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By applying formal asymptotic analysis and Laplace transformation, we obtain two-dimensional
nonlinear viscoelastic shells model satisfied by the leading term of asymptotic expansion of the
solution to the three-dimensional equations.

1. Introduction

In the case of pure nonlinear elasticity, Ciarlet and his collaborators have studied
membrane shells, flexural shell and Koiter shell (see [1] and the references therein). The
linear viscoelasticity was studied in [2–5], and Li [6–8] studied the global existence and
uniqueness of weak solution, uniform rates of decay, and limit behavior of the solution
to nonlinear viscoelastic Marguerre-von Kármán shallow shells. Xiao studied the time-
dependent nonlinear elastic shells by the method of asymptotic analysis (see [9]).

Motivated by the above work, we deal with nonlinear viscoelastic shells and give
the identification of two-dimensional variation problem satisfied by the leading term of
of asymptotic expansion of the solution to the three-dimensional equations. The main
contributions of this paper are the following: (a) the problem considered in this paper is
nonlinear viscoelastic shells, to our knowledge this model has not been considered; (b)
applying Laplace transformation, we overcome the difficulties caused by the integral term
in the model; (c) the calculation and derivation are precise.

This paper is organized as follows. Section 2 begins with some preliminaries and then
gives the main result. In Section 3, we give the proof of the main theorem.
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2. Preliminaries and Main Results

We use the following conventions and notations throughout this work: Greek indices and
exponents (except ε) belong to the set {1, 2}, Latin indices and exponents (except when
otherwise indicated, as, e.g., when they are used to index sequences) belong to the set
{1, 2, 3}, and the summation convention with respect to the repeated indices and exponents
is systematically used. The sign := indicates that the right-hand side defines the left-hand
side.

Let ω ⊂ R2 be a bounded connected open set with a Lipschitz boundary γ , let y = (yα)
denote a generic point in the set ω, and let ∂α := ∂/∂yα. Let θ : ω → R3 be an injective
mapping of C3 such that the two vectors aα(y) := ∂αθ(y) are linear independent at all points
y ∈ ω. They form the covariant basis of the tangent plane to the surface S = θ(ω) at the point
θ(y); the two vectors aα(y) of the same tangent plane defined by the relations aα(y) · aβ(y) :=
δα
β constitute its contravariant basis. We also define the unit vector a3(y) = a3(y) = a1(y) ×

a2(y)/|a1(y) × a2(y)|which is normal to the S at the point θ(y).
One then defines the first fundamental form, also known as metric tensor (aαβ) or

(aαβ), the second fundamental form, also known as the curvature tensor (bαβ) or (b
β
α), and the

Christoffel symbols Γσ
αβ

of the surface S by setting (whenever no confusion should arise, we
henceforth drop the explicit dependence on the variable y ∈ ω)

aαβ := aα · aβ, aαβ := aα · aβ,
bαβ := a3 · ∂βaα, b

β
α := aβσbσα, Γσαβ := aσ · ∂βaα.

(2.1)

Note the symmetries aαβ = aβα, bαβ = bβα, and Γσαβ = Γσβα. The area element along S is
√
ady,

where a := det(aαβ). All the functions defined above are at least continuous over the set ω. In
particular, there exists a constant a0 > 0 such that a(y) ≥ a0, for all y ∈ ω.

In addition, let the covariant derivatives bσ
β
|α and the covariant components cαβ of the

third form of the surface S be defined by

bσβ |α := ∂αb
σ
β + Γσατb

τ
β − Γταβb

σ
τ ,

cαβ := bσαbσβ.
(2.2)

For each ε > 0, we consider a shell with thickness 2ε andmiddle surface S, whose lamé
relaxation modules λ(t) ≥ 0 and μ(t) > 0 (t ≥ 0) are independent of ε. We define the sets

Ωε := ω × (−ε,+ε), Γε+ = ω × {ε}, Γε− = ω × {−ε}, Γε0 = γ0 × [−ε, ε], (2.3)

where γ0 ⊂ γ and γ0 /= ∅. Note that Γε+ ∪ Γε− ∪ Γε0 constitutes a partition of the boundary of the
set Ωε. Let xε = (xε

i ) denote a generic point in the set Ω
ε
, and let ∂εi := ∂/∂xε

i ; hence xε
α = yα

and ∂εα = ∂α.
We then define a mapping Θ : Ω

ε → R3 by

Θ(xε) := θ(y) + xε
3a3(y), ∀xε = (y, xε

3

) ∈ Ω
ε
, (2.4)
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then there exists ε0 > 0 such that for all 0 < ε ≤ ε0 the mapping Θ : Ω
ε → R3 is an

injective mapping and the three vectors gεi (x
ε) := ∂εiΘ(xε)(∂εα = ∂/∂xα, ∂

ε
3 = ∂/∂xε

3) are linear
independent for each xε ∈ Ω

ε
. The injectivity of the mapping Θ : Ω

ε → R3 ensures that the
physical problem described below is meaningful.

The three vectors gεi (x
ε) form the covariant basis at the point Θ(xε), and the three

vectors gi,ε(xε) defined by gj,ε(xε) · gεi (xε) = δ
j

i form the contravariant. We define the metric
tensor (gε

ij) or (g
ij,ε) and the Christoffel symbols of the manifold Θ(Ω

ε
) by setting (we omit

the explicit dependence on xε)

gε
ij = gεi · gεj , gij,ε := gi,ε · gj,ε, Γk,εij := gk,ε · ∂εi gεj . (2.5)

Note the symmetries

gε
ij = gε

ji, gij,ε = gji,ε, Γk,εij = Γk,εji . (2.6)

The volume element in the set Θ(Ω
ε
) is
√
gεdxε, where gε := det(gε

ij).

For each 0 < ε ≤ ε0, the set Ω̂ε := Θ(Ω
ε
) is the reference configuration of a viscoelastic

shell withmiddle surface S = θ(ω) and thickness 2ε. We assume that thematerial constituting
the shell is homogeneous isotropic and Θ(Ω

ε
) is of a nature state, so that the material is

characterized by its two lamé relaxation modules λ(t) ≥ 0 and μ(t) > 0 (t ≥ 0). Under the
action of forces, the shell undergoes a displacement field.

Let ûε(t) = uε
i (t)g

i,ε in terms of curvilinear coordinates xε of the reference configuration
Θ(Ω

ε
). Then, the covariant displacement field uε(t) = (uε

i )(t) satisfies the following three-
dimensional equations (c.f. [1, 10]):

uε(t) ∈ L∞
c (−∞, T ;W(Ωε)) with W(Ωε) :=

{
vε ∈ W1,4(Ωε), vε = 0 on Γε0

}
,

∫

Ωε

uε
itt(t)v

ε
i g

ij,ε
√
gεdxε +

∫

Ωε

Aijkl,ε(0)Eε
k‖l(u

ε(t))Fε
i‖j(u

ε(t),vε)
√
gεdxε

+
∫

Ωε

∫ t

−∞
A′ijkl,ε(t − τ)Eε

k‖l(u
ε(τ))Fε

i‖j(u
ε(τ),vε)

√
gεdτ dxε

=
∫

Ωε

f i,ε(t)vε
i

√
gεdxε +

∫

Γε+∪Γε−
hi,ε(t)vε

i

√
gεdΓε, ∀vε ∈ W(Ωε),

(2.7)

where the symbol L∞
c denotes the subspace of L∞ > 0 such that there exists a constant T such

that the functions vanish as s < −T . And,

Aijkl,ε(t) := λ(t)gij,εgkl,ε + μ(t)
(
gik,εgjl,ε + gil,εgjk,ε

)
(2.8)

designate the contravariant components of the three-dimensional elasticity tensor,

