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We study the following nonperiodic Hamiltonian system ż = JHz(t, z), whereH ∈ C1(R×R
2N,R)

is the form H(t, z) = (1/2)B(t)z · z + R(t, z). We introduce a new assumption on B(t) and prove
that the corresponding Hamiltonian operator has only point spectrum. Moreover, by applying
a generalized linking theorem for strongly indefinite functionals, we establish the existence of
homoclinic orbits for asymptotically quadratic nonlinearity as well as the existence of infinitely
many homoclinic orbits for superquadratic nonlinearity.

1. Introduction and Main Results

In this paper, we are interested in the existence of homoclinic orbits of theHamiltonian system

ż = JHz(t, z), (HS)

where z = (p, q) ∈ R
N × R

N = R
2N, J =

(
0 IN

−IN 0

)
, and H ∈ C1(R × R

2N,R) is the form

H(t, z) =
1
2
B(t)z · z + R(t, z) (1.1)

with B(t) ∈ C(R,R4N2
) being a 2N × 2N symmetric matrix valued function, and R ∈ C1(R ×

R
2N,R). Here, by a homoclinic orbit of (HS), we mean a solution of the equation satisfying

z(t)/≡ 0 and z(t) → 0 as |t| → ∞.
Establishing the existence of homoclinic orbits for system like (HS) is one of the

most important problems in the theory of Hamiltonian systems. In very recent years, many
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authors devoted to the existences of homoclinic orbits for Hamiltonian systems via critical
point theory. For example, see [1–5] for the second-order systems and [6–18] for the first-
order systems. Coti-Zelati et al. first considered the system (HS) in [6], and they obtained
a homoclinic orbit for strictly convex Hamiltonian system. The existence of infinitely many
homoclinic orbits was established in [15]. Subsequently, Hofer and Wysocki removed the
convexity assumptions in [13]. Later, suppose that R(t, z) and B(t) depend periodically on t,
the existence of homoclinic orbit for (HS)was considered in [7, 8, 12, 16, 18].

Without assumption of periodicity, the problem is quite different in nature. In [10],
Ding and Li first obtained one homoclinic orbit for the nonperiodic system (HS), see also
[9, 11] and the references therein for recent works on this direction.

Motivated by [9, 11], in this paper, we introduce a new nonperiodic assumption on
B(t) as the following.

(B0) B(t) ∈ C(R,R2N×2N), there exists r0 > 0 such that, for any h > 0,

|{t ∈ R : |t − t1| ≤ r0, J0B(t) < h}| −→ 0, as |t1| −→ ∞, (1.2)

where J0 will be be defined in Section 2; we regard a real function U(x) as a
symmetric matrix U(x)I2N×2N , and, for two given matrix valued functions L1(t)
and L2(t), we say that L1(t) ≤ L2(t) if and only if

max
ξ∈R2N,|ξ|=1

(L1(t) − L2(t))ξ · ξ ≤ 0, (1.3)

and L1(t) > L2(t) if and only if L1(t) ≤ L2(t) does not hold. Obviously, (B0) holds if
B(t) satisfies.

(B1) For any b > 0, the setΛb := {t ∈ R : J0B(t) < b} is nonempty and has finite Lebesgue
measure.

One of the main ingredients of our work is two steps, the first is to show that the spectrum of
Hamiltonian operator

A := −
(
J d

dt
+ B

)
(1.4)

consists of a sequence of eigenvalues with finite multiplicity which is unbounded from
above and below (see Lemma 2.2), and hence the energy functional corresponding to (HS) is
strongly indefinite; the second is to show that the working space E has compact embedding
property (see Lemma 2.3).

First, we handle the asymptotically quadratic case. In what follows, R̂(t, z) :=
(1/2)Rz(t, z)z − R(t, z). Suppose that

(R1) R ∈ C1(R × R
2N, [0,∞)) and Rz(t, z) = o(|z|) as |z| → 0 uniformly in t,

(R2) there exists a bounded function R∞ ∈ C(R,R) such that |Rz(t, z) − R∞(t)z|/|z| → 0
as |z| → ∞ uniformly in t, and b := inft∈RR∞(t) > inf[(0,∞) ∩ σ(A)], where σ(A)
denotes the spectrum of A,

(R3) R̂(t, z) > 0 if z/= 0, R̂(t, z) → ∞ as |z| → ∞.
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We recall that a solution z1 of (HS) is called a least energy solution if it possesses
minimum energy among all solutions, that is,

Φ(z1) = θ := inf{Φ(z) | z is a nonzero solution of (HS)}, (1.5)

where Φ is the energy functional

Φ(z) := −
∫

R

(
1
2
Jż · z +H(t, z)

)
dt. (1.6)

Let k be the number of eigenvalues of the operator A lying in (0, b), our main results
are the following.

Theorem 1.1. Suppose (B0), (R1)–(R3) be satisfied. Then, (HS) has a least energy solution. Moreover,
if R(t, z) is even in z, then (HS) has at least k pairs of solutions.

Next, we consider the superquadratic case. Assume

(R4) R(t, z) · |z|−2 → ∞ as |z| → ∞ uniformly in t,

(R5) R̂(t, z) > 0 if z/= 0, and there are μ > 1 and r, c1 > 0, such that, for |z| ≥ r, |Rz(t, z)|μ ≤
c1R̂(t, z)|z|μ.

Theorem 1.2. Suppose (B0), (R1), and (R4)-(R5) be satisfied. Then, (HS) has a least energy solution.
Moreover, if R(t, z) is even in u. Then, (HS) has infinitely many solutions.

Remark 1.3. The assumptions (R1), (R4)-(R5) imply that R̂(t, z) → ∞ uniformly in t as |z| →
∞.

2. Variational Framework and Linking Structure

In order to establish a variational setting for the system (HS), in this section, we first study
the spectrum of the Hamiltonian operator.

