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This contribution is devoted to the investigation of the asymptotic behavior of delayed difference
equations with an integer delay. We prove that under appropriate conditions there exists at least
one solution with its graph staying in a prescribed domain. This is achieved by the application of
a more general theorem which deals with systems of first-order difference equations. In the proof
of this theorem we show that a good way is to connect two techniques—the so-called retract-type
technique and Liapunov-type approach. In the end, we study a special class of delayed discrete
equations and we show that there exists a positive and vanishing solution of such equations.

1. Introduction

Throughout this paper, we use the following notation: for an integer q, we define

Z
∞
q :=

{
q, q + 1, . . .

}
. (1.1)

We investigate the asymptotic behavior for n → ∞ of the solutions of the discrete delayed
equation of the (k + 1)-th order

Δv(n) = f(n, v(n), v(n − 1), . . . , v(n − k)), (1.2)

where n is the independent variable assuming values from the set Z
∞
a with a fixed a ∈ N. The

number k ∈ N, k ≥ 1 is the fixed delay, Δv(n) = v(n + 1) − v(n), and f : Z
∞
a × R

k+1 → R.
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A function v : Z
∞
a−k → R is a solution of (1.2) if it satisfies (1.2) for every n ∈ Z

∞
a .

We will study (1.2) together with k + 1 initial conditions

v(a + s − k) = va+s−k ∈ R, s = 0, 1, . . . , k. (1.3)

Initial problem (1.2), (1.3) obviously has a unique solution, defined for every n ∈ Z
∞
a−k. If the

function f is continuous with respect to its last k + 1 arguments, then the solution of (1.2)
continuously depends on initial conditions (1.3).

Now we give a general description of the problem solved in this paper.

Problem 1. Let b, c : Z
∞
a−k → R be functions such that b(n) < c(n) for every n ∈ Z

∞
a−k. The

problem under consideration is to find sufficient conditions for the right-hand side of (1.2)
that will guarantee the existence of a solution v = v∗(n) of initial problem (1.2), (1.3) such
that

b(n) < v∗(n) < c(n), n ∈ Z
∞
a−k. (1.4)

This problem can be solved with help of a result which is valid for systems of first-
order difference equations and which will be presented in the next section. This is possible
because the considered equation (1.2) can be rewritten as a system of k + 1 first-order
difference equations, similarly as a differential equation of a higher order can be transformed
to a special system of first-order differential equations. Although the process of transforming
a (k + 1)-st order difference equation to a system of first order equations is simple and well-
known (it is described in Section 3), the determination of the asymptotic properties of the
solutions of the resulting system using either Liapunov approach or retract-type method
is not trivial. These analogies of classical approaches, known from the qualitative theory
of differential equations, were developed for difference systems in [1] (where an approach
based on Liapunov method was formulated) and in [2–5] (where retract-type analysis was
modified for discrete equations). It occurs that for the mentioned analysis of asymptotic
problems of system (1.2), neither the ideas of Liapunov, nor the retract-type technique can
be applied directly. However, in spite of the fact that each of the two mentioned methods fails
when used independently, it appears that the combination of both these techniques works
for this type of systems. Therefore, in Section 2 we prove the relevant result suitable for the
asymptotic analysis of systems arising by transformation of (1.2) to a system of first-order
differential equations (Theorem 2.1), where the assumptions put to the right-hand side of the
system are of both types: those caused by the application of the Liapunov approach and those
which are typical for the retract-type technique. Such an idea was applied in a particular case
of investigation of asymptotic properties of solutions of the discrete analogue of the Emden-
Fowler equation in [6, 7]. The approach is demonstrated in Section 3 where, moreover, its
usefulness is illustrated on the problem of detecting the existence of positive solutions of
linear equations with a single delay (in Section 3.4) and asymptotic estimation of solutions
(in Section 3.3).

