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Some inequalities of the Slater type for convex functions defined on general linear spaces are given.
Applications for norm inequalities and f -divergence measures are also provided.

1. Introduction

Suppose that I is an interval of real numbers with interior
◦
I, and f : I → R is a convex

function on I. Then f is continuous on
◦
I and has finite left and right derivatives at each point

of
◦
I. Moreover, if x, y ∈

◦
I and x < y, then f ′

−(x) ≤ f ′
+(x) ≤ f ′

−(y) ≤ f ′
+(y) which shows that

both f ′
− and f ′

+ are nondecreasing functions on
◦
I. It is also known that a convex function must

be differentiable except for at most countably many points.
For a convex function f : I → R, the subdifferential of f denoted by ∂f is the set of all

functions ϕ : I → [−∞,∞] such that ϕ(
◦
I) ⊂ R and

f(x) ≥ f(a) + (x − a)ϕ(a), for any x, a ∈ I. (1.1)
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It is also well known that if f is convex on I, then ∂f is nonempty, f ′
−, f

′
+ ∈ ∂f and if

ϕ ∈ ∂f , then

f ′
−(x) ≤ ϕ(x) ≤ f ′

+(x), for any x ∈
◦
I. (1.2)

In particular, ϕ is a nondecreasing function.

If f is differentiable and convex on
◦
I, then ∂f = {f ′}.

The following result is well known in the literature as the Slater inequality.

Theorem 1.1 (Slater, 1981, [1]). If f : I → R is a nonincreasing (nondecreasing) convex function,
xi ∈ I, pi ≥ 0 with Pn :=

∑n
i=1 pi > 0 and

∑n
i=1 piϕ(xi)/= 0, where ϕ ∈ ∂f , then

1
Pn

n∑

i=1

pif(xi) ≤ f

(∑n
i=1 pixiϕ(xi)
∑n

i=1 piϕ(xi)

)

. (1.3)

As pointed out in [2] (see also [3, p. 64] and [4, p. 208]), the monotonicity assumption
for the derivative ϕ can be replaced with the condition

∑n
i=1 pixiϕ(xi)
∑n

i=1 piϕ(xi)
∈ I, (1.4)

which is more general and can hold for suitable points in I and for not necessarily monotonic
functions.

For recent works on Slater’s inequality, see [5–7].
The main aim of the present paper is to extend Slater’s inequality for convex functions

defined on general linear spaces. A reverse of the Slater’s inequality is also obtained. Natural
applications for norm inequalities and f-divergence measures are provided as well.

2. Slater’s Inequality for Functions Defined on Linear Spaces

Assume that f : X → R is a convex function on the real linear space X. Since for any vectors
x, y ∈ X the function gx,y : R → R, gx,y(t) := f(x+ ty) is convex, it follows that the following
limits exist

∇+(−)f(x)
(
y
)
:= lim

t→ 0+(−)
f
(
x + ty

) − f(x)
t

, (2.1)

and they are called the right (left) Gâteaux derivatives of the function f in the point x over the
direction y.
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It is obvious that for any t > 0 > swe have

f
(
x + ty

) − f(x)
t

≥ ∇+f(x)
(
y
)
= inf

t>0

[
f
(
x + ty

) − f(x)
t

]

≥ sup
s<0

[
f
(
x + sy

) − f(x)
s

]

= ∇−f(x)
(
y
) ≥ f

(
x + sy

) − f(x)
s

,

(2.2)

for any x, y ∈ X and, in particular,

∇−f(u)(u − v) ≥ f(u) − f(v) ≥ ∇+f(v)(u − v), (2.3)

for any u, v ∈ X. We call this the gradient inequality for the convex function f . It will be used
frequently in the sequel in order to obtain various results related to Slater’s inequality.