Eε
i‖j(v

ε) :=
1
2

(
vε
i‖j + vε

j‖i + gmn,εvε
m‖iv

ε
n‖j
)
, where vε

i‖j := ∂εj v
ε
i − Γp,εij vε

p, (2.9)
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designate the strains in the curvilinear coordinates associated with an arbitrary displacement
field vε

i g
i,ε of the manifold Θ(Ω),

Fε
i‖j(u

ε(t), vε) :=
1
2

(
vε
i‖j + vε

j‖i + gmn,ε
{
uε
m‖i(t)v

ε
n‖j + uε

n‖j(t)v
ε
m‖i
})

, (2.10)

and, finally, fi,ε ∈ L∞(0, T ;L2(Ωε)) and hi,ε ∈ L∞(0, T ; (Γε+ ∪ Γε−)) denote the contravariant
components of the applied body and surface force densities, respectively, applied to the
interior Θ(Ωε) of the shell and to its “uper” and “lower” faces Θ(Γε+) and Θ(Γε−), and
designate the area element along ∂Ωε. We thus assume that there are no surface forces applied
to the portion Θ((γ − γ0) × [−ε, ε]) of the lateral face of the shell.

We record in passing the symmetries

Aijkl,ε = Ajikl,ε = Aklij,ε (2.11)

and the relation

Γ3,εα3 = Γp,ε33 = 0, Aαβσ3,ε = Aα333,ε = 0 in Ω
ε
. (2.12)

Our final objective consists in showing, by means of the method of formal asymptotic
expansions that, if the data are of an appropriate order with respect to ε as ε → 0, the above
three-dimensional problems are “asymptotically equivalent” to a “two-dimensional problem
posed over the middle surface of the shell.” This means that the new unknown should be
ζε(t) = (ζεi (t)), where ζεi (t) are the covariant components of the displacement ζεi (t)ai(y) : ω →
R3 of the middle surface S = θ(ω). In other words, ζεi (t, y)ai(y) is the displacement of the
point θ(y) ∈ S.

“Asymptotic analysis” means that our objective is to study the behavior of the
displacement field uε

i (t)g
i,ε : Ω

ε → R3 as ε → 0, an endeavour that will be a behavior as
ε → 0 of the covariant components uε

i (t) : Ω
ε → R of the displacement field, that is, the

behavior of the unknown uε(t) = (uε
i (t)) : Ω

ε → R3 of the three-dimensional shell problem.

Since these fields are defined on sets Ω
ε
that themselves vary with ε, our first task

naturally consists in transforming the three-dimensional problems into problems posed over
a set that does not depend on ε.

Furthermore, we transform problem (2.7) into an equivalent problem independent of
ε, posed over the domain.

Let Ω := ω × (−1,+1), Γ0 = γ0 × [−1, 1], Γ+ := ω × {+1}, and Γ− := ω × {−1}, and
let x = (xi) denote a generic point in Ω. With each point x ∈ Ω, we associate the point xε

through the bijection πε : x = (x1, x2, x3) ∈ Ω → xε = (xε
i ) = (x1, x2, εx3) ∈ Ω

ε
; we thus

have ∂εα = ∂α and ∂ε3 = (1/ε)∂3. Let uε = (uε
i ), Γ

ε
ij , g

ε, Aijkl,ε : Ω
ε → R and the vector fields

vε = (vε
i ) appearing in the three-dimensional problem (2.7) be associated with the functions

Γpij(ε), g(ε), A
ijkl(ε) : Ω → R and the scaled vector fields v = (vi) defined by

ui(ε)(t, x) = uε
i (t, x

ε), vi(x) = vε
i (x

ε) ∀xε ∈ Ω
ε
,

Γpij(ε)(x) = Γp,εij (xε), g(ε)(x) = gε(xε), Aijkl(ε)(x) = Aijkl,ε(xε) ∀xε ∈ Ωε.
(2.13)
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Functions fi(ε)(t) : Ω → R and hi(t)(ε) : Γ+ ∪ Γ− → R are defined by setting

fi(ε)(t, x) = fi,ε(t, xε) ∀xε ∈ Ωε,

hi(ε)(t, x) = hi,ε(t, xε) ∀xε ∈ Γε+ ∪ Γε−.
(2.14)

Then the scaled unknown u(ε)(t) defined above satisfies (c.f. [1])

u(ε)(t) ∈ L∞
c (−∞, T ;W(Ω)) with W(Ω) :=

{
v ∈ W1,4(Ω), v = 0 on Γ0

}
,

∫

Ω
uitt(ε)(t)vi

√
g(ε)dx +

∫

Ω
Aijkl(ε)(0)Ek‖l(ε;u(ε)(t))Fi‖j(ε;u(ε)(t),v)

√
g(ε)dx

+
∫

Ω

∫ t

−∞
A′ijkl(ε)(t − τ)Ek‖l(ε;u(ε)(τ))Fi‖j(ε;u(ε)(τ),v)

√
g(ε)dτ dx

=
∫

Ω
fi(ε)(t)vi

√
g(ε)dx +

1
ε

∫

Γ+∪Γ−
hi(ε)(t)vi

√
g(ε)dΓ, ∀v ∈ W(Ω),

(2.15)

where

Ei‖j(ε;u(ε)(t)) :=
1
2
(
ui‖j(ε)(t) + uj‖i(ε)(t) + gmn(ε)um‖i(ε)(t)un‖j(ε)(t)

)
,

Fi‖j(ε;u(ε)(t),v) :=
1
2
(
vi‖j(ε) + vj‖i(ε) + gmn(ε)

{
um‖i(ε)(t)vn‖j(ε) + un‖j(ε)(t)vm‖i(ε)

})
,

uβ‖α(ε)(t) := ∂αuβ(ε)(t) − Γp
αβ(ε)up(ε)(t), vβ‖α(ε) = ∂αvβ − Γp

aβ(ε)vp,

u3‖α(ε)(t) := ∂αu3(ε)(t) − Γσα3(ε)(t)uσ(ε)(t), v3‖α(ε) := ∂αv3 − Γσα3(ε)vσ,

uα‖3(ε)(t) :=
1
ε
∂3uα(ε)(t) − Γσα3(ε)uσ(ε)(t), vα‖3(ε) :=

1
ε
∂3vα − Γσα3(ε)vσ,

u3‖3(ε)(t) :=
1
ε
∂3u3(ε)(t), v3‖3(ε) :=

1
ε
∂3v3.

(2.16)

The functions Aijkl(ε) are called the contravariant components of the scaled three-
dimensional elasticity tensor of the shell. The functions Ei‖j(ε;u(ε)(t)) are called the scaled
strains in the curvilinear coordinates because they satisfy

Ei‖j(ε;u(ε)(t))(x) = Eε
i‖j(u

ε(t))(xε) ∀xε ∈ Ω
ε
. (2.17)

Note that the above definitions likewise imply that

Fi‖j(ε;u(ε)(t),v)(x) = Fε
i‖j(u

ε(t),vε)(xε), ui‖j(ε)(t)(x) = uε
i‖j(t)(x

ε),

vi‖j(ε)(x) = vε
i‖j(x

ε) ∀xε ∈ Ω
ε
.

(2.18)

For notational brevity, the point x of some functions is suppressed where no confusion
can arise.
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The following two requirements constantly guide the procedures of the formal
asymptotic analysis. The first requirement asserts that no restriction should be imposed on
the applied forces entering the right-hand side of the equations used for determining the
leading term. The second requirement asserts that, by retaining only the linear terms in any
relation satisfied by terms of arbitrary order in the formal asymptotic expansion of the scaled
unknown u(ε)(t), a relation of linear theory should be recovered. For brevity, we will call it
“linearization trick” (see [1]).