Observe that, since we have assumed (B0) about B(t), A = −(J(d/dt) + B(t)) is a
self-dajoint operator on L2(R,R2N) with D(A) ⊂ H1(R,R2N). Let | · |q denote the usual Lq-
norm, (·, ·)2 denote the usual L2 inner product, c, ci, d, or di stand for different positive
constants. Let σ(A), σd(A), and σe(A) be the spectrum of A, the discrete spectrum of A, and
the essential spectrum ofA, respectively. Observe thatD(A) is a Hilbert space with the graph
inner product

(z1, z2)A := (Az1, Az2)2 + (z1, z2)2, (2.1)

and the induced norm ‖z‖A := (z, z)1/2A .
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Set J0 :=
(

0 IN
IN 0

)
and A0 := J(d/dt) + J0 (self-adjoint with D(A0) = H1(R,R2N));

thus, A2
0 = −d2/dt2 + 1. Let |A0| denote the absolute value of A0, and we have

||A0|z|22 = |A0z|22 = (A0z,A0z)2 =
(
A2

0z, z
)
=

((
− d2

dt2
+ 1

)
z, z

)

2

= |∇z|22 + |z|22, (2.2)

which implies that

‖z‖H1 = ||A0|z|2, (2.3)

for all z ∈ D(A2
0) = H2(R,R2N), hence for all z ∈ H1(R,R2N) because of the density of H2 in

H1.

Lemma 2.1. For any z ∈ D(A) ⊂ H1(R,R2N), there exists d > 0 such that

‖z‖H1 = ‖A0|z|2 ≤ d‖z‖A. (2.4)

Proof. Let A1 be the restriction of A0 to D(A), A1 is a linear operator from D(A) to L2. We

claim that A1 is closed. Indeed, let zn
‖·‖A−−−→ z and A1zn

|·|2−−→ w. Then, z ∈ D(A), and since A0 is

closed, A1zn = A0zn
|·|2−−→ A0z = A1z, hence the claim holds. Now the Closed Graph Theorem

implies that A1 : D(A) → L2 is a bounded linear operator, so |A0z|2 = |A1z|2 ≤ d‖z‖A for all
z ∈ D(A). This together with (2.3) implies (2.4).

Lemma 2.2. Suppose (B0) holds. Then σ(A) = σd(A).

Proof. Similar to the idea of [9, 19], for any h > 0, if (B0) holds, set

(J0B(t) − h)+ :=

{
J0B(t) − h, if J0B(t) − h ≥ 0,
0, if J0B(t) − h < 0,

(2.5)

and (J0B(t) − h)− = (J0B(t) − h) − (J0B(t) − h)+. Thus, A = A2 + J0(J0B(t) − h)−, where

A2 = −J d

dt
+ J0(J0B(t) − h)+ + hJ0. (2.6)
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Since J2
0 = I and J0J = −JJ0, we have, for z ∈ D(A),

(A2z,A2z)2 =
∣∣∣∣
(
−J d

dt
+ J0(J0B(t) − h)+

)
z + hJ0z

∣∣∣∣
2

2

=
∣∣∣∣
(
−J d

dt
+ J0(J0B(t) − h)+

)
z

∣∣∣∣
2

2
+ h2|z|22 + (−Jż, hJ0z)2 + (hJ0z,−Jż)2

+
((
J0(J0B(t) − h)+

)
z, hJ0z

)
2 +
((
hJ0z,J0(J0B(t) − h)+

)
z
)
2

=
∣∣∣∣
(
−J d

dt
+ J0(J0B(t) − h)+

)
z

∣∣∣∣
2

2
+ h2|z|22 + 2h

((
(J0B(t) − h)+

)
z, z
)
2

≥ h2|z|22.
(2.7)

Thus, σ(A2) ⊂ R \ (−h, h).
We claim that σe(A) ∩ (h, h) = ∅. Assume by contradiction that there is ν ∈ σe(A)with

|ν| < h. Let {zn} ⊂ D(A)with |zn|2 = 1, zn ⇀ 0 in L2 and |(A − ν)zn|2 → 0. Moreover, by (B0),
one can check that the multiplication operator z → J0(J0B(t) − h)−z is compact. In fact, let
{zn} be bounded in D(A), without loss of generality, we may assume zn ⇀ 0 in D(A). Next
we show that |J0(J0B(t) − h)−zn|2 → 0 in L2. For every R > 0, define BR(0) = {t ∈ R : |t| < R}
and Bc

R = R\BR(0). Let {ti} be a sequence of points in Bc
R satisfying Bc

R ⊂ ∪∞
i=1B(ti, r0) and such

that each point t is contained in at most 2 such balls B(ti, r0). Let B := {t ∈ Bc
R : J0B(t) < h},

choose s ∈ (1, 3) and s′ = s/(s − 1). We get

∫

Bc
R

∣∣J0(J0B(t) − h)−zn
∣∣2 ≤

∞∑
i=1

∫

B(ti,r0)∩B

∣∣J0(J0B(t) − h)−zn
∣∣2

≤
∞∑
i=1

(∫

B(ti,r0)∩B
|zn|2s

)1/s(∫

B(ti,r0)∩B

∣∣J0(J0B(t) − h)−
∣∣2s′
)1/s′

≤ C2s′
R

∞∑
i=1

|B(ti, r0) ∩ B|1/s
′

(∫

B(ti,r0)∩B
|zn|2s

)1/s

≤ 2C2s′
R εR‖zn‖2A,

(2.8)

where εR = supi|B(ti, r0)∩B|1/s
′
, CR = supi‖J0(J0B(t)−h)−‖M (for real matrix valued function

Q(x) = (qjk(x))2N×2N , ‖Q(x)‖M = max1≤j≤2N
∑2N

k=1 |qjk(x)|).
Here, we used (2.4) of Lemma 2.1 and that H1 embeds into L2s. Assumption (B0)

implies that εR → 0 as R → ∞; thus,

∫

Bc
R

∣∣J0(J0B(t) − h)−zn
∣∣2 −→ 0. (2.9)
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On the other hand,

∫

BR(0)

∣∣J0(J0B(t) − h)−zn
∣∣2 ≤

(∫

BR(0)
|zn|2s

)1/s(∫

BR(0)

∣∣J0(J0B(t) − h)−
∣∣2s′
)1/s′

−→ 0,

(2.10)

since H1 ↪→ L2
loc is compact. Thus, |J0(J0B(t) − h)−zn|2 → 0, we have

o(1) = |(A − ν)zn|2 =
∣∣A2zn − νzn + J0(J0B(t) − h)−zn

∣∣
2

≥ |A2zn|2 − |ν| − o(1)

≥ h − |ν| − o(1),

(2.11)

which implies that 0 < h − |ν| ≤ 0, a contradiction. So σe(A) ∩ (−h, h) = ∅. Since h > 0 is
arbitrary, it follows that σ(A) = σd(A).