The following properties are also of importance:

∇+f(x)
(−y) = −∇−f(x)

(
y
)
, (2.4)

∇+(−)f(x)
(
αy
)
= α∇+(−)f(x)

(
y
)
, (2.5)

for any x, y ∈ X and α ≥ 0.
The right Gâteaux derivative is subadditive while the left one is superadditive, that is,

∇+f(x)
(
y + z

) ≤ ∇+f(x)
(
y
)
+∇+f(x)(z),

∇−f(x)
(
y + z

) ≥ ∇−f(x)
(
y
)
+∇−f(x)(z),

(2.6)

for any x, y, z ∈ X.
Some natural examples can be provided by the use of normed spaces.
Assume that (X, ‖ · ‖) is a real normed linear space. The function f : X → R, f(x) :=

(1/2)‖x‖2 is a convex function which generates the superior and the inferior semi-inner products

〈
y, x

〉
s(i) := lim

t→ 0+(−)

∥
∥x + ty

∥
∥2 − ‖x‖2
2t

. (2.7)

For a comprehensive study of the properties of these mappings in the Geometry of Banach
Spaces, see the monograph [8].

For the convex function fp : X → R, fp(x) := ‖x‖p with p > 1, we have

∇+(−)fp(x)
(
y
)
=

⎧
⎨

⎩

p‖x‖p−2〈y, x〉s(i) if x /= 0,

0 if x = 0,
(2.8)

for any y ∈ X.
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If p = 1, then we have

∇+(−)f1(x)
(
y
)
=

⎧
⎨

⎩

‖x‖−1〈y, x〉s(i) if x /= 0,

+(−)∥∥y∥∥ if x = 0,
(2.9)

for any y ∈ X.
For a given convex function f : X → R and a given n-tuple of vectors x = (x1, . . . , xn) ∈

Xn, we consider the sets

Sla+(−)
(
f, x
)
:=
{
v ∈ X | ∇+(−)f(xi)(v − xi) ≥ 0 ∀i ∈ {1, . . . , n}},

Sla+(−)
(
f, x,p

)
:=

{

v ∈ X |
n∑

i=1

pi∇+(−)f(xi)(v − xi) ≥ 0

}

,
(2.10)

where p = (p1, . . . , pn) ∈ P
n is a given probability distribution, that is, pi ≥ 0 for i ∈ {1, . . . , n}

and
∑n

i=1 pi = 1.
The following properties of these sets hold.

Lemma 2.1. For a given convex function f : X → R, a given n-tuple of vectors x = (x1, . . . , xn) ∈
Xn, and a given probability distribution p = (p1, . . . , pn) ∈ P

n, one has

(i) Sla−(f, x) ⊂ Sla+(f, x) and Sla−(f, x,p) ⊂ Sla+(f, x,p);

(ii) Sla−(f, x) ⊂ Sla−(f, x,p) and Sla+(f, x) ⊂ Sla+(f, x,p) for all p = (p1, . . . , pn) ∈ P
n;

(iii) the sets Sla−(f, x) and Sla−(f, x,p) are convex.

Proof. The properties (i) and (ii) follow from the definition and the fact that ∇+f(x)(y) ≥
∇−f(x)(y) for any x, y.

(iii) Let us only prove that Sla−(f, x) is convex.
If we assume that y1, y2 ∈ Sla−(f, x) and α, β ∈ [0, 1] with α + β = 1, then by the

superadditivity and positive homogeneity of the Gâteaux derivative ∇−f(·)(·) in the second
variable we have

∇−f(xi)
(
αy1 + βy2 − xi

)
= ∇−f(xi)

[
α
(
y1 − xi

)
+ β
(
y2 − xi

)]

≥ α∇−f(xi)
(
y1 − xi

)
+ β∇−f(xi)

(
y2 − xi

) ≥ 0,
(2.11)

for all i ∈ {1, . . . , n}, which shows that αy1 + βy2 ∈ Sla−(f, x)
The proof for the convexity of Sla−(f, x,p) is similar and the details are omitted.

For the convex function fp : X → R, fp(x) := ‖x‖p with p ≥ 1, defined on the normed
linear space (X, ‖ · ‖) and for the n-tuple of vectors x = (x1, . . . , xn) ∈ Xn \{(0, . . . , 0)}we have,
by the well-known property of the semi-inner products,

〈
y + αx, x

〉
s(i) =

〈
y, x

〉
s(i) + α‖x‖2, for any x, y ∈ X, α ∈ R, (2.12)
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that

Sla+(−)
(‖·‖p, x) = Sla+(−)(‖·‖, x) :=

{
v ∈ X | 〈v, xj

〉
s(i) ≥

∥
∥xj

∥
∥2 ∀j ∈ {1, . . . , n}

}
(2.13)

which, as can be seen, does not depend on p. We observe, by the continuity of the semi-inner
products in the first variable, that Sla+(−)(‖ · ‖, x) is closed in (X, ‖ · ‖). Also, we should remark
that if v ∈ Sla+(−)(‖ · ‖, x), then for any γ ≥ 1 we also have that γv ∈ Sla+(−)(‖ · ‖, x).