Theorem 2.1. Assume that the scaled unknown u(ε) satisfying problem (2.15) admits a formal
asymptotic expansion of the form

u(ε)(t) = u0(t) + εu1(t) + ε2u2(t) + · · · (2.19)

with u0(t) ∈ L∞(0, T ;W(Ω)) and u1(t),u2(t) ∈ L∞(0, T ;W1,4(Ω)). Then in order that no restriction
be put on the applied forces and that the linearization be satisfied, the components of the applied forces
must be of the form

fi,ε(t, xε) = fi,0(t, x), xε ∈ Ωε, hi,ε(t, xε) = εhi,1(t, x), xε ∈ Γε+ ∪ Γε−, (2.20)

where the functions fi,0 ∈ L∞(0, T ;L2(Ω)) and hi,1 ∈ Ł∞(0, T ;L2(Γ+ ∪ Γ−)) are independent of ε.
This being the case, the leading term u0(t) is independent of the transverse variable x3 and

ζ0(t) = (1/2)
∫1
−1 u

0(t)dx3 satisfies the following two-dimensional variation problem:

ζ0(t) ∈ L∞
c ((−∞, T];W(ω)) with W(ω) :=

{
η ∈ W1,4(ω); η = 0 on γ0

}
,

∫

ω

ζ0itt(t)ηja
ij
√
ady +

∫

ω

aαβστ(0)E0
σ‖τ(t)F

0
α‖β
(
t, η
)√

ady

+
∫

ω

∫ t

−∞
a

′αβστ(t − τ)E0
σ‖τ(τ)F

0
α‖β
(
τ, η
)√

ady dτ

=
∫

ω

pi,0(t)ηi
√
ady, ∀η ∈ W(ω), a.e. −∞ < t ≤ T,

(2.21)

where (recall that amn = am · an):

E0
α‖β(t) :=

1
2

(
ζ0α‖β(t) + ζ0β‖α(t) + amnζ0m‖α(t)ζ

0
n‖β(t)

)
,

F0
α‖β(t,η) :=

1
2

(
ηα‖β + ηβ‖α + amn

{
ζ0m‖α(t)ηn‖β + ζ0n‖β(t)ηm‖α

})
,

ηα‖β = ∂βηα − Γσαβησ − bαβη3, η3‖β := ∂βη3 + bσβησ,

aαβστ(t) := a(t)aαβaστ + μ(t)
(
aασaβτ + aατaβσ

)
,

a(t) := L−1
{

2λ̂(s)μ̂(s)

λ̂(s) + 2μ̂(s)

}

with a(0) =
2λ(0)μ(0)

λ(0) + 2μ(0)
,

pi,0(t) :=
1
2

(∫+1

−1
fi,0(t)dx3 + hi,1(·, 1) + hi,1(·,−1)

)

,

(2.22)



Abstract and Applied Analysis 7

λ̂(s), μ̂(s) denote Laplace transformation of λ(t), μ(t), respectively, and L−1 denotes the inverse
Laplace transformation.

Lemma 2.2. For small ε > 0, it is not difficult to verify the following relations:

gij(ε) = aij + εx3g
ij,1 +O

(
ε2
)
, (2.23)

where

aij := ai · aj , gαβ,1 := 2aασb
β
σ, gi3,1 = 0,

Γpij(ε) = Γp,0ij + εx3Γ
p,1
ij +O

(
ε2
)
,

(2.24)

where

Γσ,0
αβ

:= Γσαβ, Γ3,0
αβ

:= bαβ, Γβ,0α3 := −bβα, Γ3,0α3 = Γp,033 := 0,

Γσ,1
αβ

:= −bσβ |α, Γ3,1
αβ

:= −bσαbσβ, Γσ,1α3 := −bταbστ , Γ3,1α3 = Γp,133 := 0,

Aijkl(ε)(t)
√
g(ε) = Aijkl(t)

√
a + εBijkl,1(t) + ε2Bijkl,2(t) + o

(
ε2
)
,

(2.25)

where

Aαβστ(t) := λ(t)aαβaστ + μ(t)
(
aασaβτ + aατaβσ

)
,

Aαβ33(t) := λ(t)aαβ, Aα3σ3(t) := μ(t)aασ,

A3333(t) := λ(t) + 2μ(t), Aαβσ3(t) = Aα333(t) := 0.

(2.26)

Lemma 2.3 (see [1]). Let ω be a domain in R2, and let θ ∈ C2(ω;R3) be an injective mapping such
that the two vectors aα are linear independent at all points of ω. The derivatives of the vectors of the
covariant and contravariant basis are given by the formulas of Gauss

∂αaβ = Γσαβaσ + bαβa3, ∂αaβ = −Γβασaσ + b
β
αa3 (2.27)

and Weingarten

∂αa3 = ∂αa3 = −bαβaβ = −bσαaσ. (2.28)

Lemma 2.4. Let ω ∈ L2(Ω) be a function such that
∫
Ω ω∂3υ = 0 for all υ ∈ C∞(Ω) satisfing υ = 0

on γ × [−1,+1]. Then, ω = 0.

Proof. Thanks to Theorem 3.4-1 in [1].
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Lemma 2.5. Assume that the scaled unknown satisfying (2.15) admits for each 0 < ε < ε0 a formal
asymptotic expansion of the form

u(ε)(t) =
1
εN

u−N(t) +
1

εN−1u
−N+1(t) + · · · (2.29)

with

u−N(t),u−N+1(t) ∈ L∞(0, T ;W(Ω)), W(Ω) =
{
v ∈ W1,4(Ω), v = 0 on Γ0

}
, u−N(t)/= 0,

(2.30)

for some integerN ∈ Z. Then, N = 0.

Proof. The proof is broken into seven parts. Before beginning the proper induction in (iv), we
record several useful preliminaries.

(i) Let the functions Aijkl(0) be defined as in Lemma 2.2. Then, for any symmetric
matrices (skl) and (tij),

Aijkl(0)skltij =
(
λ(0)aαβaστ + μ(0)

(
aασaβτ + aατaβσ

))
sστ tαβ + 4μ(0)aασsα3tσ3

+ λ(0)aαβs33tαβ + λ(0)aστsστ t33 +
(
λ(0) + 2μ(0)

)
s33t33.

(2.31)

This formula, which immediately follows from the definitions, will be constantly put
to use in the ensuing arguments.

(ii) Let aij := ai · aj . Then, for any y ∈ ω and any matrix (tij),

aij(y
)
amn(y

)
timtjn ≥ 0, aij(y

)
amn(y

)
timtjn = 0 ⇐⇒ tij = 0. (2.32)

Given any y ∈ ω and any matrix (tij), let ti(y) := timam(y) and let [ti(y)]
q denote the qth

Cartesian component of the vector ti(y). We thus have

aij(y
)
amn(y

)
timtjn = aij(y

){(
timam

(
y
)) · (tjnan

(
y
))}

= aij(y
){

ti
(
y
) · tj

(
y
)}

= aij(y
)[
ti
(
y
)]p[tj

(
y
)]p =

([
ti
(
y
)]pai

(
y
)) ·
([

tj
(
y
)]paj

(
y
))

=
3∑

p=1

∣∣∣
[
ti
(
y
)]pai

(
y
)∣∣∣

2
.