From Lemma 2.2, we know that the operator A has a sequence of eigenvalues

· · ·λ−k ≤ · · · ≤ λ−1 ≤ 0 < λ1 ≤ · · · ≤ λk · · · (2.12)

with λ±k → ±∞ as k → ∞, and corresponding eigenfunctions {e±k}k∈N
form an orthogonal

basis in L2. Observe that we have an orthogonal decomposition

L2 = L− ⊕ L0 ⊕ L+, z = z− + z0 + z+, (2.13)

such that A is negative definite on L− and positive definite on L+ and L0 = ker A. Let P 0 :
L2 → L0 be the projection. Set E := D(|A|1/2) be the domain of the self-adjoint operator |A|1/2
which is a Hilbert space equipped with the inner product

(z,w) =
(
|A|1/2z, |A|1/2w

)
2
+
(
P 0z, P 0w

)
2

(2.14)

and norm ‖z‖ = (z, z)1/2. Let E± := span{e±k}k∈N
, E0 = ker A. Then, E = E− ⊕ E0 ⊕ E+ is an

orthogonal decomposition of E.
Similar to [19], on D(A), we introduce an inner product

〈z,w〉A = (Az,Aw)2 +
(
P 0z, P 0w

)
2
= (|A|z, |A|w)2 +

(
P 0z,w

)
2

(2.15)

whose induced normwill be denoted by |z|A. Since 0 is at most an isolated eigenvalue of finite
multiplicity, it is clear that | · |A and ‖ · ‖A are equivalent on D(A): d1|z|A ≤ ‖u‖A ≤ d2|z|A, for
all z ∈ D(A). Define

Â := |A| + P 0. (2.16)
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Then, D(A) = D(Â). Noting that P 0|A| = |A|P 0 = 0, for z,w ∈ D(Â), we have

(
Âz, Âw

)
2
= (|A|z, |A|w)2 +

(
P 0z, |A|w

)
2
+
(
|A|z, P 0w

)
2
+
(
P 0z, P 0w

)
2

= (|A|z, |A|w)2 +
(
P 0z, P 0w

)
2
= 〈z,w〉A,

(2.17)

hence

|z|A =|Âz|2, ∀z ∈ D(A). (2.18)

Observe that, for all z ∈ D(A) and w ∈ D(|A|1/2),

(
Â1/2z, Â1/2w

)
2
=
(
Âz,w

)
2
=
((

|A| + P 0
)
z,w

)
2
= (|A|z,w)2 +

(
P 0z,w

)
2

=
(
|A|1/2z, |A|1/2w

)
2
+
(
P 0z, P 0w

)
2
= (z,w).

(2.19)

Consequently, since D(A) = D(Â) is a core of Â1/2, we have

(z,w) =
(
Â1/2z, Â1/2w

)
2

∀z,w ∈ D
(
|A|1/2

)
, (2.20)

which implies in particular that

‖z‖ =
∣∣∣Â1/2z

∣∣∣
2

∀z ∈ E. (2.21)

By complex interpolation theory, we have H1/2 = [L2,H1]1/2 (see Theorem 2.4.1 [20]). Since
D(|A0|0) = L2 and ‖z‖H1 = ‖A0|z|2, one has

H1/2 =
[
D
(
|A0|0

)
,D(|A0|)

]
1/2

(2.22)

with equivalent norms. It then follows from Theorem 1.18.10 of [20] that

H1/2 = [D
(
|A0|0

)
,D(|A0|)]

1/2
= D
(
|A0|1/2

)
, (2.23)

hence ‖z‖H1/2 and ||A0|1/2z|2 are equivalent norms on H1/2,

d3‖z‖H1/2 ≤
∣∣∣|A0|1/2z

∣∣∣
2
≤ d4‖z‖H1/2 ∀z ∈ H1/2

(
R,R2N

)
. (2.24)

Lemma 2.3. E embeds continuously into H1/2(R,R2N). Moreover, E embeds compactly into
Lp(R,R2N) for all p ∈ [2,∞).
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Proof. By (2.4) and (2.18), there exists d5 > 0 such that

||A0|z|2 ≤ d5

∣∣∣Âz
∣∣∣
2
=
∣∣∣
(
d5Â
)
z
∣∣∣
2

∀z ∈ D(A). (2.25)

Thus, (|A0|z, z)2 ≤ (d5Âz, z)2 for all u ∈ D(A) (see Proposition III 8.11 of [21]). This implies

∣∣∣|A0|1/2z
∣∣∣
2

2
= (|A0|z, z)2 ≤

(
d5Âz, z

)
2
= d5

∣∣∣Â1/2z
∣∣∣
2

2
(2.26)

for all z ∈ D(A) (see Proposition III 8.12 of [21]). Since D(A) is core of Â1/2, we obtain that

||A0|1/2z|
2
2 ≤ d5|Â1/2z|22 for all z ∈ E. This combination with (2.21) shows that

∣∣∣|A0|1/2z
∣∣∣
2

2
≤ d5‖z‖2 ∀z ∈ E, (2.27)

which, together with (2.24), implies that

‖z‖H1/2 ≤ d6‖z‖ ∀z ∈ E. (2.28)

This proves that the embedding E ↪→ H1/2(R,R2N) is continuous. In order to show that the
embedding E ↪→ Lp(R,R2N) is compact for all p ∈ [2,∞), it suffices to prove that E ↪→ L2

is compact. Set Lk := span{e−k, . . . , e−1, e1, . . . , ek}. Let Pk : E → Lk denote the orthogonal
projector. Consider a weakly converging sequence zn ⇀ z in E. Denote wn = zn − z and
K := supn‖wn‖2. Given ε > 0, we choose k ∈ N so that K/νk < ε/2, where νk := |λ−k| + λk.
Since Pkwn → 0 as n → ∞, then there exists n0 ∈ N such that ‖Pkwn‖2 < ε/2 for all n ≥ n0.
Let {E(τ)}τ∈R

be the spectral family of A. It follows from

‖wn‖2 ≥ ‖(I − Pk)wn‖2 =
(
|A|1/2(I − Pk)wn, |A|1/2(I − Pk)wn

)
2

=
∫λ−k

−∞
|τ |d|E(τ)(I − Pk)wn|22 +

∫∞

λk

τd|E(τ)(I − Pk)wn|22

≥ (|λ−k| + λk)|(I − Pk)wn|22

(2.29)

that

|(I − Pk)wn|22 ≤
‖wn‖2

|λ−k| + λk
=

‖wn‖2

νk
<

ε

2
. (2.30)

