′
z

2
+
(
z − y − μt

)(γt
′ − σ2(z, t)

2γt

)
. (2.17)

Proof. Consider (1.4) and treat it in an analogue manner as proof of Theorem 2.1 (i). We have
omitted further details.

2.2. Characterization of Possible Diffusion Processes

We characterize the possible diffusion processes using (2.1). The following result explains
possible solutions of (2.1).

Theorem 2.3. Suppose that the mean parameter of marginal density satisfies μt = 0, then under the
assumption that marginals are Gaussian, (2.1) characterizes that the only possible solution exists when
it is a diffusion coefficient, that is, σ2(z) = K or variance parameter of marginal density, that is, γt = γ
or σ2(z) = K and drift coefficient, that is, a(z) = 1/(z − y).

Proof. Equation (2.1) can be written as

(σ2(z))′z − 2a(z)
2
(
z − y

) +
γt

′

2γt
− σ2(z)

2γt
= 0. (2.18)

Define

G(z) :=

(
σ2(z)

)′
z − 2a(z)

2
(
z − y

) , ξ(t) :=
γt

′

2γt
, K(t) :=

1
2γt

, H(z) := σ2(z), (2.19)

which yields

G(z) + ξ(t) −K(t)H(z) = 0. (2.20)

Case 1. Differentiating (2.20) with respect to t gives ξ′(t) − K′(t)H(z) = 0. Clearly, ξ′(t) and
K′(t) are not equal to zero. Hence, ξ′(t)/K′(t) = H(z)which indicates thatH(z) = σ2(z) = K,
where K is any arbitrary constant.



Abstract and Applied Analysis 7

Case 2. Differentiating (2.20) with respect to z gives G′(z) −K(t)H ′(z) = 0.

(i) IfH(z) = σ2(z) = K, thenH ′(z) = 0. ClearlyG′(z) is equal to zero if a(z) = 1/(z−y).
(ii) IfH ′(z) and G′(z) are not equal to zero, then G′(z)/H ′(z) = K(t). This implies that

K(t) = K, which yields γt = γ , where γ is any arbitrary constant which does not de-
pend on t.

Example 2.4. Equation (2.1) characterizes the martingale case, that is, when drift coefficient
a(z) = 0, the process is given by

Xt = Xt0 +
∫ t

t0

KdBs, (2.21)

where K is any arbitrary constant.

Proof. Assuming a(z) = 0 in (2.7) gives

x

2
√
2πγt

∫∞

−∞

(
σ2(z) − γ ′t

)
eizxe−(z−y−μt)

2/2γtdz = μ′
t

−i√
2πγt

∫∞

−∞
eizxe−(z−y−μt)

2/2γtdz. (2.22)

Clearly x is arbitrary, which implies that

μ′
t = 0, or μt = K. (2.23)

Hence, from (2.1), we obtain

(σ2(z))′z
2
(
z − y −K

) +
γt

′

2γt
− σ2(z)

2γt
= 0. (2.24)

The remaining arguments follow from proof of Theorem 2.3 of Case 1.

Example 2.5. Suppose that variance parameter of themarginal density γt has two values, mean
of marginal density μt = 0, starting position of diffusion process Xt0 = y and diffusion coeffi-
cient σ2(z) = K, then (2.1) characterizes the Vasicek model given by

Xt = y +
K

2

∫ t

t0

(
Xs − y

)
ds +K

∫ t

t0

dBs. (2.25)

Proof. Equation (2.1) can be written as

2(a(z) − σ(z)σ ′(z))(
z − y

) γt = γ ′t − σ2(z). (2.26)
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Define

L(z) :=
2(a(z) − σ(z)σ ′(z))(

z − y
) , (2.27)

and assume two different values of γt, that is, γt = at and γt = bt, which gives

L(z)at + σ2(z) = a′
t, (2.28)

L(z)bt + σ2(z) = b′t. (2.29)

Subtracting (2.28) from (2.29), we obtain

L(z) =

(
b′t − a′

t

)

(bt − at)
= K which does not depend on z. (2.30)

Therefore,

σ2(z) = γ ′t −Kγt = C thus (σ2(z))
′
z = 0. (2.31)

By substituting values in (2.27), we obtain

a(z) =
K
(
z − y

)

2
when σ2(z) = C. (2.32)

Hence,

Xt = y +
K

2

∫ t

t0

(
Xs − y

)
ds +K

∫ t

t0

dBs. (2.33)

Remark 2.6. The variance of the marginal density, that is, γt, can have at most two different
values.

3. Conclusion

We have proved the necessary characteristic equation for homogeneous and non-homogen-
eous one-dimensional diffusion processes, under the assumption that marginal density of
the process is Gaussian. The possible diffusion processes that can exist are also characterized.
Two well-known examples using our characteristic equation are given. However, we are still
working on sufficient condition of the characteristic equation and about the construction of a
new diffusion process whose diffusion coefficients do not satisfy usual Lipschitz and linear-
growth conditions, but still it exists.
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