(2.33)

Hence, aij(y)amn(y)timtjn ≥ 0 and

aijamn(y
)
timtjn = 0 =⇒ [ti

(
y
)]pai

(
y
)
= 0, p = 1, 2, 3,

=⇒ ti
(
y
)
= timam

(
y
)
= 0, i = 1, 2, 3,

=⇒ tim = 0, i,m = 1, 2, 3,

(2.34)

for the three vectors ai(y) are linear independent.
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(iii) Assume that the formal asymptotic expansion of the scaled unknown is of the
form

u(ε)(t) =
1
εN

u−N(t) +
1

εN−1u
−N+1(t) + · · · for some integer N ≥ 0, (2.35)

with u−N ∈ L∞(0, T ;W(Ω)) and u−N+1 ∈ L∞(0, T ;W(Ω)).
Together with the asymptotic behavior of the functions gij(ε) and Γpij(ε) as ε → 0,

such an expansion induces specific formal asymptotic expansions of the various functions
appearing in the formulation of problem (2.15)

um‖α(ε)(t) =
1
εN

u−N
m‖α(t) + · · · , um‖3(ε)(t) =

1
εN+1

u−N−1
m‖3 (t) +

1
εN

u−N
m‖3(t) + · · · ,

Eα‖β(ε;u(ε)(t)) =
1

ε2N
E−2N
α‖β (t) + · · · , Eα‖3(ε;u(ε)(t)) =

1
ε2N+1

E−2N−1
α‖3 (t) + · · · ,

E3‖3(ε;u(ε)(t)) =
1

ε2N+2
E−2N−2
3‖3 (t) + · · · , Fα‖β(ε;u(ε)(t),v) =

1
εN

F−N
α‖β(t,v) + · · · ,

Fα‖3(ε;u(ε)(t),v) =
1

εN+1
F−N−1
α‖3 (t,v) + · · · , F3‖3(ε;u(ε)(t),v) =

1
εN+2

F−N−2
3‖3 (t,v) + · · · ,

(2.36)

where, by definition, uq

i‖j(t), E
q

i‖j(t), and F
q

i‖j(t,v) designate for each q ∈ Z the coefficient of εq

in the induced expansions of ui‖j(ε)(t), Ei‖j(ε;u(ε)(t)), and Fi‖j(ε;u(ε)(t),v).
Note in passing that, while the functions factorizing the powers of ε are by definition

independent of ε, they are dependent on one or several terms uq(t), q ≥ −N. In this respect,
particular caution should be exercised as regards this dependence. For instance,

u−N
m‖α(t) = ∂αu

−N
m (t) − Γp,0αmu

−N
p (t), u−N

m‖3(t) = ∂3u
−N+1
m (t) − Γp,0m3u

−N
p (t), (2.37)

that is, the factor of 1/εN in um‖α(ε)(t) depends on u−N(t) but the one in um‖3(ε)(t) depends
also on u−N+1(t).

Likewise, it should be remembered that the expression of some factor may differ
according to which value of N is considered, for instance,

E−2N
α‖β (t) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2
amnu−N

m‖α(t)u
−N
n‖β(t) if N ≥ 1,

1
2

(
u0
α‖β(t) + u0

β‖α(t) + amnu0
m‖α(t)u

0
n‖β(t)

)
if N = 0,

F−N
α‖β(t,v) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2
amn
{
u−N
m‖α(t)vn‖β + u−N

n‖β(t)vm‖α
}

if N ≥ 1,

1
2

(
vα‖β + vβ‖α + amn

{
u0
m‖α(t)vn‖β + u0

n‖β(t)vm‖α
})

if N = 0,

(2.38)
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where

vm‖α := ∂αvm − Γp,0αmvp. (2.39)

We are now in a position to start the cancellation of the factors of the successive powers
of ε found in the variational equations of problem (2.15)when u(ε)(t) is replaced by its formal
expansion. In what follows, Lr designates for any integer r ≥ −3N − 4 the linear form defined
by

Lr(t,v) :=
∫

Ω
fi,r(t)vi

√
adx +

∫

Γ+∪Γ−
hi,r+1(t)vi

√
adΓ. (2.40)

(iv) Assume thatN ≥ 0. Since the lowest power of ε in the left-hand side is ε−3N−4, we
are naturally led to first try

fi(ε)(t) =
1

ε−3N−4 f
i,−3N−4(t), hi(ε)(t) =

1
ε3N+3

hi,−3N−3(t). (2.41)

Comparing the coefficients of ε−3N−4 in (2.15) and using Lemma 2.2 and (2.36), we get
the equations

∫

Ω

(
λ(0) + 2μ(0)

)
E−2N−2
3‖3 (t)F−N−2

3‖3 (t,v)
√
adx

+
∫

Ω

∫ t

−∞

(
λ′(t − τ) + 2μ′(t − τ)

)
E−2N−2
3‖3 (τ)F−N−2

3‖3 (τ,v)
√
adx dτ = L−3N−4(t,v)

(2.42)

for all v ∈ W(Ω). Since

E−2N−2
3‖3 (t) =

1
2
amn∂3u

−N
m (t)∂3u−N

n (t), F−N−2
3‖3 (t,v) = amn∂3u

−N
m (t)∂3vn, (2.43)

we must have

L−3N−4(t,v) =
∫

Ω
fi,−3N−4(t)vi

√
adx +

∫

Γ+∪Γ−
hi,−3N−3(t)vi

√
adΓ = 0 (2.44)

for all v ∈ W that are independent of x3. Consequently, the first requirement (that there be no
restriction on the applied forces) implies that we must let

fi,−3N−4(t) = 0, hi,−3N−3(t) = 0. (2.45)
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By recalling (2.42)–(2.45), we have

1
2

∫

Ω

(
λ(0) + 2μ(0)

)[(
amn∂3u

−N
m (t)∂3u−N

n (t)
)(

amn∂3u
−N
m (t)∂3vn

)]√
adx

+
1
2

∫

Ω

∫ t

−∞

(
λ′(t − τ) + 2μ′(t − τ)

)[(
amn∂3u

−N
m (τ)∂3u−N

n (τ)
)(

amn∂3u
−N
m (τ)∂3vn

)]√
adx dτ = 0,

(2.46)

that is,

d

dt

∫ t

−∞

∫

Ω

(
λ(t − τ) + 2μ(t − τ)

)[(
amn∂3u

−N
m (τ)∂3u−N

n (τ)
)(

amn∂3u
−N
m (τ)∂3vn

)]
dx dτ = 0.

(2.47)

Therefore,

∫ t

−∞

∫

Ω

(
λ(t − τ) + 2μ(t − τ)

)[(
amn∂3u

−N
m (τ)∂3u−N

n (τ)
)(

amn∂3u
−N
m (τ)∂3vn

)]
dx dτ = const,

(2.48)

which implies

∫ t

−∞

∫

Ω

(
λ(t − τ) + 2μ(t − τ)

)[(
amn∂3u

−N
m (τ)∂3u−N

n (τ)
)(

amn∂3u
−N
m (τ)∂3vn

)]
dx dτ = 0.