Then,

|wn|22 = |Pkwn|22 + |(I − Pk)wn|22 <
ε

2
+
ε

2
= ε (2.31)

for all n ≥ n0. This proves that zn → z in L2.
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Set Ψ(z) =
∫
R
R(t, z(t))dt, by assumptions and Lemma 2.3, Ψ(z) ∈ C1(E,R) and

Ψ′(z)w =
∫
R
Rz(t, z(t))w(t)dt, for all z,w ∈ E. Now, let us consider the function

Φ(z) =
1
2

(
‖z+‖2 −

∥∥z−∥∥2
)
−Ψ(z) (2.32)

for z = z+ + z0 + z− ∈ E, then Φ ∈ C1(E,R). Moreover, for Ψ ∈ C∞
0 (R),

Φ′(z)Ψ =
∫

R

(−Jż(t) + B(t)z(t) − Rz(t, z(t)),Ψ(t))dt. (2.33)

It follows that critical points of Φ(z) are solutions of (HS). Moreover, if z is a solution of
(HS), by Lemma 2.3, Rz(t, z) ∈ Ls(R,R2N) for any s ∈ [2,∞). Thus, Rz(t, z) ∈ L2. A standard
argument shows that z is also a homoclinic orbit of (HS) (see [12]). So if z/= 0 is a solution of
(HS), then z is a homoclinic orbit of (HS).

Now, we discuss the linking structure of Φ.

Lemma 2.4. Suppose (R1), (R2) are satisfied. Then, there is a ρ > 0 such that κ := infΦ(∂Bρ ∩E+) >
0.

Proof. Observe that, given ε > 0, there is Cε > 0 such that

|Rz(t, z)| ≤ ε|z| + Cε|z|p−1, (2.34)

|R(t, z)| ≤ ε|z|2 + Cε|z|p, (2.35)

for all (t, z), where p ∈ [2,∞). For z ∈ E+, by Lemma 2.3 and (2.35), we have

Φ(z) =
1
2
‖z‖2 −

∫

R

R(t, z)

≥ 1
2
‖z‖2 − C

(
ε‖z‖2 + Cε‖z‖p

)
.

(2.36)

Choosing an appropriate ε, we see that the desired conclusion holds for some ρ > 0.

For the asymptotically quadratic case, let b := infR∞(t), and we arrange all the
eigenvalues (counted with multiplicity) of A in (0, b) by 0 < λ1 ≤ λ2 ≤ · · · ≤ λk < b
and let ej denote the corresponding eigenfunctions Aej = λjej for j = 1, 2, . . . , k. Set
Y0 := span{e1, e2, . . . , ek}. Note that

λ1|z|22 ≤ ‖z‖2 ≤ λk|z|22 ∀z ∈ Y0. (2.37)

For any subspace W of Y0, set EW = E− ⊕ E0 ⊕W .

Lemma 2.5. Let (R1)–(R3) be satisfied and ρ > 0 given by Lemma 2.4. Then, for any subspace W of
Y0, supΦ(EW) < ∞, and there is a RW > 0 such that supΦ(EW \ BRW ) < infΦ(Bρ ∩ E+).
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Proof. It is sufficient to prove that Φ(z) → −∞ in EW as ‖z‖ → ∞. If not, then there are
M > 0 and {zj} ⊂ EW with ‖zj‖ → ∞ such that Φ(zj) ≥ −M for all j. Denote vj := zj/‖zj‖,
passing to a subsequence if necessary, vj ⇀ v, v−

j ⇀ v−, v0
j → v0, and v+

j → v+. Now, we
have

1
2

(∥∥∥v+
j

∥∥∥
2
−
∥∥∥v−

j

∥∥∥
2
)
−
∫

R

R
(
t, zj
)

∥∥zj
∥∥2 =

Φ
(
zj
)

∥∥zj
∥∥2 ≥ −M∥∥zj

∥∥2 , (2.38)

since R(t, z) ≥ 0. If v+ = 0 and v0 = 0, it follows from (2.38) that

1
2

∥∥∥v−
j

∥∥∥
2
+
∫

R

R
(
t, zj
)

∥∥zj
∥∥2 ≤ 1

2

∥∥∥v+
j

∥∥∥
2
+

M∥∥zj
∥∥2 −→ 0 (2.39)

as j → ∞. Thus, we have ‖v−
j ‖ → 0 and

∫
R
(R(t, zj)/‖zj‖2) → 0, this is a contradiction with

‖vj‖ = 1. Therefore, there are three possibilities: (i) v+ /= 0 and v0 = 0, (ii) v+ = 0 and v0 /= 0,
(iii) v+ /= 0 and v0 /= 0.

If (i) holds, by (2.37), one has

‖v+‖2 −
∥∥v−∥∥2 −

∫

R

R∞(t)v2 ≤ ‖v+‖2 −
∥∥v−∥∥2 − b|v|22

≤ −(b − λk)|v+|22 −
∥∥v−∥∥2 − b

∣∣v−∣∣2−b|v0|22
2 − b

∣∣v−∣∣2
2 < 0.

(2.40)

If (ii) or (iii) holds, similar to (i), one has

‖v+‖2 −
∥∥v−∥∥2 −

∫

R

R∞(t)v2 < 0. (2.41)

Then, there exists a > 0 such that

‖v+‖2 −
∥∥v−∥∥2 −

∫a

−a
R∞(t)v2 < 0. (2.42)

Letting R̃(t, z) := R(t, z)−(1/2)R∞(t)z2, then |R̃(t, z)| ≤ cz2 for some c > 0 and R̃(t, z)/z2 → 0
as |z| → ∞ uniformly in t. Hence, by Lebesgues dominated convergence theorem, we have

lim
j→∞

∫a

−a

R̃
(
t, zj
)

∥∥zj
∥∥2 = lim

j→∞

∫a

−a

R̃
(
t, zj
)

∣∣zj
∣∣2
∣∣vj

∣∣2 = 0. (2.43)
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Thus, (2.38)–(2.43) imply that

0 ≤ lim
j→∞

(
1
2

(∥∥∥v+
j

∥∥∥
2
−
∥∥∥v−

j

∥∥∥
2
)
−
∫a

−a

R
(
t, zj
)

∥∥zj
∥∥2
)

≤ 1
2

(
‖v+‖2 −

∥∥v−∥∥2 −
∫a

−a
R∞(x)v2

)
< 0.

