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We study slant submanifolds of a cosymplectic manifold. It is shown that a totally umbilical
slant submanifold M of a cosymplectic manifold M is either an anti-invariant submanifold or a
1−dimensional submanifold. We show that every totally umbilical proper slant submanifold of a
cosymplectic manifold is totally geodesic.

1. Introduction

The study of slant submanifolds in complex spaces was initiated by Chen as a natural gener-
alization of both holomorphic and totally real submanifolds [1, 2]. Since then, many research
papers have appeared concerning the existence of these submanifolds as well as on the
geometry of the existent slant submanifolds in different known spaces (cf. [3, 4]). The slant
submanifolds of an almost contact metric manifold were defined and studied by Lotta [4].
Later on, these submanifolds were studied by Cabrerizo et al. in the setting of Sasakian mani-
folds [3].

Recently, Şahin proved that a totally umbilical proper slant submanifold of a Kaehler
manifold is totally geodesic [5]. Our aim in the present paper is to investigate slant
submanifolds in contact manifolds. Thus, we study slant submanifolds of a cosymplectic
manifold. We have shown that a totally umbilical slant submanifold M of a cosymplectic
manifold M is either an anti-invariant submanifold or the dimM = 1 or the mean curvature
vectorH ∈ Γ(μ), and thenwe have obtained an interesting result for a totally umbilical proper
slant submanifold of a cosymplectic manifold.
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2. Preliminaries

Let M be a (2n + 1)-dimensional manifold with (1, 1) tensor field φ satisfying [6]:

φ2 = −I + η ⊗ ξ, (2.1)

where I is the identity transformation, ξ a vector field, and η a 1-form on M satisfying φξ =
η◦φ = 0 and η(ξ) = 1. ThenM is said to have an almost contact structure. There always exists
a Riemannian metric g on M such that

g
(
φX, φY

)
= g(X,Y ) − η(X)η(Y ), (2.2)

for all vector fields X,Y , onM. From (2.2), it is easy to observe that

g
(
φX, Y

)
+ g

(
X,φY

)
= 0. (2.3)

The fundamental 2-formΦ is defined as:Φ(X,Y ) = g(X,φY ). If [φ, φ]+dη⊗ξ = 0, then
the almost contact structure is said to be normal, where [φ, φ](X,Y ) = φ2[X,Y ] + [φX, φY ] −
φ[φX, Y ] − φ[X,φY ]. If Φ = dη, the almost contact structure is a contact structure. A normal
almost contact structure such that Φ is closed and dη = 0 is called cosymplectic structure. It is
well known [7] that the cosymplectic structure is characterized by

(
∇Xφ

)
Y = 0,

(
∇Xη

)
Y = 0, (2.4)

for all vector fields X, Y , onM, where ∇ is the Levi-Civita connection of g. From the formula
∇Xφ = 0, it follows that ∇Xξ = 0.

Let M be submanifold of an almost contact metric manifold M with induced metric
g and let ∇ and ∇⊥ be the induced connections on the tangent bundle TM and the normal
bundle T⊥M of M, respectively. Denote by F(M) the algebra of smooth functions on M and
by Γ(TM) the F(M)-module of smooth sections of a vector bundle TM over M, then Gauss
and Weingarten formulae are given by

∇XY = ∇XY + h(X,Y ), (2.5)

∇XN = −ANX +∇⊥
XN, (2.6)

for each X,Y ∈ Γ(TM) and N ∈ Γ(T⊥M), where h and AN are the second fundamental form
and the shape operator (corresponding to the normal vector field N), respectively for the
immersion of M into M. They are related as

g(h(X,Y ),N) = g(ANX, Y ), (2.7)

where g denotes the Riemannian metric on M as well as the one induced on M [8].
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For any X ∈ Γ(TM), we write

φX = PX + FX, (2.8)

where PX is the tangential component and FX is the normal component of φX. Similarly for
any N ∈ Γ(T⊥M), we write

φN = tN + fN, (2.9)

where tN is the tangential component and tN is the normal component of φN. If we denote
the orthogonal complementary distribution of F(TM) in T⊥M by μ, then we have the direct
sum

T⊥M = F(TM) ⊕ μ. (2.10)

We can see that μ is an invariant subbundle with respect to φ. Furthermore, the covariant
derivatives of the tensor fields P and F are defined as

(
∇XP

)
Y = ∇XPY − P∇XY,

(
∇XF

)
Y = ∇⊥

XFY − F∇XY,

(2.11)

for any X,Y ∈ Γ(TM).
A submanifold M is said to be invariant if F is identically zero, that is, φX ∈ Γ(TM)

for any X ∈ Γ(TM). On the other hand, M is said to be anti-invariant if P is identically zero,
that is, φX ∈ Γ(T⊥M), for any X ∈ Γ(TM).