(2.49)

Letting v = u−N(τ) in (2.49) shows that

∫ t

−∞

∫

Ω

(
λ(t − τ) + 2μ(t − τ)

)[
amn∂3u

−N
m (τ)∂3u−N

n (τ)
]2
dx dτ = 0. (2.50)

Since the symmetric (aij) is positive definite, we conclude that

∂3u−N(t) =
(
∂3u

−N
m (t)

)
= 0 in Ω, (2.51)

that is, u−N(t) is independent of x3. Inserting (2.51) into (2.43) yields

E−2N−2
3‖3 (t) = 0, F−N−2

3‖3 (t,v) = 0 ∀v ∈ W(Ω). (2.52)
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A usual, any function defined on Ω that is independent of x3 is identified with a function
defined on ω, and (2.36) and (2.52) imply

u−N(t) ∈ L∞(0, T ;W(ω)), W(ω) :=
{
η ∈ W1,4(ω); η = 0 on γ0

}
, (2.53)

E−2N−2
i‖j (t) = 0 in Ω, F−N−2

i‖j (t,v) = 0 ∀v ∈ W(Ω) (2.54)

Noting (2.36) and (2.51), we also have

E−2N−1
i‖j (t) = 0 in Ω. (2.55)

Since E−2N−1
α‖β (t) = 0 (the leading term in the formal expansion of Eα‖β(ε;u(ε)(t)) is order

of −2N) and E−2N−1
i‖3 (t) = 0 (since ∂3u−N(t) = 0, each factor of 1/ε2N+1 in the expansion of

Eα‖3(ε;u(ε)(t)) vanishes because it contains some derivative ∂3u
−N
m and the leading term in

the expansion of E3‖3(ε;u(ε)(t)) is of order strictly higher than (−2N−1)), our next try is thus

fi(ε)(t) =
1

ε3N+3
fi,−3N−3(t), hi(ε)(t) =

1
ε3N+2

hi,−3N−2(t). (2.56)

Comparing the coefficient of ε−3N−3 in (2.15) then yields equations (the functions Aijkl(0) are
defined in Lemma 2.2)

∫

Ω
Aijkl(0)E−2N−1

k‖l (t)F−N−2
i‖j (t,v)

√
adx

+
∫

Ω

∫ t

−∞
Aijkl(0)E−2N−1

k‖l (τ)F−N−2
i‖j (τ,v)

√
adx dτ = L−3N−3(t,v)

(2.57)

for all v ∈ W(Ω). But since (2.55), we must let fi,−3N−3(t) = 0 and hi,−3N−2(t) = 0 (first
requirement) and accordingly try

fi(ε)(t) =
1

ε3N+2
fi,−3N−2(t), hi(ε)(t) =

1
ε3N+2

hi,−3N−1(t). (2.58)

In which case the cancellation of the coefficient of ε−3N−2 in (2.15) yields the equations

∫

Ω
Aijkl(0)E−2N

k‖l (t)F−N−2
i‖j (t,v)

√
adx

+
∫

Ω

∫ t

−∞
A′ijkl(t − τ)E−2N

k‖l (τ)F−N−2
i‖j (τ,v)

√
adx dτ = L−3N−2(t,v)

(2.59)

for all v ∈ W(Ω). But since (2.54), we must let fi,−3N−2(t) = 0 and hi,−3N−1(t) = 0 (first
requirement).
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(v) Assume that N ≥ 1. Our next try being thus

fi(ε)(t) =
1

ε3N+1
fi,−3N−1, hi(ε) =

1
ε3N+2

hi,−3N, (2.60)

the cancellation of the coefficient of ε−3N−1 in the variational equations of problem (2.15) then
yields the equations

∫

Ω
Aijkl(0)E−2N

k‖l (t)F−N−1
i‖j (t,v)

√
adx

+
∫

Ω

∫ t

−∞
A′ijkl(t − τ)E−2N

k‖l (τ)F−N−1
i‖j (τ,v)

√
adx dτ = L−3N−1(t,v)

(2.61)

for all v ∈ W(Ω), where

E−2N
α‖β (t) =

1
2
amnu−N

m‖α(t)u
−N
n‖β(t), F−N−1

α‖β (t,v) = 0,

E−2N
α‖3 (t) =

1
2
amnu−N

m‖α(t)u
−N
n‖3(t), F−N−1

α‖3 (t,v) =
1
2
amnu−N

m‖α(t)∂3vn,

E−2N
3‖3 (t) =

1
2
amnu−N

m‖3(t)u
−N
n‖3(t), F−N−1

3‖3 (t,v) = amnu−N
m‖3(t)∂3vn,

(2.62)

the functions u−N
m‖i(t) being those defined in (2.36).

Letting v ∈ W(Ω) be independent of x3 then shows that we must let fi,−3N−1(t) = 0 and
hi,−3N = 0; hence,

∫

Ω
Aijkl(0)E−2N

k‖l (t)F−N−1
i‖j (t,v)

√
adx

+
∫

Ω

∫ t

−∞
A′ijkl(t − τ)E−2N

k‖l (τ)F−N−1
i‖j (τ,v)

√
adx dτ = 0

(2.63)

for all v ∈ W(Ω). Let the fieldwN = (wN
m ) be defined for all (y, x3) ∈ Ω by

wN
m (t) := u−N+1

m (t) − (1 + x3)Γ
p,0
m3u

−N
p (t). (2.64)

Then, wN(t) ∈ L∞(0, T ;W(Ω)) because both u−N(t) and u−N+1(t) are assumed to be in the
space L∞(0, T ;W(Ω)).

Furthermore, ∂3wN
m (t) = u−N

m‖3(t), so that

F−N−1
α‖3

(
t,wN(t)

)
= E−2N

α‖3 (t), F−N−1
3‖3

(
t,wN(t)

)
= 2E−2N

3‖3 (t). (2.65)
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Using Lemma 2.2 and (2.65), we get

Aijkl(0)E−2N
k‖l (t)F−N−1

i‖j
(
t,wN

)
= 2λ(0)amnE−2N

m‖n (t)E
−2N
3‖3 (t) + 4μ(0)amnE−2N

m‖3 (t)E
−2N
n‖3 (t). (2.66)

Since

amnE−2N
m‖n (t) =

1
2
aijamnu−N

i‖m(t)u
−N
j‖n (t) ≥ 0 in Ω, (2.67)

(by (ii))

E−2N
3‖3 (t) =

1
2
amnu−N

m‖3(t)u
−N
n‖3(t) ≥ 0, amnE−2N

m‖3 (t)E
−2N
n‖3 (t) ≥ 0 in Ω (2.68)

(the matrix (amn) is positive definite), in a similar way as in (iv), we can obtain from (2.63)
that

∫ t

−∞

∫

Ω
Aijkl(t − τ)E−2N

k‖l (τ)F−N−1
i‖j (τ,v)dx dτ = 0 (2.69)

for all v ∈ W(Ω).
Letting v = wN(τ) in (2.69) and noting (2.66)–(2.68), we conclude that

amnE−2N
m‖3 (t)E

−2N
n‖3 (t) = 0 in Ω; (2.70)

hence (the matrix (amn) is positive definite)

E−2N
m‖3 (t) = 0 in Ω. (2.71)

In particular then, E−2N
3‖3 (t) = (1/2)amnu−N

m‖3(t)u
−N
n‖3(t) = 0 (by (2.62)) and thus (the

matrix (amn) is positive definite)

u−N
m‖3(t) = 0. (2.72)

(vi) Assume that N ≥ 2 (the case N = 1 is considered separately, c.f. (viii)). Our next
try being thus

fi(ε)(t) =
1

ε3N
fi,−3N(t), hi(ε)(t) =

1
ε3N−1h

i,−3N+1(t), (2.73)
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the cancellation of the coefficient of ε−3N in the variational equations of problem (2.15)
then yields the equations (note that two terms are needed here from the expansions of the
functions Aijkl(ε)

√
g(ε), c.f. Lemma 2.2))

∫

Ω
Aijkl(0)

{
E−2N
k‖l (t)F−N

i‖j (t,v) + E−2N+1
k‖l (t)F−N−1

i‖j (t,v)
}√

adx

+
∫

Ω
Bijkl,1E−2N

k‖l (t)F−N−1
i‖j (t,v)dx

+
∫

Ω

∫ t

−∞
A′ijkl(t − τ)