(2.44)

Now, the desired conclusion is obtained from this contradiction.

For the superquadratic case, we define Yn := span{e1, . . . , en} and En = E− ⊕ E0 ⊕ Yn,
n ∈ N. Then, Yn is a finite dimensional subspace of E+ and

λ1|z|22 ≤ ‖z‖2 ≤ λn|z|22 ∀z ∈ Yn. (2.45)

By (R4), there exists R > 0 and α > 0 such that

R(t, z) ≥ α|z|2 ≥ λn|z|2 ∀|z| ≥ R. (2.46)

Lemma 2.6. Let (R1), (R4)–(R5) be satisfied and ρ > 0 given by Lemma 2.4. Then, there is a sequence
{Rn} with Rn > ρ such that supΦ(En) < ∞ and supΦ(En \ Bn) < infΦ(Bρ ∩ E+), where Bn =
{z ∈ En : ‖z‖ ≤ Rn}.

Proof. Similar to proof of Lemma 2.5. If (i) holds, by (2.45) and (2.46), it is easy to prove that

‖v+‖2 −
∥∥v−∥∥2 − α

∫

R

|v|2 ≤ λn‖v+‖2 −
∥∥v−∥∥2 − α|v|22

= −(α − λn)|v+|22 −
∥∥v−∥∥2 − α

∣∣v−∣∣2
2 − α

∣∣∣v0
∣∣∣
2

2
< 0.

(2.47)

If (ii) or (iii) holds, similar to (i), one has

‖v+‖2 −
∥∥v−∥∥2 − α

∫

R

|v|2 < 0. (2.48)

Hence, there exists a > 0 such that

‖v+‖2 −
∥∥v−∥∥2 − α

∫a

−a
|v|2 < 0. (2.49)
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Note that

Φ
(
zj
)

∥∥zj
∥∥2 ≤ 1

2

(∥∥∥v+
j

∥∥∥
2
−
∥∥∥v−

j

∥∥∥
2
)
− α

∫a

−a

R
(
t, zj
)

∥∥zj
∥∥2

=
1
2

(∥∥∥v+
j

∥∥∥
2
−
∥∥∥v−

j

∥∥∥
2
− α

∫a

−a

∣∣vj

∣∣2
)
−
∫a

−a

R
(
t, zj
)
− (α/2)

∣∣zj
∣∣2

∥∥zj
∥∥2

≤ 1
2

(∥∥∥v+
j

∥∥∥
2
−
∥∥∥v−

j

∥∥∥
2
− α

∫a

−a

∣∣vj

∣∣2
)
+
∫

(−a,a)∩{t∈R:|zj |≤R}

(α/2)
∣∣zj
∣∣2 − R

(
t, zj
)

∥∥zj
∥∥2

≤ 1
2

(∥∥∥v+
j

∥∥∥
2
−
∥∥∥v−

j

∥∥∥
2
− α

∫a

−a

∣∣vj

∣∣2
)
+

2aCR∥∥zj
∥∥2 ,

(2.50)

where CR = sup{R(t, z) : t ∈ (−a, a), |z| ≤ R}. Thus, (2.38) and (2.49) imply that

0 ≤ lim
j→∞

(
1
2

(∥∥∥v+
j

∥∥∥
2
−
∥∥∥v−

j

∥∥∥
2
)
−
∫a

−a

R
(
t, zj
)

∥∥zj
∥∥2
)

≤ 1
2

(
‖v+‖2 −

∥∥v−∥∥2 − α

∫

Ω
|v|2
)

< 0,

(2.51)

a contradiction. This proves the lemma.

As a consequence, we have the folllowing.

Lemma 2.7. Under the assumptions of Theorem 1.1 (Theorem 1.2), then letting e ∈ Y0(Yn) with
‖e‖ = 1, there is R1 > ρ > 0, such that Φ|∂Q ≤ κ, where κ > 0 be given by Lemma 2.4, Q := {u =
u− + u0 + se : u− + u0 ∈ E− ⊕ E0, s ≥ 0, ‖u‖ ≤ R1}.

3. The (C)c Condition

In this section, we discuss the properties of the (C)c sequences. Recall that a sequence {zn} ⊂
E is said to be a (C)c sequence ifΦ(zn) → c and (1+ ‖zn‖)Φ′(zn) → 0,Φ is said to satisfy the
(C)c condition if any (C)c sequence has a convergent subsequence.

Lemma 3.1. Under the assumptions of Theorem 1.1 or Theorem 1.2, then any (C)c-sequence is
bounded.

Proof. Let {zj} ⊂ E be such that

Φ
(
zj
)
−→ c,

(
1 +
∥∥zj
∥∥)Φ′(zj

)
−→ 0. (3.1)

Then, there is constant C > 0 such that we have

Φ
(
zj
)
− 1
2
Φ′(zj

)
zj =

∫

R

R̂
(
t, zj
)
≤ C. (3.2)
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Suppose to the contrary that {zj} is unbounded. Setting vj := zj/‖zj‖, then ‖vj‖ = 1, vj =
v+
j + v0

j + v−
j ∈ E+ ⊕ E0 ⊕ E−. After passing a subsequence, we have vj ⇀ v, v0

j → v0, and
γ = limj→∞‖v+

j + v−
j ‖2 exists. Moreover, |vj |s ≤ Cs for all s ∈ [2,∞). For γ , we have only the

following two cases: γ = 0 or γ > 0.
First, we consider γ = 0, then ‖v0

j ‖ = |v0
j |2 → 1 = |v0|2. Denote z̃j = z+j +z

−
j , ṽj = v+

j +v
−
j .