Advantages of our approach can be summarized as follows. We give a general method
of analysis which is different from the well-known comparison method (see, e.g., [8, 9]).
Comparing our approach with the scheme of investigation in [10, 11] which is based on
a result from [12], we can see that the presented method is more general because it unifies



Abstract and Applied Analysis 3

the investigation of systems of discrete equations and delayed discrete equations thanks to
the Liapunov-retract-type technique.

For related results concerning positive solutions and the asymptotics of solutions of
discrete equations, the reader is referred also to [13–25].

2. The Result for Systems of First-Order Equations

Consider the system of m difference equations

Δu(n) = F(n, u(n)), (2.1)

where n ∈ Z
∞
a , u = (u1, . . . , um), and F : Z

∞
a × R

m → R
m, F = (F1, . . . , Fm). The solution of

system (2.1) is defined as a vector function u : Z
∞
a → R

m such that for every n ∈ Z
∞
a , (2.1) is

fulfilled. Again, if we prescribe initial conditions

ui(a) = uai ∈ R, i = 1, . . . , m (2.2)

the initial problem (2.1), (2.2) has a unique solution. Let us define a set Ω ⊂ Z
∞
a × R

m as

Ω :=
∞⋃

n=a
Ω(n), (2.3)

where

Ω(n) := {(n, u) : n ∈ Z
∞
a , ui ∈ R, bi(n) < ui < ci(n), i = 1, . . . , m} (2.4)

with bi, ci : Z
∞
a → R, i = 1, . . . , m, being auxiliary functions such that bi(n) < ci(n) for each

n ∈ Z
∞
a . Such set Ω is called a polyfacial set.

Our aim (in this part) is to solve, in correspondence with formulated Problem 1, the
following similar problem for systems of difference equations.

Problem 2. Derive sufficient conditions with respect to the right-hand sides of system (2.1)
which guarantee the existence of at least one solution u(n) = (u∗1(n), . . . , u

∗
m(n)), n ∈ Z

∞
a ,

satisfying

(
n, u∗1(n), . . . , u

∗
m(n)

)
∈ Ω(n) (2.5)

for every n ∈ Z
∞
a .

As we mentioned above, in [1] the above described problem is solved via a Liapunov-
type technique. Here we will combine this technique with the retract-type technique which
was used in [2–5] so as the result can be applied easily to the system arising after
transformation of (1.2). This brings a significant increase in the range of systems we are able
to investigate. Before we start, we recall some basic notions that will be used.
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2.1. Consequent Point

Define the mapping C : Z
∞
a × R

m → Z
∞
a × R

m as

C : (n, u) �−→ (n + 1, u + F(n, u)). (2.6)

For any point M = (n, u) ∈ Z
∞
a × R

m, the point C(M) is called the first consequent point of the
point M. The geometrical meaning is that if a point M lies on the graph of some solution of
system (2.1), then its first consequent point C(M) is the next point on this graph.

2.2. Liapunov-Type Polyfacial Set

We say that a polyfacial set Ω is Liapunov-type with respect to discrete system (2.1) if

bi(n + 1) < ui + Fi(n, u) < ci(n + 1) (2.7)

for every i = 1, . . . , m and every (n, u) ∈ Ω. The geometrical meaning of this property is this:
if a point M = (n, u) lies inside the set Ω(n), then its first consequent point C(M) stays inside
Ω(n + 1).

In this contribution we will deal with sets that need not be of Liapunov-type, but they
will have, in a certain sense, a similar property. We say that a polyfacial set Ω is Liapunov-type
with respect to the jth variable (j ∈ {1, . . . , m}) and to discrete system (2.1) if

(n, u) ∈ Ω =⇒ bj(n + 1) < uj + Fj(n, u) < cj(n + 1). (2.8)

The geometrical meaning is that if M = (n, u) ∈ Ω(n), then the uj-coordinate of its first
consequent point stays between bj(n + 1) and cj(n + 1), meanwhile the other coordinates of
C(M) may be arbitrary.