The larger classes, which are dependent on the probability distribution p ∈ P
n, are

described by

Sla+(−)
(‖·‖p, x,p) :=

⎧
⎨

⎩
v ∈ X |

n∑

j=1

pj
∥
∥xj

∥
∥p−2〈v, xj

〉
s(i) ≥

n∑

j=1

pj
∥
∥xj

∥
∥p

⎫
⎬

⎭
. (2.14)

If the normed space is smooth, that is, the norm is Gâteaux differentiable in any nonzero
point, then the superior and inferior semi-inner products coincide with the Lumer-Giles semi-
inner product [·, ·] that generates the norm and is linear in the first variable (see for instance
[8]). In this situation,

Sla(‖·‖, x) =
{
v ∈ X | [v, xj

] ≥ ∥∥xj

∥
∥2 ∀j ∈ {1, . . . , n}

}
,

Sla
(‖·‖p, x,p) =

⎧
⎨

⎩
v ∈ X |

n∑

j=1

pj
∥
∥xj

∥
∥p−2[v, xj

] ≥
n∑

j=1

pj
∥
∥xj

∥
∥p

⎫
⎬

⎭
.

(2.15)

If (X, 〈·, ·〉) is an inner product space, then Sla(‖ · ‖p, x,p) can be described by

Sla
(‖·‖p, x,p) =

⎧
⎨

⎩
v ∈ X |

〈

v,
n∑

j=1

pj
∥
∥xj

∥
∥p−2xj

〉

≥
n∑

j=1

pj
∥
∥xj

∥
∥p

⎫
⎬

⎭
, (2.16)

and if the family {xj}j=1,...,n is orthogonal, then obviously, by the Pythagoras theorem, we have
that the sum

∑n
j=1 xj belongs to Sla(‖ · ‖, x) and therefore to Sla(‖ · ‖p, x,p) for any p ≥ 1 and

any probability distribution p = (p1, . . . , pn) ∈ P
n.

We can state now the following results that provide a generalization of Slater’s
inequality as well as a counterpart for it.

Theorem 2.2. Let f : X → R be a convex function on the real linear space X, x = (x1, . . . , xn) ∈
Xn an n-tuple of vectors, and p = (p1, . . . , pn) ∈ P

n a probability distribution. Then for any v ∈
Sla+(f, x,p), one has the inequalities

∇−f(v)(v) −
n∑

i=1

pi∇−f(v)(xi) ≥ f(v) −
n∑

i=1

pif(xi) ≥ 0. (2.17)
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Proof. If we write the gradient inequality for v ∈ Sla+(f, x,p) and xi, then we have that

∇−f(v)(v − xi) ≥ f(v) − f(xi) ≥ ∇+f(xi)(v − xi), (2.18)

for any i ∈ {1, . . . , n}.
By multiplying (2.18)with pi ≥ 0 and summing over i from 1 to n, we get

n∑

i=1

pi∇−f(v)(v − xi) ≥ f(v) −
n∑

i=1

pif(xi) ≥
n∑

i=1

pi∇+f(xi)(v − xi). (2.19)

Now, since v ∈ Sla+(f, x,p), then the right hand side of (2.19) is nonnegative, which proves
the second inequality in (2.17).

By the superadditivity of the Gâteaux derivative ∇−f(·)(·) in the second variable, we
have

∇−f(v)(v) − ∇−f(v)(xi) ≥ ∇−f(v)(v − xi), (2.20)

which, by multiplying with pi ≥ 0 and summing over i from 1 to n, produces the inequality

∇−f(v)(v) −
n∑

i=1

pi∇−f(v)(xi) ≥
n∑

i=1

pi∇−f(v)(v − xi). (2.21)

Utilising (2.19) and (2.21), we deduce the desired result (2.17).