A submanifold M of an almost contact metric manifold M is called totally umbilical if

h(X,Y ) = g(X,Y )H, (2.12)

for any X,Y ∈ Γ(TM). The mean curvature vector H is given by

H =
m∑

i=1

h(ei, ei), (2.13)

where m is the dimension of M and {e1, e2, . . . , em} is the local orthonormal frame on M.
A submanifold M is said to be totally geodesic if h(X,Y ) = 0 for each X,Y ∈ Γ(TM) and is
minimal if H = 0 on M.

3. Slant Submanifolds

Throughout the section, we assume thatM is a slant submanifold of a cosymplectic manifold
M. We always consider such submanifold tangent to the structure vector field ξ. For each
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nonzero vector X tangent to M at x, we denote by 0 ≤ θ(X) ≤ π/2, the angle between φX
and TxM, known as the Wirtinger angle of X. If the Wirtinger angle θ(X) is constant, that
is, independent of the choice of x ∈ M and X ∈ TxM − {ξ}, then M is said to be a slant
submanifold [4]. In this case the constant angle θ is called slant angle of the slant submanifold.
Obviously if θ = 0,M is invariant and if θ = π/2,M is an anti-invariant submanifold. A slant
submanifold is said to be proper slant if it is neither invariant nor anti-invariant submanifold.
If M is a slant submanifold of an almost contact metric manifold, then the tangent bundle
TM is decomposed as

TM = D ⊕ 〈ξ〉, (3.1)

where 〈ξ〉 denotes the distribution spanned by the structure vector field ξ and D is the
complementary distribution of 〈ξ〉 in TM, known as the slant distribution.

We recall the following result for a slant submanifold.

Theorem 3.1 (see [3]). Let M be a submanifold of an almost contact metric manifold M, such that
ξ ∈ TM. Then, M is slant if and only if there exists a constant λ ∈ [0, 1] such that

P 2 = λ
(−I + η ⊗ ξ

)
. (3.2)

Furthermore, if θ is slant angle, then λ = cos2θ.

The following relations are straightforward consequence of (3.2):

g(PX, PY ) = cos2θ
[
g(X,Y ) − η(X)η(Y )

]
, (3.3)

g(FX, FY ) = sin2θ
[
g(X,Y ) − η(X)η(Y )

]
, (3.4)

for any X, Y tangent toM.
Now, we prove the following.

Theorem 3.2. LetM be a totally umbilical slant submanifold of a cosymplectic manifoldM. Then at
least one of the following statements is ture:

(i) M is an anti-invariant submanifold;

(ii) M is a 1-dimensional submanifold;

(iii) IfM is a proper slant submanifold, thenH ∈ Γ(μ),

whereH is the mean curvature vector of the submanifoldM.

Proof. LetM be a totally umbilical slant submanifold of a cosymplectic manifoldM, then for
any X,Y ∈ Γ(TM), we have

h(PX, PY ) = g(PX,PY )H. (3.5)

From (2.5) and (3.3), we deduce that

∇PXPX − ∇PXPX = cos2θ
{
g(X,X) − η(X)η(X)

}
H. (3.6)
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Using (2.8) and the fact that M is cosymplectic we obtain that

φ∇PXX − ∇PXFX − ∇PXPX = cos2θ
{
‖X‖2 − η2(X)

}
H. (3.7)

Then from (2.5) and (2.6), we get

φ∇PXX + φh(X, PX) +AFXPX − ∇⊥
PXFX − ∇PXPX = cos2θ

{
‖X‖2 − η2(X)

}
H. (3.8)

Thus by (2.8) and (2.12), we obtain

P∇PXX + F∇PXX + g(PX,X)φH +AFXPX − ∇⊥
PXFX − ∇PXPX = cos2θ

{
‖X‖2 − η2(X)

}
H.

(3.9)

Equating the normal components, we get

F∇PXX − ∇⊥
PXFX = cos2θ

{
‖X‖2 − η2(X)

}
H. (3.10)

On the other hand, from (3.4), we have

g(FX, FX) = sin2θ
{
g(X,X) − η(X)η(X)

}
, (3.11)

for any X ∈ Γ(TM). Taking the covariant derivative of the above equation with respect to
PX, we obtain

2g
(
∇PXFX, FX

)
= 2sin2θg

(
∇PXX,X

)
− 2sin2θη(X)g

(
∇PXX, ξ

)
− 2sin2θη(X)g

(
X,∇PXξ

)
.