2.3. Points of Strict Egress and Their Geometrical Sense

An important role in the application of the retract-type technique is played by the so called
strict egress points. Before we define these points, let us describe the boundaries of the sets
Ω(n), n ∈ Z

∞
a , in detail. As one can easily see,

⋃

n∈Z∞a
∂Ω(n) =

⎛

⎝
m⋃

j=1

Ωj

B

⎞

⎠ ∪

⎛

⎝
m⋃

j=1

Ωj

C

⎞

⎠ (2.9)

with

Ωj

B :=
{
(n, u) : n ∈ Z

∞
a , uj = bj(n), bi(n) ≤ ui ≤ ci(n), i = 1, . . . , m, i /= j

}
,

Ωj

C :=
{
(n, u) : n ∈ Z

∞
a , uj = cj(n), bi(n) ≤ ui ≤ ci(n), i = 1, . . . , m, i /= j

}
.

(2.10)
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In accordance with [3, Lemmas 1 and 2], a point (n, u) ∈ ∂Ω(n) is a point of the type of strict
egress for the polyfacial set Ω with respect to discrete system (2.1) if and only if for some
j ∈ {1, . . . , m}

uj = bj(n), Fj(n, u) < bj(n + 1) − bj(n), (2.11)

or

uj = cj(n), Fj(n, u) > cj(n + 1) − cj(n). (2.12)

Geometrically these inequalities mean the following: if a point M = (n, u) ∈ ∂Ω(n) is a point
of the type of strict egress, then the first consequent point C(M) /∈ Ω(n + 1).

2.4. Retract and Retraction

If A ⊂ B are any two sets in a topological space and π : B → A is a continuous mapping
from B onto A such that π(p) = p for every p ∈ A, then π is said to be a retraction of B onto
A. If there exists a retraction of B onto A, then A is called a retract of B.

2.5. The Existence Theorem for the System of First-Order Equations
(Solution of Problem 2)

The following result, solving Problem 2, gives sufficient conditions with respect to the right-
hand sides of (2.1) which guarantee the existence of at least one solution satisfying (2.5) for
every n ∈ Z

∞
a .

Theorem 2.1. Let bi(n), ci(n), bi(n) < ci(n), i = 1, . . . , m, be real functions defined on Z
∞
a and let

Fi : Z
∞
a × R

m → R, i = 1, . . . , m, be continuous functions. Suppose that for one fixed j ∈ {1, . . . , m}
all the points of the sets Ωj

B, Ω
j

C are points of strict egress, that is, if (n, u) ∈ Ωj

B, then

Fj(n, u) < bj(n + 1) − bj(n), (2.13)

and if (n, u) ∈ Ωj

C, then

Fj(n, u) > cj(n + 1) − cj(n). (2.14)

Further suppose that the set Ω is of Liapunov-type with respect to the ith variable for every i ∈
{1, . . . , m}, i /= j, that is, that for every (n, u) ∈ Ω

bi(n + 1) < ui + Fi(n, u) < ci(n + 1). (2.15)

Then there exists a solution u = (u∗1(n), . . . , u
∗
m(n)) of system (2.1) satisfying the inequalities

bi(n) < u∗i (n) < ci(n), i = 1, . . . , m, (2.16)

for every n ∈ Z
∞
a .
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Proof. The proof will be by contradiction. We will suppose that there exists no solution
satisfying inequalities (2.16) for every n ∈ Z

∞
a . Under this supposition we prove that there

exists a continuous mapping (a retraction) of a closed interval onto both its endpoints which
is, by the intermediate value theorem of calculus, impossible.