Remark 2.3. The above result has the following form for normed linear spaces. Let (X, ‖·‖) be a
normed linear space, x = (x1, . . . , xn) ∈ Xn an n-tuple of vectors fromX, and p = (p1, . . . , pn) ∈
P
n a probability distribution. Then for any vector v ∈ X with the property

n∑

j=1

pj
∥
∥xj

∥
∥p−2〈v, xj

〉
s
≥

n∑

j=1

pj
∥
∥xj

∥
∥p, p ≥ 1, (2.22)

we have the inequalities

p

⎡

⎣‖v‖p −
n∑

j=1

pj
∥
∥xj

∥
∥p−2〈v, xj

〉
i

⎤

⎦ ≥ ‖v‖p −
n∑

j=1

pj
∥
∥xj

∥
∥p ≥ 0. (2.23)

Rearranging the first inequality in (2.23), we also have that

(
p − 1

)‖v‖p +
n∑

j=1

pj
∥
∥xj

∥
∥p ≥ p

n∑

j=1

pj
∥
∥xj

∥
∥p−2〈v, xj

〉
i
. (2.24)
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If the space is smooth, then the condition (2.22) becomes

n∑

j=1

pj
∥
∥xj

∥
∥p−2[v, xj

] ≥
n∑

j=1

pj
∥
∥xj

∥
∥p, p ≥ 1, (2.25)

implying the inequality

p

⎡

⎣‖v‖p −
n∑

j=1

pj
∥
∥xj

∥
∥p−2[v, xj

]
⎤

⎦ ≥ ‖v‖p −
n∑

j=1

pj
∥
∥xj

∥
∥p ≥ 0. (2.26)

Notice also that the first inequality in (2.26) is equivalent with

(
p − 1

)‖v‖p +
n∑

j=1

pj
∥
∥xj

∥
∥p ≥ p

n∑

j=1

pj
∥
∥xj

∥
∥p−2[v, xj

]
⎛

⎝≥ p
n∑

j=1

pj
∥
∥xj

∥
∥p ≥ 0

⎞

⎠. (2.27)

Corollary 2.4. Let f : X → R be a convex function on the real linear spaceX, x = (x1, . . . , xn) ∈ Xn

an n-tuple of vectors, and p = (p1, . . . , pn) ∈ P
n a probability distribution. If

n∑

i=1

pi∇+f(xi)(xi) ≥ (<)0, (2.28)

and there exists a vector s ∈ X with

n∑

i=1

pi∇+(−)f(xi)(s) ≥ (≤)1, (2.29)

then

∇−f

⎛

⎝
n∑

j=1

pj∇+f
(
xj

)(
xj

)
s

⎞

⎠

⎛

⎝
n∑

j=1

pj∇+f
(
xj

)(
xj

)
s

⎞

⎠ −
n∑

i=1

pi∇−f

⎛

⎝
n∑

j=1

pj∇+f
(
xj

)(
xj

)
s

⎞

⎠(xi)

≥ f

⎛

⎝
n∑

j=1

pj∇+f
(
xj

)(
xj

)
s

⎞

⎠ −
n∑

i=1

pif(xi) ≥ 0.

(2.30)

Proof. Assume that
∑n

i=1 pi∇+f(xi)(xi) ≥ 0 and
∑n

i=1 pi∇+f(xi)(s) ≥ 1 and define v :=
∑n

j=1 pj∇+f(xj)(xj)s. We claim that v ∈ Sla+(f, x,p).
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By the subadditivity and positive homogeneity of the mapping∇+f(·)(·) in the second
variable, we have

n∑

i=1

pi∇+f(xi)(v − xi) ≥
n∑

i=1

pi∇+f(xi)(v) −
n∑

i=1

pi∇+f(xi)(xi)

=
n∑

i=1

pi∇+f(xi)

⎛

⎝
n∑

j=1

pj∇+f
(
xj

)(
xj

)
s

⎞

⎠ −
n∑

i=1

pi∇+f(xi)(xi)

=
n∑

j=1

pj∇+f
(
xj

)(
xj

) n∑

i=1

pi∇+f(xi)(s) −
n∑

i=1

pi∇+f(xi)(xi)

=
n∑

j=1

pj∇+f
(
xj

)(
xj

)
[

n∑

i=1

pi∇+f(xi)(s) − 1

]