{
E−2N
k‖l (τ)F−N

i‖j (τ,v) + E−2N+1
k‖l (τ)F−N−1

i‖j (τ,v)
}√

adx dτ

+
∫

Ω
B′ijkl,1(t − τ)E−2N

k‖l (τ)F−N−1
i‖j (τ,v)dx dτ = L−3N(t,v)

(2.74)

for all v ∈ W(Ω), where (by (2.62) and (2.72))

E−2N
α‖β (t) =

1
2
amnu−N

m‖α(t)u
−N
m‖β(t), E−2N

i‖3 (t) = 0,

F−N−1
α‖β (t,v) = 0, F−N−1

α‖3 (t,v) =
1
2
amnu−N

m‖α(t)∂3vn, F−N−1
3‖3 (t,v) = 0,

F−N
α‖β(t,v) =

1
2
amn
(
u−N
m‖α(t)vn‖β + u−N

n‖β(t)vm‖α
)
, F−N

3‖3 = amnu−N+1
m‖3 (t)∂3vn,

(2.75)

the last expression of F−N
3‖3 (t,v) being valid only if N ≥ 2 (the expressions of F−N

α‖3 (t,v) are not
needed since Aα3στ(0) = 0 by Lemma 2.2 and E−2N

α‖3 (t) = 0 by (2.71)).
Noting that F−N−1

α||3 (v) = F−N
3‖3 = 0 if ∂3v = 0, we thus conclude that the variational

equations (2.74) reduce to

∫

Ω
Aαβστ(0)E−2N

σ‖τ (t)F−N
α‖β(t,v)

√
adx

+
∫

Ω

∫ t

−∞
A′αβστ(t − τ)E−2N

σ‖τ (τ)F−N
α‖β(τ,v)

√
adx dτ = L−3N(t,v)

(2.76)

for all v ∈ W(Ω) that are independent of x3.
Since each term in the sum Aαβστ(0)E−2N

σ‖τ (t)F−N
α‖β(t,v) is cubic with respect to the

functions u−N
m‖α(t), the linearization trick (second requirement) implies that L−3N(t,v) = 0 for

all v ∈ W(Ω) that are independent of x3. Hence, we must let fi,−3N(t) = 0 and hi,−3N+1(t) = 0.
Hence

∫

Ω
Aαβστ(0)E−2N

σ‖τ (t)F−N
α‖β(t,v)

√
adx +

∫

Ω

∫ t

−∞
A′αβστ(t − τ)E−2N

σ‖τ (τ)F−N
α‖β(τ,v)

√
adx dτ = 0.

(2.77)



16 Abstract and Applied Analysis

In a similar way as in (iv), we can obtain from (2.77) that

∫ t

−∞

∫

Ω
Aαβστ(t − τ)E−2N

σ‖τ (τ)F−N
α‖β(τ,v)dx dτ = 0. (2.78)

Recalling that u−N(t) is independent of x3 by (2.51), we may let v = u−N(τ) in (2.78).
This gives

∫ t

−∞

∫

Ω
Aαβστ(t − τ)E−2N

σ‖τ (τ)E−2N
α‖β (τ)dx dτ = 0 (2.79)

since F−N
α‖β(τ,u

−N(τ)) = 2E−2N
α‖β (t) (by (2.75)). But (see Lemma 2.2)

Aαβστ(0) = λ(0)aαβaστ + μ(0)
(
aασaβτ + aατaβσ

)
(2.80)

and thus (the matrix (amn) is positive definite)

E−2N
α‖β (t) =

1
2
amnu−N

m‖α(t)u
−N
n‖β(t) = 0 in Ω (2.81)

(to reach this conclusion, observe that aασaβτ tστ tαβ ≥ 0 and that aασaβτ tστ tαβ = 0 only if tαβ = 0
by (ii)); these relations in turn imply that

u−N
m‖α(t) = 0. (2.82)

By definition (see (2.36) and Lemma 2.2),

u−N
β‖α(t) = ∂αu

−N
β (t) − Γp,0

αβ
u−N
p (t) = ∂αu

−N
β (t) − Γσαβu

−N
σ (t) − bαβu

−N
3 (t),

u−N
3‖α(t) = ∂αu

−N
3 (t) − Γp,0α3 u

−N
p (t) = ∂αu

−N
3 (t) + bσαu

−N
σ (t).

(2.83)

Let ζi(t) = u−N
i (t)|x3=0. Then, ζi(t) ∈ L∞(0, T ;W(ω)) since u−N

i (t) ∈ L∞(0, T ;W(Ω)) and
∂3u

−N
i (t) = 0 in Ω and ζi(t) = 0 on γ0 since u−N

i (t) = 0 on Γ0. The above relations combined
with the Gauss and Weingarten formulas (Lemma 2.3) then imply that ∂α(ζi(t)ai) = 0 in ω
and hence that ζi(t) = 0. We have thus shown that

u−N(t) = 0 ∀N ≥ 2. (2.84)

(vii) Finally, assume that N = 1. The only difference from (vi) is that now

F−1
3‖3(t,v) = ∂3v3 + amnu0

m‖3(t)∂3vn. (2.85)
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But since the arguments that led in (vi) to the conclusion that u−N = 0 forN ≥ 2 only required
that consideration of functions v ∈ W that are independent of x3, in which case F−1

3‖3(t,v) = 0,
they can be reproduced verbatim forN = 1, thus showing that

u−1(t) = 0. (2.86)

The proof is complete.

3. The Proof of the Main Result

Proof. The proof comprises three parts.
(i) Using Lemma 2.5, u(ε)(t) can be expanded as

u(ε)(t) = u−N(t) + u−N+1(t) + · · · , (3.1)

with u−N ∈ L∞(0, T ;W(Ω)). Letting N = 0, we thus infer that ∂3u0(t) = 0 in Ω, that

ζ0(t) :=
1
2

∫1

−1
u0(t)dx3 ∈ L∞(0, T ;W(ω)), W(ω) =

{
η ∈ W1,4(ω); η = 0 on γ0

}
, (3.2)

and also that (see (2.54) and (2.55))

E
q

i‖j(t) = 0 ∀ integers q ≤ −1,

F
q

i‖j(t,v) = 0 ∀ integers q ≤ −2 ∀v ∈ W(Ω),
(3.3)

and, finally, that we must let fi,−2(t) = 0 and hi,−1(t) = 0.
(ii) Our next try is thus

fi(ε)(t) =
1
ε
fi,−1(t), hi(ε)(t) = hi,0(t), (3.4)

where it is understood as in the proof of Lemma 2.5 that each function fi,r(t) ∈
L∞(0, T ;L2(Ω)) and each function hi,r+1(t) ∈ L∞(0, T ;L2(Γ+ ∪ Γ−)), r ≥ −1, appearing here
and subsequently is independent of ε; likewise, we again let

Lr(t,v) :=
∫

Ω
fi,r(t)vi

√
adx +

∫

Γ+∪Γ−
hi,r+1(t)vi

√
adΓ, r ≥ −1. (3.5)

The cancellation of the coefficient of ε−1 in the variational equations of problem (2.15)
then yields the equations:

∫

Ω
Aijkl(0)E0

k‖l(t)F
−1
i‖j(t,v)

√
adx +

∫

Ω

∫ t

−∞
A′ijkl(t − τ)E0

k‖l(τ)F
−1
i‖j(τ,v)

√
adx dt = L−1(t,v)

(3.6)
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for all v ∈ W(Ω), where

E0
α‖β(t) =

1
2

(
u0
α‖β(t) + u0

β‖α(t) + amnu0
m‖α(t)u

0
n‖β(t)

)
,

E0
α‖3(t) =

1
2

(
u
(0)
α‖3(t) + u0

3‖α(t) + amnu0
m‖α(t)u

(0)
n‖3(t)

)
,

E0
3‖3(t) = u

(0)
3‖3(t) +

1
2
amnu

(0)
m‖3(t)u

(0)
n‖3(t),

F−1
α‖β(t,v) = 0, F−1

α‖3(t,v) =
1
2

(
∂3vα + amnu0

m‖α(t)∂3vn

)
,

F−1
3‖3(t,v) = ∂3v3 + amnu

(0)
m‖3(t)∂3vn,

(3.7)

u0
m‖α(t) := ∂αu

0
m(t) − Γp,0αmu

0
p(t), u

(0)
m‖3(t) := ∂3u

1
m(t) − Γp,0m3u

0
p(t). (3.8)

The special notation u
(0)
m‖3(t) emphasizes that, by contrast with the functions u0

m‖α(t),

which only depend on u0(t), the functions u(0)
m‖3(t) also depend on u1(t).