Without the loss of generality we may suppose that the index j in Theorem 2.1 is equal
to 1, that is, all the points of the sets Ω1

B and Ω1
C are strict egress points. Each solution of

system (2.1) is uniquely determined by the chosen initial condition

u(a) = (u1(a), . . . , um(a)) =
(
ua1 , . . . , u

a
m

)
= ua. (2.17)

For the following considerations, let uai with uai ∈ (bi(a), ci(a)), i = 2, . . . , m, be chosen
arbitrarily but fixed. Now the solution of (2.1) is given just by the choice of ua1 , we can write

u = u
(
n, ua1

)
=
(
u1
(
n, ua1

)
, . . . , um

(
n, ua1

))
. (2.18)

Define the closed interval I := [b1(a), c1(a)]. Hereafter we show that, under the supposition
that there exists no solution satisfying inequalities (2.16), there exists a retraction R (which
will be a composition of two auxiliary mappings R1 and R2 defined below) of the set B := I
onto the set A := ∂I = {b1(a), c1(a)}. This contradiction will prove our result. To arrive at
such a contradiction, we divide the remaining part of the proof into several steps.

Construction of the Leaving Value n∗

Let a point ũ1 ∈ I be fixed. The initial condition u1(a) = ũ1 defines a solution u = u(n, ũ1) =
(u1(n, ũ1), . . . , um(n, ũ1)). According to our supposition, this solution does not satisfy inequal-
ities (2.16) for every n ∈ Z

∞
a . We will study the moment the solution leaves the domain Ω for

the first time. The first value of n for which inequalities (2.16) are not valid will be denoted
as s.

(I) First consider the case ũ1 ∈ int I. Then there exists a value s > 1 in Z
∞
a+1 such that

(s, u(s, ũ1)) /∈ Ω(s) (2.19)

while

(r, u(r, ũ1)) ∈ Ω(r) for a ≤ r ≤ s − 1. (2.20)

As the set Ω is of the Liapunov-type with respect to all variables except the first one and
(s − 1, u(s − 1, ũ1)) ∈ Ω(s − 1), then

bi(s) < ui(s, ũ1) < ci(s), i = 2, . . . , m. (2.21)

Because j = 1 was assumed, and Ω is of Liapunov-type for each variable ui, i /= j, then the
validity of inequalities (2.16) has to be violated in the u1-coordinate. The geometrical meaning
was explained in Section 2.2.

Now, two cases are possible: either (s, u(s, ũ1)) /∈ Ω(s) or (s, u(s, ũ1)) ∈ ∂Ω(s). In
the first case u1(s, ũ1) < b1(s) or u1(s, ũ1) > c1(s). In the second case u1(s, ũ1) = b1(s) or
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u1(s, ũ1) = c1(s) and, due to (2.13) and (2.14), u1(s+1, ũ1) < b1(s+1) or u1(s+1, ũ1) > c1(s+1),
respectively.

(II) If ũ1 ∈ ∂I, then (a, u(a, ũ1)) /∈ Ω(a). Thus, for this case, we could put s = a. Further,
because of the strict egress property of Ω1

B and Ω1
C, either u1(a+1, ũ1) < b1(a+1) (if ũ1 = b1(a))

or u1(a + 1, ũ1) > c1(a + 1) (if ũ1 = c1(a)) and thus (a + 1, u(a + 1, ũ1)) /∈ Ω(a + 1).
Unfortunately, for the next consideration the value s (the first value of the independent

variable for which the graph of the solution is out of Ω) would be of little use. What we will
need is the last value for which the graph of the solution stays in Ω. We will denote this value
as n∗ and will call it the leaving value. We can define n∗ as

n∗ = s − 1 if (s, u(s, ũ1)) /∈ Ω(s),
n∗ = s if (s, u(s, ũ1)) ∈ ∂Ω(s).