Note that by (R3), for any � > 0, there exists a h > 0 such that

� ≤ R̂(t, z), ∀ |z| ≥ h. (3.3)

For δ > 0, set Ωδ := {t ∈ R : |v0(t)| ≥ 2δ} and Ωjδ := {t ∈ R : |ṽj(t)| ≥ δ}. Since v0 ∈ C1(R) and
|v0|2 = 1, |Ωδ| > 0 for all δ small. Moreover, we have

∣∣Ωjδ

∣∣ ≤ 1
δ2

∫

Ωjδ

∣∣ṽj

∣∣2 ≤ c

δ2

∥∥ṽj

∥∥2 = c

δ2

∥∥∥v+
j + v+

j

∥∥∥ −→ 0 as j −→ ∞. (3.4)

Hence, |Ωδ \Ωjδ| → |Ωδ| as j → ∞. Therefore, there exists N > 0 such that |vj(t)| ≥ δ/2 for
all t ∈ Ωδ \Ωjδ with j ≥ N; thus, |zj(t)| ≥ (δ/2)‖zj‖ ≥ h for j ≥ N. From this and (3.3), we get

∫

R

R̂
(
t, zj
)
≥
∫

Ωδ\Ωjδ

� = �
∣∣Ωδ \Ωjδ

∣∣, (3.5)

contradicting (3.2) since � is arbitrary.
Hence, γ > 0, observe that

Φ′(zj
)(

z+j − z−j

)
=
∥∥zj
∥∥2
⎛
⎜⎝
∥∥ṽj

∥∥2 −
∫

R

Rz

(
t, zj
)(

v+
j − v−

j

)∣∣vj

∣∣
∣∣zj
∣∣

⎞
⎟⎠. (3.6)

Hence,

∫

R

Rz

(
t, zj
)(

v+
j − v−

j

)∣∣vj

∣∣
∣∣zj
∣∣ −→ γ2. (3.7)

Set

g(r) := inf
{
R̂(t, z) | t ∈ R, z ∈ R

2N with |z| ≥ r
}

(3.8)

for r ≥ 0. By (R3), g(r) > 0 for all r > 0 and g(r) → ∞ as r → ∞. For 0 ≤ a < b, let

Ωj(a,b) :=
{
t ∈ R | a ≤

∣∣zj(t)
∣∣ < b

}

Cb
a := inf

{
R̂(t, z)

|z|2
| t ∈ R, z ∈ R

2N with a ≤ |z(x)| < b

}
.

(3.9)
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By (3.2), it is easy to prove that

∣∣Ωj(b,∞)
∣∣ ≤ C

g(b)
−→ 0 (3.10)

as b → ∞ uniformly in t, and, for any fixed 0 < a < b,

∫

Ωj(a,b)

∣∣vj

∣∣2 = 1∥∥zj
∥∥2
∫

Ωj(a,b)

∣∣zj
∣∣2 ≤ C

Cb
a

∥∥zj
∥∥2 −→ 0 (3.11)

as j → ∞, and

∫

Ωj(b,∞)

∣∣vj

∣∣s ≤
(∫

Ωj(b,∞)

∣∣vj

∣∣2s
)1/2∣∣Ωj(b,∞)

∣∣1/2 −→ 0 (3.12)

for any s ∈ [2,∞), as b → ∞ uniformly in j. Let 0 < ε < γ2/3. By (R1), there is a aε > 0 such
that

|Rz(t, z)| < ε|z|, ∀|z| ≤ aε. (3.13)

Consequently,

∫

Ωj(0,aε)

Rz

(
t, zj
)(

v+
j − v−

j

)∣∣vj

∣∣
∣∣zj
∣∣ ≤

∫

Ωj(0,aε)

ε
∣∣∣v+

j − v−
j

∣∣∣
∣∣vj

∣∣ ≤ ε

C2

∣∣vj

∣∣2
2 < ε (3.14)

for all j.
By (R2), there is some c > 0 such that

|Rz(t, z)| < c|z|, ∀(t, z). (3.15)

By (3.11) and Hölder inequality, setting μ = 2ν/(ν − 1) > 2 and ν′ = μ/2 = ν/(ν − 1), we can
take large bε such that

∫

Ωj(bε ,∞)

Rz

(
t, zj
)(

v+
j − v−

j

)∣∣vj

∣∣
∣∣zj
∣∣ ≤

(∫

Ωj(bε ,∞)

∣∣Rz

(
t, zj
)∣∣ν

∣∣zj
∣∣ν

)1/ν(∫

Ωj(bε ,∞)

(∣∣∣v+
j − v−

j

∣∣∣∣∣vj

∣∣)ν′
)1/ν′

≤ c
∣∣Ωj(bε,∞)

∣∣1/ν
(∫

Ωj(bε ,∞)

∣∣∣v+
j − v−

j

∣∣∣
μ
)1/μ(∫

Ωj(bε ,∞)

∣∣vj

∣∣μ
)1/μ

≤ ε

(3.16)
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for all j. By (3.11), there is j0 such that

∫

Ωj(aε ,bε)

Rz

(
t, zj
)(

v+
j − v−

j

)∣∣vj

∣∣
∣∣zj
∣∣ ≤ c

∫

Ωj(aε ,bε)

∣∣∣v+
j − v−

j

∣∣∣
∣∣vj

∣∣ ≤ c
∣∣vj

∣∣
2

(∫

Ωj(aε,bε)

∣∣vj

∣∣2
)1/2

≤ ε

(3.17)

for all j ≥ j0. By (3.14)–(3.17), we have

lim
j→∞

sup
∫

R

Rz

(
t, zj
)(

v+
j − v−

j

)∣∣vj

∣∣
∣∣zj
∣∣ ≤ 3ε < γ2 (3.18)

which contradicts (3.7).