≥ 0,

(2.31)

as claimed. Applying Theorem 2.2 for this v, we get the desired result.
If
∑n

i=1 pi∇+f(xi)(xi) < 0 and
∑n

i=1 pi∇−f(xi)(s) ≤ 1, then for

w :=
n∑

j=1

pj∇+f
(
xj

)(
xj

)
s, (2.32)

we also have that

n∑

i=1

pi∇+f(xi)(w − xi) ≥
n∑

i=1

pi∇+f(xi)

⎛

⎝
n∑

j=1

pj∇+f
(
xj

)(
xj

)
s

⎞

⎠ −
n∑

i=1

pi∇+f(xi)(xi)

=
n∑

i=1

pi∇+f(xi)

⎛

⎝

⎛

⎝−
n∑

j=1

pj∇+f
(
xj

)(
xj

)
⎞

⎠(−s)
⎞

⎠ −
n∑

i=1

pi∇+f(xi)(xi)

=

⎛

⎝−
n∑

j=1

pj∇+f
(
xj

)(
xj

)
⎞

⎠
n∑

i=1

pi∇+f(xi)(−s) −
n∑

i=1

pi∇+f(xi)(xi)

=

⎛

⎝−
n∑

j=1

pj∇+f
(
xj

)(
xj

)
⎞

⎠

(

1 +
n∑

i=1

pi∇+f(xi)(−s)
)

=

⎛

⎝−
n∑

j=1

pj∇+f
(
xj

)(
xj

)
⎞

⎠

(

1 −
n∑

i=1

pi∇−f(xi)(s)

)

≥ 0,

(2.33)

where, for the last equality, we have used the property (2.4). Therefore, w ∈ Sla+(f, x,p) and
by Theorem 2.2 we get the desired result.

It is natural to consider the case of normed spaces.
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Remark 2.5. Let (X, ‖ · ‖) be a normed linear space, x = (x1, . . . , xn) ∈ Xn an n-tuple of vectors
from X, and p = (p1, . . . , pn) ∈ P

n a probability distribution. Then for any vector s ∈ X with
the property that

p
n∑

i=1

pi‖xi‖p−2〈s, xi〉s ≥ 1, (2.34)

we have the inequalities

pp‖s‖p−1
⎛

⎝
n∑

j=1

pj
∥
∥xj

∥
∥p

⎞

⎠

p−1⎛

⎝p‖s‖
n∑

j=1

pj
∥
∥xj

∥
∥p −

n∑

j=1

pj
〈
xj , s

〉
i

⎞

⎠

≥ pp‖s‖p
⎛

⎝
n∑

j=1

pj
∥
∥xj

∥
∥p

⎞

⎠

p

−
n∑

j=1

pj
∥
∥xj

∥
∥p ≥ 0.

(2.35)

The case of smooth spaces can be easily derived from the above; however, the details
are left to the interested reader.

3. The Case of Finite Dimensional Linear Spaces

Consider now the finite dimensional linear space X = R
m and assume that C is an open

convex subset of R
m. Assume also that the function f : C → R is differentiable and convex

on C. Obviously, if x = (x1, . . . , xm) ∈ C, then for any y = (y1, . . . , ym) ∈ R
m we have

∇f(x)
(
y
)
=

m∑

k=1

∂f
(
x1, . . . , xm

)

∂xk
· yk. (3.1)

For the convex function f : C → R and a given n-tuple of vectors x = (x1, . . . , xn) ∈ Cn with
xi = (x1

i , . . . , x
m
i ) with i ∈ {1, . . . , n}, we consider the sets

Sla
(
f, x, C

)
:=

{

v ∈ C |
m∑

k=1

∂f
(
x1
i , . . . , x

m
i

)

∂xk
i

· vk

≥
m∑

k=1

∂f
(
x1
i , . . . , x

m
i

)

∂xk
i

· xk
i ∀i ∈ {1, . . . , n}

}

,

Sla
(
f, x,p, C

)
:=

{

v ∈ C |
n∑

i=1

m∑

k=1

pi
∂f
(
x1
i , . . . , x

m
i

)

∂xk
i

· vk

≥
n∑

i=1

m∑

k=1

pi
∂f
(
x1
i , . . . , x

m
i

)

∂xk
i

· xk
i

}

,

(3.2)

where p = (p1, . . . , pn) ∈ P
n is a given probability distribution.