The expressions of the functions F−1
i‖j(t,v) imply that L−1(t,v) = 0 for all for all

v ∈ W(Ω) that are independent of x3. Hence, we must let fi,−1(t) = 0 and hi,0(t) = 0 (first
requirement), so that we are left with the equations

∫

Ω
Aijkl(0)E0

k‖l(t)F
−1
i‖j(t,v)

√
adx +

∫

Ω

∫ t

−∞
A′ijkl(t − τ)E0

k‖l(τ)F
−1
i‖j(τ,v)

√
adx dt = 0 (3.9)

for all v ∈ W(Ω). When the functions F−1
i‖j(t,v) are replaced by their expression given in (3.7),

the integrand in (3.9) takes the form (wτ∂3vτ +w3∂3v3).
Then, Lemma 2.4 shows that the functions wτ and w3 vanish in Ω, that is,

(
λ(0)aαβE0

α‖β(t) +
(
λ(0) + 2μ(0)

)
E0
3‖3(t)

)
aστu

(0)
σ‖3(t) + 2μ(0)E0

α‖3(t)
(
aατ + aασaβτu0

β‖σ(t)
)

+
∫ t

−∞

[(
λ′(t − s)aαβE0

α‖β(s) +
(
λ′(t − s) + 2μ′(t − s)

)
E0
3‖3(s)

)
aστu

(0)
σ‖3(s)

+2μ′(t − s)E0
α‖3(s)

(
aατ + aασaβτu0

β‖σ(s)
)]

ds = 0 in Ω, τ = 1, 2,
(
λ(0)aαβE0

α‖β(t) +
(
λ(0) + 2μ(0)

)
E0
3‖3(t)

)(
1 + u

(0)
3‖3(t)

)
+ 2μ(0)aασE0

α‖3(t)u
0
3‖σ(t)

+
∫ t

−∞

[(
λ′(t − s)aαβE0

α‖β(s) +
(
λ′(t − s) + 2μ′(t − s)

)
E0
3‖3(s)

)(
1 + u

(0)
3‖3(s)

)

+2μ′(t − s)aασE0
α‖3(s)u

0
3‖σ(s)

]
ds = 0 in Ω,

(3.10)
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that is,

∫ t

−∞

[(
λ(t − τ)aαβE0

α‖β(τ) +
(
λ(t − s) + 2μ(t − s)

)
E0
3‖3(s)

)
aστu

(0)
σ‖3(s)

+2μ(t − s)E0
α‖3(s)

(
aατ + aασaβτu0

β‖σ(s)
)]

ds = 0 in Ω, τ = 1, 2,
∫ t

−∞

[(
λ(t − s)aαβE0

α‖β(s) +
(
λ(t − s) + 2μ(t − s)

)
E0
3‖3(s)

)(
1 + u

(0)
3‖3(s)

)

+2μ(t − s)aασE0
α‖3(s)u

0
3‖σ(s)

]
ds = 0 in Ω.

(3.11)

Under the conditions of integral mean value theorem, one obvious solution to this
system of three equations is

E0
α‖3(t) = 0 in Ω,

λ̂(s)aαβÊ0
α‖β(s) +

(
λ̂(s) + 2μ̂(s)

)
Ê0
3‖3(s) = 0 in Ω,

(3.12)

λ̂(s), μ̂(s), and Ê0
α‖β(s) denote the Laplace transformation of λ(t), μ(t), and E0

α‖β(t) (c.f. [11]).

But there may be other solutions to this nonlinear system. Denoting by [· · · ]lin the linear part
with respect to (any component of) u0(t) or u1(t) in the expression [· · · ], we have

[
E0
α‖3(t)

]lin
= e0α‖3(s),

[
λ̂(s)aαβÊ0

α‖β(s) +
(
λ̂(s) + 2μ(t − s)

)
Ê0
3‖3(s)

]lin
= λ̂(s)aαβê0α‖β(s) +

(
λ̂(s) + 2μ̂(s)

)
ê03‖3(s),

(3.13)

by definition of the functions E0
i‖3(t) and e0

i‖3(t) as the coefficient of ε0 in the formal expansions
of the functions Ei‖3(ε,u(ε))(t) and ei‖3(ε,u(ε))(t), the latter being precisely the linear part in
[2].

Since it was found in the linear case (see [2]) that

e0α||3(t) = 0 in Ω,

λ̂(s)aαβê0α‖β(s) +
(
λ̂(s) + 2μ̂(s)

)
ê03‖3(s) = 0 in Ω,

(3.14)

the linearization trick (second requirement) suggests that we only retain the “obvious”
solution found above.

(iii) Our next try is thus

fi(ε)(t) = fi,0(t), hi(ε)(t) = εhi,1(t). (3.15)
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The cancellation of the coefficient of ε0 in the variational equations of problem (2.15)
then leads to the equations

∫

Ω
u0
itt(t)vja

ij
√
adx +

∫

Ω
Aijkl(0)

{
E0
k‖l(t)F

0
i‖j(t,v) + E1

k‖lF
−1
i‖j(t,v)

}√
adx

+
∫

Ω

∫ t

−∞
A′ijkl(t − τ)

{
E0
k‖l(τ)F

0
i‖j(τ,v) + E1

k‖l(τ)F
−1
i‖j(τ,v)

}√
adx dτ

+
∫

Ω
Bijkl,1(0)E0

k‖l(t)F
−1
i‖j(t,v)dx +

∫

Ω

∫ t

−∞
B′ijkl,1(t − τ)E0

k‖l(τ)F
−1
i‖j(τ,v)dx dτ = L0(t,v)

(3.16)

for all v ∈ W(Ω), where the functions E1
i‖j(t) and F0

i‖j(t) are defined by means of formal
expansions

Ei‖j(ε;u(ε)(t)) = E0
i‖j(t) + εE1

i‖j(t) + · · · , Fi‖j(ε;u(ε)(t),v) =
1
ε
F−1
i‖j(t,v) + F0

i‖j(t,v) + · · · .
(3.17)

Note that, while the functions E0
i‖j(t), F

−1
i‖j(t,v), and F0

i‖j(t,v) depend only on u0(t) and

u1(t), the functions E1
i‖j(t) depend also on u2(t) (but not on u3(t); each term involving u3(t)

vanishes because it contains some derivative ∂3u
0
m(t) as a factor). For this reason the formal

asymptotic expansion of u(ε)(t)must be “at least” of the form

u(ε)(t) =
2∑

q=0

εquq(t) + · · · . (3.18)

In particular then, we must have (by (3.7))