Next, we deal with the superquadratic case. Note that 2μ′ = 2μ/(μ − 1) < ∞, by (3.12),
we can take large bε > r such that

∫

Ωj(bε ,∞)

Rz

(
t, zj
)(

v+
j − v−

j

)∣∣vj

∣∣
∣∣zj
∣∣

≤
(∫

Ωj(bε ,∞)

(∣∣Rz

(
t, zj
)∣∣

∣∣zj
∣∣

)μ)1/μ(∫

Ωj(bε ,∞)

(∣∣∣v+
j − v−

j

∣∣∣∣∣vj

∣∣)μ′
)1/μ′

≤
(∫

R

c1R̂
(
t, zj
))1/μ(∫

R

∣∣∣v+
j − v−

j

∣∣∣
2μ′)1/2μ′(∫

Ωj(bε ,∞)

∣∣vj

∣∣2μ′
)1/2μ′

< ε

(3.19)

for all j. Clearly, (3.17) remains true. Now, the combination of (3.14), (3.17) and (3.19) implies
again a contradiction with (3.7).

Let {zn} be an arbitrary (C)c sequence. By Lemma 3.1, it is bounded; hence, we may
assume without loss of generality that zn ⇀ z in E, zn → z in Lq for q ≥ 2. Plainly, z is a
critical point of Φ.

Lemma 3.2. Under the assumptions of Theorem 1.1 or Theorem 1.2, then Φ satisfies (C)c condition
for all c > 0.

Proof. Let {zn} be an arbitrary (C)c sequence. By (2.35), Lemmas 2.3 and 3.1, it follows from

∫

R

(Rz(t, zm) − Rz(t, zn))(z+m − z+n) ≤
(∫

R

(Rz(t, zm) − Rz(t, zn))2
)1/2(∫

R

|z+m − z+n|
)1/2

≤ c

(∫

R

|zm − zn|2
)1/2

−→ 0

o(1) =
(
Φ′(zm) −Φ′(zn), z+m − z+n

)

= ‖z+m − z+n‖
2 +
∫

R

(Rz(t, zm) − Rz(t, zn))(z+m − z+n)

= ‖z+m − z+n‖
2 + o(1)

(3.20)
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that z‖z+m − z+n‖2 = o(1) as m,n → ∞. Similarly, we can prove that z‖z−m − z−n‖2 = o(1) as
m,n → ∞. Since dimE0 < ∞, thus z0n → z0. So {zn} is a Cauchy sequence in E. Now, the
conclusion follows from the completeness of E.

4. Proof of Theorems

In this section, we give the proof for our Theorems 1.1 and 1.2. Let E be a Banach space with
direct sum E = X ⊕ Y and corresponding projections PX, PY onto X,Y . Let S ⊂ X∗ be a dense
subset, for each s ∈ S, there is a seminorm on E defined by

ps : E −→ R, ps(z) : |s(x)| +
∥∥y∥∥ for z = x + y ∈ E. (4.1)

We denote by TS the topology induced by seminorm family {ps}, w∗ denotes the weak∗-
topology on E∗. Now, some notations are needed. For a functional Φ ∈ C1(E,R), we write
Φa = {z ∈ E | Φ(z) ≥ a}, Φb = {z ∈ E | Φ(z) ≤ b}, and Φb

a = Φa ∩ Φb. Recall that Φ is
said to be weakly sequentially lower semicontinuous, if for any zj ⇀ z in E, one has Φ(z) ≤
lim infj→∞Φ(zj), and Φ′ is said to be weakly sequentially continuous if limj→∞Φ′(zj)w =
Φ′(z)w for each w ∈ E.

Suppose

(Φ0) for any c ∈ R, superlevel Φc is TS-closed, and Φ′ : (Φc,TS) → (E∗, w∗) is
continuous;

(Φ1) for any c > 0, there exists ξ > 0 such that ‖z‖ < ξ‖PYz‖ for all z ∈ Φc;

(Φ2) there exists ρ > 0 such that κ := infΦ(Sρ ∩ Y ) > 0, where Sρ := {z ∈ E : ‖z‖ = ρ};

(Φ3) there exists a finite-dimensional subspace Y0 ⊂ Y and R > ρ such that we have
for E0 := X ⊕ Y0 and B0 := {z ∈ E0 : ‖z‖ ≤ R} that c := supΦ(E0) < ∞ and
supΦ(E0 \ B0) < infΦ(Bρ ∩ Y );

(Φ4) there exists an increasing sequence of finite-dimensional subspaces Yn ⊂ Y and a
sequence of numbers Rn > ρ such that we have for En := X ⊕ Yn and Bn := {z ∈ En :
‖z‖ ≤ Rn} that c := supΦ(En) < ∞ and supΦ(En \ Bn) < infΦ(Bρ ∩ Y );

(Φ5) Φ satisfies the (C)c condition for c > 0.

Now, we state three critical point theorems which will be used later (see [22]).

Theorem 4.1. Let Φ0 − −Φ2 be satisfied, and suppose there are R > ρ > 0 and e ∈ Y with ‖e‖ = 1
such that supΦ(∂Q) ≤ κ where Q := {z = x + te : x ∈ X, t ≥ 0, ‖z‖ < R}. If Φ satisfies the (C)c
condition for all c ≤ c, then Φ has a critical point u with κ ≤ Φ(z) ≤ c.

Theorem 4.2. AssumeΦ is even and (Φ0), (Φ2)−(Φ3) be satisfied. Then,Φ has at leastm := dimY0

pairs of critical points with critical values less or equal to c provided Φ satisfies the (C)c condition for
all c ∈ [κ, c].

Theorem 4.3. Assume Φ is even with Φ(0) = 0, and (Φ0) − (Φ2), (Φ4) − (Φ5) be satisfied. Then, Φ
has an unbounded sequence of critical values.
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Lemma 4.4. Under the assumptions of Theorem 1.1 or Theorem 1.2, then, Ψ is nonnegative, weakly
sequentially lower semicontinuous, and Ψ′ is weakly sequentially continuous. Moreover, Ψ′ is
compact.

In virtue of a standard way of [23], by Lemma 2.3, it is easy to prove this lemma, so
we omit it here.

Lemma 4.5. Φ satisfies (Φ1).