10 Abstract and Applied Analysis

As in the previous section the sets, Sla(f, x, C) and Sla(f, x,p, C) are convex and closed
subsets of clo(C), the closure of C. Also {x1, . . . , xn} ⊂ Sla(f, x, C) ⊂ Sla(f, x,p, C) for any
p = (p1, . . . , pn) ∈ P

n is a probability distribution.

Proposition 3.1. Let f : C → R be a convex function on the open convex set C in the finite
dimensional linear space R

m, (x1, . . . , xn) ∈ Cn an n-tuple of vectors and (p1, . . . , pn) ∈ P
n a

probability distribution. Then for any v = (v1, . . . , vm) ∈ Sla(f, x,p, C), one has the inequalities

m∑

k=1

∂f
(
v1, . . . , vm

)

∂xk
· vk −

n∑

i=1

m∑

k=1

pi
∂f
(
x1
i , . . . , x

m
i

)

∂xk
i

· vk

≥ f
(
v1, . . . , vn

)
−

n∑

i=1

pif
(
x1
i , . . . , x

m
i

)
≥ 0.

(3.3)

The unidimensional case, that is,m = 1 is of interest for applications. We will state this
case with the general assumption that f : I → R is a convex function on an open interval I.
For a given n-tuple of vectors x = (x1, . . . , xn) ∈ In, we have

Sla+(−)
(
f, x, I

)
:=
{
v ∈ I | f ′

+(−)(xi) · (v − xi) ≥ 0 ∀i ∈ {1, . . . , n}
}
,

Sla+(−)
(
f, x,p, I

)
:=

{

v ∈ I |
n∑

i=1

pif
′
+(−)(xi) · (v − xi) ≥ 0

}

,

(3.4)

where (p1, . . . , pn) ∈ P
n is a probability distribution. These sets inherit the general properties

pointed out in Lemma 2.1. Moreover, if we make the assumption that
∑n

i=1 pif
′
+(xi)/= 0, then

for
∑n

i=1 pif
′
+(xi) > 0 we have

Sla+
(
f, x,p, I

)
=
{

v ∈ I | v ≥
∑n

i=1 pif
′
+(xi)xi

∑n
i=1 pif

′
+(xi)

}

, (3.5)

while for
∑n

i=1 pif
′
+(xi) < 0 we have

Sla+
(
f, x,p, I

)
=
{

v ∈ I | v ≤
∑n

i=1 pif
′
+(xi)xi

∑n
i=1 pif

′
+(xi)

}

. (3.6)

Also, if we assume that f ′
+(xi) ≥ 0 for all i ∈ {1, . . . , n} and∑n

i=1 pif
′
+(xi) > 0, then

vs :=
∑n

i=1 pif
′
+(xi)xi

∑n
i=1 pif

′
+(xi)

∈ I, (3.7)

due to the fact that xi ∈ I and I is a convex set.
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Proposition 3.2. Let f : I → R be a convex function on an open interval I. For a given n-tuple of
vectors x = (x1, . . . , xn) ∈ In and (p1, . . . , pn) ∈ P

n a probability distribution, one has

f ′
−(v)

(

v −
n∑

i=1

pixi

)

≥ f(v) −
n∑

i=1

pif(xi) ≥ 0, (3.8)

for any v ∈ Sla+(f, x,p, I).
In particular, if one assumes that

∑n
i=1 pif

′
+(xi)/= 0 and

∑n
i=1 pif

′
+(xi)xi

∑n
i=1 pif

′
+(xi)

∈ I, (3.9)

then

f ′
−

(∑n
i=1 pif

′
+(xi)xi

∑n
i=1 pif

′
+(xi)

)[∑n
i=1 pif

′
+(xi)xi

∑n
i=1 pif

′
+(xi)

−
n∑

i=1
pixi

]

≥ f

(∑n
i=1 pif

′
+(xi)xi

∑n
i=1 pif

′
+(xi)

)

−
n∑

i=1

pif(xi) ≥ 0.

(3.10)

Moreover, if f ′
+(xi) ≥ 0 for all i ∈ {1, . . . , n} and∑n

i=1 pif
′
+(xi) > 0, then (3.10) holds true as

well.

Remark 3.3. We remark that the first inequality in (3.10) provides a reverse inequality for the classical
result due to Slater.