(2.22)

As the value of n∗ depends on the chosen initial point ũ1, we could write n∗ = n∗(ũ1) but
we will mostly omit the argument ũ1, unless it is necessary. From the above considerations it
follows that

b1(n∗) ≤ u1(n∗, ũ1) ≤ c1(n∗),

u1(n∗ + 1, ũ1) < b1(n∗ + 1) or u1(n∗ + 1, ũ1) > c1(n∗ + 1).
(2.23)

Auxiliary Mapping R1

Now we construct the auxiliary mapping R1 : I → R × R. First extend the discrete functions
b1, c1 onto the whole interval [a,∞):

b1(t) := b1(�t) + (b1(�t + 1) − b1(�t))(t − �t),

c1(t) := c1(�t) + (c1(�t + 1) − c1(�t))(t − �t),
(2.24)

�t being the integer part of t (the floor function). Note that b1, c1 are now piecewise linear
continuous functions of a real variable t such that b1(t) < c1(t) for every t and that the original
values of b1(n), c1(n) for n ∈ Z

∞
a are preserved. This means that the graphs of these functions

connect the points (n, b1(n)) or (n, c1(n)) for n ∈ Z
∞
a , respectively. Denote V the set

V := {(t, u1) : t ∈ [a,∞), b1(t) ≤ u1 ≤ c1(t)}. (2.25)

The boundary of V consists of three mutually disjoint parts Va, Vb, and Vc:

∂V = Va ∪ Vb ∪ Vc, (2.26)

where

Va := {(a, u1) : b1(a) < u1 < c1(a)},

Vb := {(t, u1) : t ∈ [a,∞), u1 = b1(t)},

Vc := {(t, u1) : t ∈ [a,∞), u1 = c1(t)}.

(2.27)
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Define the mapping R1 : I → Vb ∪ Vc as follows: let R1(ũ1) be the point of intersection of
the line segment defined by its end points (n∗, u1(n∗, ũ1)), (n∗ + 1, u1(n∗ + 1, ũ1)) with Vb ∪ Vc
(see Figure 1). The mapping R1 is obviously well defined on I and R1(b1(a)) = (a, b1(a)),
R1(c1(a)) = (a, c1(a)).

Prove that the mapping R1 is continuous. The point R1(ũ1) = (t(ũ1), u1(ũ1)) lies either
on Vb or on Vc. Without the loss of generality, consider the second case (the first one is
analogical). The relevant boundary line segment for t ∈ [n∗, n∗ + 1], which is a part of Vc,
is described by (see (2.24))

u1 = c(n∗) + (c(n∗ + 1) − c(n∗))(t − n∗), (2.28)

and the line segment joining the points (n∗, u1(n∗, ũ1)), (n∗ + 1, u1(n∗ + 1, ũ1)) by the equation

u1 = u1(n∗, ũ1) + (u1(n∗ + 1, ũ1) − u1(n∗, ũ1))(t − n∗), t ∈ [n∗, n∗ + 1]. (2.29)

The coordinates of the point R1(ũ1) = (t(ũ1), u1(ũ1)), which is the intersection of both these
line segments, can be obtained as the solution of the system consisting of (2.28) and (2.29).
Solving this system with respect to t and u1, we get

t(ũ1) = n∗ +
u1(n∗, ũ1) − c1(n∗)

c1(n∗ + 1) − u1(n∗ + 1, ũ1) + u1(n∗, ũ1) − c1(n∗)
, (2.30)

u1(ũ1) = c1(n∗) +
(u1(n∗, ũ1) − c1(n∗))(c1(n∗ + 1) − c1(n∗))

c1(n∗ + 1) − u1(n∗ + 1, ũ1) + u1(n∗, ũ1) − c1(n∗)
. (2.31)

Let {vk}∞k=1 be any sequence with vk ∈ I such that vk → ũ1. We will show that R1(vk) →
R1(ũ1). Because of the continuity of the functions Fi, i = 1, . . . , m,

u1(n, vk) → u1(n, ũ1) for every fixed n ∈ Z
∞
a . (2.32)

We have to consider two cases:

(I) (n∗, u(n∗, ũ1)) ∈ Ω(n∗), that is, b1(n∗) < u1(n∗, ũ1) < c1(n∗),

(II) (n∗, u(n∗, ũ1)) ∈ ∂Ω(n∗), that is, u1(n∗, ũ1) = c1(n∗).