Proof. For any c > 0 and u ∈ Φc, using the fact that R(t, z) ≥ 0, one has

0 < c ≤ 1
2
(
‖z+‖ −

∥∥z−∥∥) −
∫

R

R(t, z) ≤ 1
2
‖z+‖. (4.2)

This yields

‖z+‖ >
∥∥z−∥∥, ‖z+‖2 ≥ 2c. (4.3)

Thus it suffices to show that there exists C > 0 such that ‖z0‖ ≤ C‖z+‖. If it is not true, then
there is a sequence {zj} ⊂ Φc such that

∥∥zj
∥∥2 ≥

∥∥∥z0j
∥∥∥
2
≥ j
∥∥∥z+j
∥∥∥
2
. (4.4)

By (4.3), ‖z0j ‖ → ∞ as j → ∞, hence ‖zj‖ → ∞ as j → ∞. Set vj = zj/‖zj‖, then ‖vj‖2 = 1
and ‖v+

j ‖2 ≤ 1/j → 0, hence ‖v−
j ‖ → 0 as j → ∞. Therefore, we can assume there is a

subsequence denoted still by {vj}, vj ⇀ v, thus vj → v0 and ‖v0‖ = 1. Recall that R̃(t, z) =
R(t, z) − (1/2)R∞(t)z2, then R̃(t, z)/|z|2 → 0 as |z| → ∞ uniformly in t. Therefore, since
|zj(t)| → ∞ for v0(t)/= 0, we have

∫

R

R̃
(
t, zj
)

∥∥zj
∥∥2 ≤

∫

R

R̃
(
t, zj
)∣∣vj − v

∣∣2
∣∣zj
∣∣2 +

∫

R

R̃
(
t, zj
)
|v|2

∣∣zj
∣∣2

≤
∫

v0(t)/= 0

R̃
(
t, zj
)
|v|2

∣∣zj
∣∣2 + c

∣∣vj − v
∣∣2
2 −→ 0.

(4.5)

By (4.4),

∥∥∥z−j + z0j

∥∥∥
2
≥
(
j − 1

)∥∥∥z+j
∥∥∥
2
≥
(
j − 1

)(
2c +

∥∥∥z−j
∥∥∥
2
+ 2
∫

R

R
(
t, zj
))

(4.6)

or

∥∥∥z0j
∥∥∥
2
≥
(
j − 1

)
2c +

(
j − 2

)∥∥∥z−j
∥∥∥
2
+ 2
(
j − 1

) ∫

R

R
(
t, zj
)
, (4.7)
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which implies

1
2
(
j − 1

) ≥
∫

R

R
(
t, zj
)

∥∥zj
∥∥2 =

1
2

∫

R

R∞(t)
∣∣vj

∣∣2 +
∫

R

R̃
(
t, zj
)∣∣vj

∣∣2
∣∣zj
∣∣2

≥ 1
2
b
∣∣vj

∣∣2
2 + o(1),

(4.8)

consequently, v0 = 0, a contradiction.
Next, we handle the superquadratic case. Similar to the above proof, passing to a

subsequence if necessary, we have vj → v0 and ‖v0‖ = 1. So there exists r > 0 such that

∫ r

−r

∣∣∣v0
∣∣∣
2
> 0. (4.9)

By (R4), we know that there existm > 0 and Cm such that R(t, z) ≥ Cm|z|2 for |z| ≥ m, and we
have

c∥∥zj
∥∥2 ≤

Φ
(
zj
)

∥∥zj
∥∥2 ≤ 1

2

(∥∥∥v+
j

∥∥∥
2
−
∥∥∥v−

j

∥∥∥
2
)
− Cm

∫ r

−r

R
(
t, zj
)

∥∥zj
∥∥2

=
1
2

(∥∥∥v+
j

∥∥∥
2
−
∥∥∥v−

j

∥∥∥
2
− Cm

∫ r

−r

∣∣vj

∣∣2
)
−
∫ r

−r

R
(
t, zj
)
− (Cm/2)

∣∣zj
∣∣2

∥∥zj
∥∥2

≤ 1
2

(∥∥∥v+
j

∥∥∥
2
−
∥∥∥v−

j

∥∥∥
2
− Cm

∫ r

−r

∣∣vj

∣∣2
)
+
∫

(−r,r)∩{t∈R:|zj |≤m}

(Cm/2)
∣∣zj
∣∣2 − R

(
t, zj
)

∥∥zj
∥∥2

≤ 1
2

(∥∥∥v+
j

∥∥∥
2
−
∥∥∥v−

j

∥∥∥
2
− Cm

∫ r

−r

∣∣vj

∣∣2
)
+

2rCm∥∥zj
∥∥2 .

(4.10)

Then,

0 ≤ lim
j→∞

(
1
2

(∥∥∥v+
j

∥∥∥
2
−
∥∥∥v−

j

∥∥∥
2
)
−
∫ r

−r

R
(
t, zj
)

∥∥zj
∥∥2
)

≤ −Cm

∫ r

−r

∣∣∣v0
∣∣∣
2
< 0,

(4.11)

a contradiction.

Proof of Theorem 1.1. Existence of a Least Energy Solution

With X = E− ⊕ E0 and Y = E+, the condition (Φ0) holds by Lemma 4.4 and (Φ1) holds by
Lemma 4.5. Lemma 2.4 implies (Φ2). Lemma 2.7 shows thatΦ possesses the linking structure
of Theorem 4.1, and Lemma 3.2 implies Φ satisfies (Φ5). Therefore, Φ has at least one critical
point zwithΦ(z) ≥ κ > 0. LetK = {z ∈ E\{0} : Φ′(z) = 0} be the set of nontrivial points ofΦ.
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Then, K/= ∅. We claim that θ = inf{Φ(z) | z ∈ K} is achieved. Let {zj} ⊂ K be a minimizing
sequence for θ, then {zj} is bounded by Lemma 3.1. By Lemma 3.2, there exists a renamed
subsequence such that zj → z, and

θ = lim
j→∞

Φ
(
zj
)
= Φ(z) (4.12)

from which it follows that θ is achieved.

Multiplicity

Φ is even provided R(t, z) is even in z. Lemma 2.5 says that Φ satisfies (Φ3) with dimY0 = k.
Therefore, Φ has at least k pairs of nontrivial critical points by Theorem 4.2.

Proof of Theorem 1.2. Existence of a Least Energy Solution

Repeating the above proof, we know that θ is achieved by some nonzero critical point.

Existence of Infinitely Many Solutions

Φ is even provided R(t, z) is even in z. Lemma 2.6 says that Φ satisfies (Φ4). Therefore, Φ
has an unbounded critical values by Theorem 4.3, and hence the equation (HS) has infinitely
many solutions.
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