(3.12)

Using the property of metric connection ∇, the last two terms of the right-hand side are can-
celling each other, thus we have

g
(
∇PXFX, FX

)
= sin2θg

(
∇PXX,X

)
. (3.13)

Then by (2.5) and (2.6), we derive

g
(
∇⊥

PXFX, FX
)
= sin2θg(∇PXX,X). (3.14)

Now, taking the inner product in (3.10) with FX, for any X ∈ Γ(TM), then

g(F∇PXX, FX) − g
(
∇⊥

PXFX, FX
)
= cos2θ

{
‖X‖2 − η2(X)

}
g(H,FX). (3.15)
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Then from (3.4) and (3.14), we obtain

−sin2θη(X)η(∇PXX) = cos2θ
{
‖X‖2 − η2(X)

}
g(H,FX),

(3.16)

or

−sin2θη(X)g(∇PXX, ξ) = cos2θ
{
‖X‖2 − η2(X)

}
g(H,FX). (3.17)

Using (2.5), we derive

−sin2θη(X)g
(
∇PXX, ξ

)
= cos2θ

{
‖X‖2 − η2(X)

}
g(H,FX). (3.18)

Since ∇ is the metric connection, then the above equation can be written as

sin2θη(X)g
(
X,∇PXξ

)
= cos2θ

{
‖X‖2 − η2(X)

}
g(H,FX). (3.19)

As M is cosymplectic thus using the fact that ∇PXξ = 0, the left hand side of the above
equation vanishes identically, then

cos2θ
{
‖X‖2 − η2(X)

}
g(H,FX) = 0. (3.20)

Thus from (3.20), it follows that either θ = π/2 or X = ξ orH ∈ Γ(μ), where μ is the invariant
normal subbundle orthogonal to FTM. This completes the proof.

Theorem 3.3. Every totally umbilical proper slant submanifold M of a cosymplectic manifold M is
totally geodesic, provided ∇⊥

XH ∈ Γ(μ), for any X ∈ TM.

Proof. AsM is cosymplectic, then we have

∇UφV = φ∇UV, (3.21)

for any U,V ∈ Γ(TM). Using this fact and formulae (2.5) and (2.8) we obtain that

∇XPY +∇XFY = P∇XY + F∇XY + φh(X,Y ), (3.22)

for any X,Y ∈ Γ(TM). Then from (2.5), (2.6) and (2.12), we get

∇XPY + h(X, PY ) −AFYX +∇⊥
XFY = P∇XY + F∇XY + g(X,Y )φH. (3.23)
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Taking the inner product in (3.23)with φH and using the fact thatH ∈ Γ(μ) (by Theorem 3.2),
we obtain

g
(
h(X, PY ), φH

)
+ g

(
∇⊥

XFY, φH
)
= g(X,Y )g

(
φH,φH

)
. (3.24)

Then from (2.2) and (2.12), we derive

g(X, PY )g
(
H,φH

)
+ g

(
∇⊥

XFY, φH
)
= g(X,Y )g(H,H). (3.25)

That is,

g
(
∇⊥

XFY, φH
)
= g(X,Y )‖H‖2. (3.26)

Now, we consider

∇XφH = φ∇XH, (3.27)

for any X ∈ Γ(TM). From (2.6), we obtain

−AφHX +∇⊥
XφH = φ

(
−AHX +∇⊥

XH
)
. (3.28)

Thus, on using (2.8), (2.9), we get

−AφHX +∇⊥
XφH = −PAHX − FAHX + t∇⊥

XH + f∇⊥
XH. (3.29)

Taking the inner product with FY , for any Y ∈ Γ(TM), then

g
(
∇⊥

XφH,FY
)
= −g(FAHX, FY ) + g

(
f∇⊥

XH, FY
)
. (3.30)

Since f∇⊥
XH ∈ Γ(μ), then by (3.4) the above equation takes the form

g
(
∇⊥

XφH,FY
)
= −sin2θ

{
g(AHX, Y ) − η(AHX)η(Y )

}
. (3.31)

Using (2.6), (2.7), and (2.12), we get

g
(
∇XφH,FY

)
= −sin2θ

{
g(X,Y ) − η(X)η(Y )

}‖H‖2. (3.32)

The above equation can be written as

g
(
∇XFY, φH

)
= sin2θ

{
g(X,Y ) − η(X)η(Y )

}‖H‖2. (3.33)
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Again using the fact thatH ∈ Γ(μ), then by (2.6), we obtain

g
(
∇⊥

XFY, φH
)
= sin2θ

{
g(X,Y ) − η(X)η(Y )

}‖H‖2. (3.34)

From (3.26) and (3.34), we derive

{
cos2θg(X,Y ) + sin2θη(X)η(Y )

}
‖H‖2 = 0. (3.35)

Thus, (3.35) implies either H = 0 or θ = tan−1(
√−g(X,Y )/η(X)η(Y )), which is not possible,

because the slant angle θ ∈ (0, π/2). Hence, M is totally geodesic in M.
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