4. Some Applications for f-Divergences

Given a convex function f : [0,∞) → R, the f-divergence functional

If(p,q) :=
n∑

i=1

qif

(
pi
qi

)

, (4.1)

where p = (p1, . . . , pn), q = (q1, . . . , qn) are positive sequences, was introduced by Csiszár in
[9], as a generalized measure of information, a “distance function” on the set of probability
distributions P

n. As in [9], we interpret undefined expressions by

f(0) = lim
t→ 0+

f(t), 0f
(
0
0

)

= 0,

0f
(
a

0

)

= lim
q→ 0+

qf

(
a

q

)

= a lim
t→∞

f(t)
t

, a > 0.

(4.2)
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The following results were essentially given by Csiszár and Körner [10]:

(i) if f is convex, then If(p,q) is jointly convex in p and q;

(ii) for every p,q ∈ R
n
+, we have

If(p,q) ≥
n∑

j=1

qjf

(∑n
j=1 pj

∑n
j=1 qj

)

. (4.3)

If f is strictly convex, equality holds in (4.3) if and only if

p1
q1

=
p2
q2

= · · · = pn
qn

. (4.4)

If f is normalized, that is, f(1) = 0, then for every p,q ∈ R
n
+ with

∑n
i=1 pi =

∑n
i=1 qi, we

have the inequality

If(p,q) ≥ 0. (4.5)

In particular, if p,q ∈ P
n, then (4.5) holds. This is the well-known positivity property

of the f-divergence.
It is obvious that the above definition of If(p,q) can be extended to any function

f : [0,∞) → R; however, the positivity condition will not generally hold for normalized
functions and p,q ∈ R

n
+ with

∑n
i=1 pi =

∑n
i=1 qi.

For a normalized convex function f : [0,∞) → R and two probability distributions
p,q ∈ P

n, we define the set

Sla+
(
f,p,q

)
:=

{

v ∈ [0,∞) |
n∑

i=1

qif
′
+

(
pi
qi

)

·
(

v − pi
qi

)

≥ 0

}

. (4.6)

Now, observe that

n∑

i=1

qif
′
+

(
pi
qi

)

·
(

v − pi
qi

)

≥ 0, (4.7)

is equivalent with

v
n∑

i=1

qif
′
+

(
pi
qi

)

≥
n∑

i=1

pif
′
+

(
pi
qi

)

. (4.8)

If
∑n

i=1 qif
′
+(pi/qi) > 0, then (4.8) is equivalent with

v ≥
∑n

i=1 pif
′
+
(
pi/qi

)

∑n
i=1 qif

′
+
(
pi/qi

) , (4.9)
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therefore in this case

Sla+
(
f,p,q

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[0,∞) if
n∑

i=1

pif
′
+
(
pi/qi

)
< 0,

[∑n
i=1 pif

′
+
(
pi/qi

)

∑n
i=1 qif

′
+
(
pi/qi

) ,∞
)

if
n∑

i=1

pif
′
+
(
pi/qi

) ≥ 0.

(4.10)

If
∑n

i=1 qif
′
+(pi/qi) < 0, then (4.8) is equivalent with

v ≤
∑n

i=1 pif
′
+
(
pi/qi

)

∑n
i=1 qif

′
+
(
pi/qi

) , (4.11)

therefore

Sla+
(
f,p,q

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[

0,
∑n

i=1 pif
′
+
(
pi/qi

)

∑n
i=1 qif

′
+
(
pi/qi

)

]

if
n∑

i=1

pif
′
+

(
pi
qi

)

≤ 0,

∅ if
n∑

i=1

pif
′
+

(
pi
qi

)

> 0.

(4.12)

Utilising the extended f-divergences notation, we can state the following result.

Theorem 4.1. Let f : [0,∞) → R be a normalized convex function and p,q ∈ P
n two probability

distributions. If v ∈ Sla+(f,p,q), then one has

f ′
−(v)(v − 1) ≥ f(v) − If(p,q) ≥ 0. (4.13)

In particular, if one assumes that If ′
+
(p,q)/= 0 and

If ′
+(·)(·)(p,q)
If ′

+
(p,q)

∈ [0,∞), (4.14)

then

f ′
−

(
If ′

+(·)(·)(p,q)
If ′

+
(p,q)

)[
If ′

+(·)(·)(p,q)
If ′

+
(p,q)

− 1

]

≥ f

(
If ′

+(·)(·)(p,q)
If ′

+
(p,q)

)

− If(p,q) ≥ 0.
(4.15)

Moreover, if f ′
+(pi/qi) ≥ 0 for all i ∈ {1, . . . , n} and If ′

+
(p,q) > 0, then (4.15) holds true as well.