Recall that (due to our agreement) in both cases u1(n∗ + 1, ũ1) > c1(n∗ + 1).

(I) In this case also u1(n∗, vk) < c1(n∗) and u1(n∗ + 1, vk) > c1(n∗ + 1) for k sufficiently
large. That means that the leaving value n∗(vk) is the same as n∗ given by ũ1 and
thus the point R1(vk) = (t(vk), u1(vk)) is given by

t(vk) = n∗ +
u1(n∗, vk) − c1(n∗)

c1(n∗ + 1) − u1(n∗ + 1, vk) + u1(n∗, vk) − c1(n∗)
, (2.33)

u1(vk) = c1(n∗) +
(u1(n∗, vk) − c1(n∗))(c1(n∗ + 1) − c1(n∗))

c1(n∗ + 1) − u1(n∗ + 1, vk) + u1(n∗, vk) − c1(n∗)
. (2.34)
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tn∗ + 1n∗n∗ − 1a + 1a

Vb

Va Vc

u1(n∗ + 1)

R1(ũ1)

u1(a)

u1(a + 1)
u1(n∗)

b1(a)

ũ1

c1(a)

u1

Figure 1: Construction of the mapping R1.

The desired convergence R1(vk) → R1(ũ1) is implied by equations (2.30) to (2.34).

(II) Suppose n∗ = a. Then ũ1 = c1(a), vk = u1(a, vk) < c1(a) for all k and as k → ∞,
u1(a + 1, vk) > c1(a + 1). A minor edit of the text in the case (I) proof provides the
continuity proof.

Suppose n∗ > a. In this case there can be u1(n∗, vk) ≤ c1(n∗) for some members of the
sequence {vk} and u1(n∗, vk) > c1(n∗) for the others. Without the loss of generality,
we can suppose that {vk} splits into two infinite subsequences {vqk} and {vrk} such
that

u1
(
n∗, vqk

)
≤ c1(n∗), u1

(
n∗ + 1, vqk

)
> c1(n∗ + 1)

u1(n∗, vrk) > c1(n∗).
(2.35)

For the subsequence {vqk}, the text of the proof of (I) can be subjected to a minor
edit to provide the proof of continuity. As for the subsequence {vrk}, the leaving
value n∗(vrk) is different from n∗ given by ũ1 because (n∗, u1(n∗, vrk)) is already out
of Ω. For k sufficiently large,

n∗(vrk) = n
∗ − 1 (2.36)

because u1(n∗ − 1, ũ1) < c1(n∗ − 1) and thus, as k → ∞, u1(n∗ − 1, vrk) < c1(n∗ − 1).

Hence, the value of the mapping R1 for vrk is (in (2.33), (2.34) we replace n∗ by
n∗ − 1)

t(vrk) = n
∗ − 1 +

u1(n∗ − 1, vrk) − c1(n∗ − 1)
c1(n∗) − u1(n∗, vrk) + u1(n∗ − 1, vrk) − c1(n∗ − 1)

,

u1(vrk) = c(n
∗ − 1) +

(u1(n∗ − 1, vrk) − c1(n∗ − 1))(c1(n∗) − c1(n∗ − 1))
c1(n∗) − u1(n∗, vrk) + u1(n∗ − 1, vrk) − c1(n∗ − 1)

.

(2.37)
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Due to (2.32), u1(n∗, vrk) → u1(n∗, ũ1) = c1(n∗) and thus

t(vrk) −→ n∗ − 1 +
u1(n∗ − 1, vrk) − c1(n∗ − 1)
u1(n∗ − 1, vrk) − c1(n∗ − 1)

= n∗,

u1(vrk) −→ c(n∗ − 1) +
(u1(n∗ − 1, vrk) − c1(n∗ − 1))(c1(n∗) − c1(n∗ − 1))

u1(n∗ − 1, vrk) − c1(n∗ − 1)
= c1(n∗),

R1(vrk) = (t(vrk), u1(vrk)) −→ (n∗, c1(n∗)) = R1(ũ1).