∫

Ω
u0
itt(t)vja

ij
√
adx +

∫

Ω
Aijkl(0)E0

k‖l(t)F
0
i‖j(t,v)

√
adx

+
∫

Ω

∫ t

−∞
A′ijkl(t − τ)E0

k‖l(τ)F
0
i‖j(τ,v)

√
adx dτ = L0(t,v)

(3.19)

for all v ∈ W(Ω) that are independent of x3 since F−1
i‖j(t,v) = 0 for such functions; equivalently,

after performing the usual identification, we must have

∫

Ω
u0
itt(t)ηja

ij
√
adx +

∫

Ω
Aijkl(0)E0

k‖l(t)F
0
i‖j(t,η)

√
adx

+
∫

Ω

∫ t

−∞
A′ijkl(t − τ)E0

k‖l(τ)F
0
i‖j(τ,η)

√
adx dτ = L0(t,v)

(3.20)

for all η ∈ W(ω) = {η ∈ W1,4(ω); η = 0 on γ0}.
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Using Lemma 2.2 and (3.12), (3.20) can be written as

∫

Ω
u0
ittηja

ij
√
adx +

∫

Ω

{
Aαβστ(0)E0

σ‖τ(t) +Aαβ33(0)E0
3‖3(t)

}
F0
α‖β(t,η)

√
adx

+
∫

Ω

∫ t

−∞

{
A′αβστ(t − τ)E0

σ‖τ(τ) +A′αβ33(t − τ)E0
3‖3(τ)

}
F0
α‖β(τ,η)

√
adτ dx

+
∫

Ω

{
A33στ(0)E0

σ‖τ(t) +A3333(0)E0
3‖3(t)

}
F0
3‖3(t,η)

√
adx

+
∫

Ω

∫ t

−∞

{
A′33στ(t − τ)E0

σ‖τ(τ) +A′3333(t − τ)E0
3‖3(τ)

}
F0
3‖3(τ,η)

√
adτ dx

=
∫

Ω
fi,0(t)ηi

√
adx +

∫

Γ+∪Γ−
hi,1(t)ηi

√
adΓ

(3.21)

for all η ∈ W(ω) = {η ∈ W1,4(ω);η = 0 on γ0}, that is,

∫

Ω
u0
ittηja

ij
√
adx

+
∫

Ω

∂

∂t

(∫ t

−∞

{
Aαβστ(t − τ)E0

σ‖τ(τ) +Aαβ33(t − τ)E0
3‖3(τ)

}
F0
α‖β(τ,η)dτ

)
√
adx

+
∫

Ω

∂

∂t

(∫ t

−∞

{
A33στ(t − τ)E0

σ‖τ(τ) +A3333(t − τ)E0
3‖3(τ)

}
F0
3‖3(τ,η)dτ

)
√
adx

=
∫

Ω
fi,0(t)ηi

√
adx +

∫

Γ+∪Γ−
hi,1(t)ηi

√
adΓ.

(3.22)

Setting

C(t) :=
∫ t

−∞

{
Aαβστ(t − τ)E0

σ‖τ(τ) +Aαβ33(t − τ)E0
3‖3(τ)

}
F0
α‖β(τ,η)dτ

+
∫ t

−∞

{
A33στ(t − τ)E0

σ‖τ(τ) +A3333(t − τ)E0
3‖3(τ)

}
F0
3‖3(τ,η)dτ,

(3.23)

we have

Ĉ(s) = Âαβστ(s)Ê0
σ‖τ(s) ∗ F̂0

α‖β(s,η) + Âαβ33(s)Ê0
3‖3(s) ∗ F̂0

α‖β(s,η)

+ Â33στ(s)Ê0
σ‖τ(s) ∗ F̂0

3‖3(s,η) + Â3333(s)Ê0
3‖3 ∗ F̂0

3‖3(s,η),
(3.24)
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where ∗ denotes convolution. Substituting (3.12) into (3.24), we get

Ĉ(s) = Âαβστ(s)Ê0
σ‖τ(s) ∗ F̂0

α‖β(s,η) −
λ̂(s)

λ̂(s) + 2μ̂(s)
Âαβ33(s)aστ Ê0

σ‖τ(s) ∗ F̂0
α‖β(s,η)

+ Â33στ(s)Ê0
σ‖τ(s) ∗ F̂0

3‖3(s,η) −
λ̂(s)

λ̂(s) + 2μ̂(s)
Â3333(s)aστ Ê0

σ‖τ(s) ∗ F̂0
3‖3(s,η)

= μ̂(s)
(
aασaβτ + aατaβσ

)
Ê0
σ‖τ(s) ∗ F̂0

α‖β(s,η) +
2μ̂(s)λ̂(s)

λ̂(s) + 2μ̂(s)
aαβaστ Ê0

σ‖τ(s) ∗ F̂0
α‖β(s,η).

(3.25)

Applying the inverse Laplace transformation to (3.25), we obtain

C(t) =
∫ t

−∞
aαβστ(t − τ)E0

σ‖τ(τ)F
0
α‖β(τ,η)dτ, (3.26)

where

a(t) := L−1
{

2λ̂(s)μ̂(s)

λ̂(s) + 2μ̂(s)

}

,

aαβστ(t) := a(t)aαβaστ + μ(t)
(
aασaβτ + aατaβσ

)
.

(3.27)

Inserting (3.26) into (3.22), we get the equation in Theorem 2.1.
Since u0(t) is independent of x3, it may be identified with a function ζ0(t) ∈

L∞(0, T ;W(Ω)). Consequently, the functions

E0
α‖β(t) :=

1
2

(
u0
β‖α(t) + u0

β‖α(t) + amnu0
m‖α(t)u

0
n‖β(t)

)
∈ L∞

(
0, T ;L2(Ω)

)
,

F0
α‖β(t,η) :=

1
2

(
ηα‖β + ηβ‖α + amn

{
u0
m‖α(t)ηn‖β + u0

n‖β(t)ηm‖α
})

∈ L∞
(
0, T ;L2(Ω)

)
,

(3.28)

which are thus also independent of x3, may be likewise identified with functions (denoted
for convenience by the same symbols)

E0
α‖β(t) :=

1
2

(
ζ0α‖β(t) + ζ0β‖α(t) + amnζ0m‖α(t)ζ

0
n‖β(t)

)
∈ L∞

(
0, T ;L2(ω)

)
,

F0
α‖β(t,η) :=

1
2

(
ηα‖β + ηβ‖α + amn

{
ζ0m‖α(t)ηn‖β + ζ0n‖β(t)ηm‖α

})
∈ L∞

(
0, T ;L2(ω)

)
,

(3.29)

where

ηα‖β = ∂βηα − Γσαβησ − bαβη3, η3‖η := ∂3η3 + bσβησ, (3.30)

for all η ∈ W(ω). The last variational problem is thus indeed two-dimensional.
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The definition of a(t) implies

â(s)
(
λ̂(s) + 2μ̂(s)

)
= 2λ̂(s)μ̂(s). (3.31)

Applying the inverse Laplace transformation to (3.31), we get

∫ t

0
a(t − τ)

(
λ(τ) + 2μ(τ)

)
dτ =

∫ t

0
2λ(t − τ)μ(τ)dτ. (3.32)

Therefore

a(0)
(
λ(t) + 2μ(t)

)
+
∫ t

0
a′(t − τ)

(
λ(τ) + 2μ(τ)

)
dτ = 2λ(0)μ(t) +

∫ t

0
2λ′(t − τ)μ(τ)dτ. (3.33)

Letting t = 0 in (3.33), we obtain immediately that

a(0) =
2λ(0)μ(0)

λ(0) + 2μ(0)
. (3.34)
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