The proof follows immediately from Proposition 3.2 and the details are omitted.
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The K. Pearson χ2-divergence is obtained for the convex function f(t) = (1 − t)2, t ∈ R

and given by

χ2(p,q) :=
n∑

j=1

qj

(
pj

qj
− 1

)2

=
n∑

j=1

(
pj − qj

)2

qj
=

n∑

j=1

p2i
qi

− 1. (4.16)

The Kullback-Leibler divergence can be obtained for the convex function f : (0,∞) → R,
f(t) = t ln t and is defined by

KL(p,q) :=
n∑

j=1

qj ·
pj

qj
ln

(
pj

qj

)

=
n∑

j=1

pj ln

(
pj

qj

)

. (4.17)

If we consider the convex function f : (0,∞) → R, f(t) = − ln t, then we observe that

If(p,q) :=
n∑

i=1

qif

(
pi
qi

)

= −
n∑

i=1

qi ln
(
pi
qi

)

=
n∑

i=1

qi ln
(
qi
pi

)

= KL(q,p). (4.18)

For the function f(t) = − ln t, we will obviously have that

Sla(− ln,p,q) :=

{

v ∈ [0,∞) | −
n∑

i=1

qi

(
pi
qi

)−1
·
(

v − pi
qi

)

≥ 0

}

=

{

v ∈ [0,∞) | v
n∑

i=1

q2i
pi

− 1 ≤ 0

}

=
[

0,
1

χ2(q,p) + 1

]

.

(4.19)

Utilising the first part of Theorem 4.1, we can state the following.

Proposition 4.2. Let p,q ∈ P
n be two probability distributions. If v ∈ [0, (1/(χ2(q,p) + 1))], then

one has

1 − v

v
≥ − ln(v) − KL(q,p) ≥ 0. (4.20)

In particular, for v = 1/(χ2(q,p) + 1), one gets

χ2(q,p) ≥ ln
[
χ2(q,p) + 1

]
− KL(q,p) ≥ 0. (4.21)
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If we consider now the function f : (0,∞) → R, f(t) = t ln t, then f ′(t) = ln t + 1 and

Sla((·) ln(·),p,q) :=
{

v ∈ [0,∞) |
n∑

i=1

qi

(

ln
(
pi
qi

)

+ 1
)

·
(

v − pi
qi

)

≥ 0

}

=

{

v ∈ [0,∞) | v
n∑

i=1

qi

(

ln
(
pi
qi

)

+ 1
)

−
n∑

i=1

pi ·
(

ln
(
pi
qi

)

+ 1
)

≥ 0

}

= {v ∈ [0,∞) | v(1 − KL(q,p)) ≥ 1 + KL(p,q)}.

(4.22)

We observe that if p,q ∈ P
n are two probability distributions such that 0 < KL(q,p) < 1, then

Sla((·) ln(·),p,q) =
[
1 + KL(p,q)
1 − KL(q,p)

,∞
)

. (4.23)

If KL(q,p) ≥ 1, then Sla((·) ln(·),p,q) = ∅.
By the use of Theorem 4.1, we can state now the following.

Proposition 4.3. Let p,q ∈ P
n be two probability distributions such that 0 < KL(q,p) < 1. If

v ∈ [(1 + KL(p,q))/(1 − KL(q,p)),∞), then one has

(lnv + 1)(v − 1) ≥ v ln(v) − KL(p,q) ≥ 0. (4.24)

In particular, for v = (1 + KL(p,q))/(1 − KL(q,p)), one gets

(

ln
[
1 + KL(p,q)
1 − KL(q,p)

]

+ 1
)(

1 + KL(p,q)
1 − KL(q,p)

− 1
)

≥ 1 + KL(p,q)
1 − KL(q,p)

ln
[
1 + KL(p,q)
1 − KL(q,p)

]

− KL(p,q) ≥ 0.

(4.25)

Similar results can be obtained for other divergence measures of interest such as the
Jeffreys divergence and Hellinger discrimination. However, the details are left to the interested
reader.
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