(2.38)

We have shown that R1(vqk) → R1(ũ1) and R1(vrk) → R1(ũ1) and thus R1(vk) →
R1(ũ1).

Auxiliary Mapping R2

Define R2 : Vb ∪ Vc → {b1(a), c1(a)} as

R2(P) =

⎧
⎨

⎩

b1(a) if P ∈ Vb,

c1(a) if P ∈ Vc.
(2.39)

The mapping R2 is obviously continuous.

Resulting Mapping R and Its Properties

Define R := R2 ◦ R1. Due to construction we have

R(b1(a)) = b1(a), R(c1(a)) = c1(a), (2.40)

and R(I) = ∂I. The mapping R is continuous because of the continuity of the two mappings
R1 and R2. Hence, it is the sought retraction of I onto ∂I. But such a retraction cannot exist
and thus we get a contradiction and the proof is complete.

3. Application of Theorem 2.1 to the Delayed Discrete Equation

Now, let us return to the original delayed discrete equation (1.2), that is,

Δv(n) = f(n, v(n), v(n − 1), . . . , v(n − k)). (3.1)

As it was said in Section 1, this equation will be transformed to a system of k + 1 first-order
discrete equations. Then we will apply Theorem 2.1 to this system and prove that under
certain conditions there exists a solution of delayed equation (1.2) that stays in the prescribed
domain. In the end, we will study a special case of (1.2).
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3.1. Transformation of (1.2) to the System of First-Order Equations

We will proceed in accordance with the well-known scheme similarly as when constructing
the system of first-order differential equations from a differential equation of a higher order.
Put

u1(n) := v(n),

u2(n) := v(n − 1),

· · ·

uk+1(n) := v(n − k),

(3.2)

where u1, u2, . . . , uk+1 are new unknown functions. From (1.2) we get Δu1(n) = f(n, u1(n),
u2(n), . . . , uk+1(n)). Obviously u2(n + 1) = u1(n), . . . , uk+1(n + 1) = uk(n). Rewriting these
equalities in terms of differences, we have Δu2(n) = u1(n) − u2(n), . . . ,Δuk+1(n) = uk(n) −
uk+1(n). Altogether, we get the system

Δu1(n) = f(n, u1(n), . . . , uk+1(n)),

Δu2(n) = u1(n) − u2(n),

· · ·

Δuk+1(n) = uk(n) − uk+1(n)

(3.3)

which is equivalent to (1.2).

3.2. The Existence Theorem for the Delayed Equation (1.2)
(Solution of Problem 1)

The following theorem is a consequence of Theorem 2.1. In fact, this theorem has been already
proved in [12]. There, the proof is based upon a modification of the retract method for delayed
equations. Our method (rearranging a delayed equation to a system of first-order equations)
is, by its principle, more general than that used in [12].

Theorem 3.1. Let b(n), c(n), b(n) < c(n), be real functions defined on Z
∞
a−k. Further, let f : Z

∞
a ×

R
k+1 → R be a continuous function and let the inequalities

b(n) + f(n, b(n), v2, . . . , vk+1) < b(n + 1), (3.4)

c(n) + f(n, c(n), v2, . . . , vk+1) > c(n + 1) (3.5)

hold for every n ∈ Z
∞
a and every v2, . . . , vk+1 such that

b(n − i + 1) < vi < c(n − i + 1), i = 2, . . . , k + 1. (3.6)
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Then there exists a solution v = v∗(n) of (1.2) satisfying the inequalities

b(n) < v∗(n) < c(n) (3.7)

for every n ∈ Z
∞
a−k.

Proof. We have shown that (1.2) is equivalent to system (3.3) which can be seen as a special
case of system (2.1) with m = k + 1 and F = (F1, . . . Fk+1) where

F1(n, u1, . . . , uk+1) := f(n, u1, . . . , uk+1),

F2(n, u1, . . . , uk+1) := u1 − u2,

· · ·

Fk(n, u1, . . . , uk+1) := uk−1 − uk,

Fk+1(n, u1, . . . , uk+1) := uk − uk+1.

(3.8)

Define the polyfacial set Ω as

Ω := {(n, u) : n ∈ Z
∞
a , bi(n) < ui < ci(n), i = 1, . . . , k + 1} (3.9)

with

bi(n) := b(n − i + 1), ci(n) := c(n − i + 1), i = 1, . . . , k + 1. (3.10)

We will show that for system (3.3) and the set Ω, all the assumptions of Theorem 2.1 are
satisfied.

As the function f is supposed to be continuous, the mapping F is continuous, too. Put
the index j from Theorem 2.1, characterizing the points of egress, equal to 1. We will verify
that the set Ω is of Liapunov-type with respect to the ith variable for any i = 2, . . . , k + 1, that
is, (see (2.8)) that for every (n, u) ∈ Ω

bi(n + 1) < ui + Fi(n, u) < ci(n + 1) for i = 2, . . . , k + 1. (3.11)

First, we compute

ui + Fi(n, u) = ui + ui−1 − ui = ui−1 for i = 2, . . . , k + 1. (3.12)

Thus we have to show that for i = 2, . . . , k + 1

bi(n + 1) < ui−1 < ci(n + 1). (3.13)

Because (n, u) ∈ Ω, then bp(n) < up < cp(n) for any p ∈ {1, . . . , k + 1}, and therefore

bi−1(n) < ui−1 < ci−1(n) for i = 2, . . . , k + 1. (3.14)
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But, by (3.10), we have

bi−1(n) = b(n − i + 1 + 1) = b(n − i + 2), (3.15)

meanwhile

bi(n + 1) = b(n + 1 − i + 1) = b(n − i + 2), (3.16)

and thus bi−1(n) = bi(n + 1). Analogously we get that ci−1(n) = ci(n + 1). Thus inequalities
(3.11) are fulfilled.

Further we will show that all the boundary points M ∈ Ω1
B ∪ Ω1

C are points of strict
egress for the set Ω with respect to system (3.3). According to (2.11), we have to show that if
u1 = b1(n) and bi(n) < ui < ci(n) for i = 2, . . . , k + 1, then

b1(n) + F1(n, u) < b1(n + 1), (3.17)

that is,

b1(n) + f(n, b1(n), u2, . . . , uk+1) < b1(n + 1). (3.18)

Notice that the condition bi(n) < ui < ci(n) for i = 2, . . . , k + 1 is equivalent with condition
b(n−i+1) < ui < c(n−i+1) (see (3.10)). Looking at the supposed inequality (3.4) and realizing
that b1(n) = b(n) and b1(n + 1) = b(n + 1), we can see that inequality (3.18) is fulfilled.

Analogously, according to (2.12), we have to prove that for u1 = c1(n) and bi(n) < ui <
ci(n) for i = 2, . . . , k + 1 the inequality

c1(n) + F1(n, u) > c1(n + 1), (3.19)

that is,

c1(n) + f(n, c1(n), u2, . . . , uk+1) > c1(n + 1) (3.20)

holds.
Again, considering (3.5) and the fact that c1(n) = c(n) and c1(n + 1) = c(n + 1), we can

see that this inequality really holds.
Thus, by the assertion of Theorem 2.1, there exists a solution u = u∗(n) of system (3.3)

such that for every n ∈ Z
∞
a

bi(n) < u∗i (n) < ci(n) for i = 1, . . . , k + 1. (3.21)

In our case, v = v∗(n) = u∗1(n) is the solution of the original equation (1.2). Further,
b1(n) = b(n) and c1(n) = c(n), and thus the existence of a solution of the delayed equation
(1.2) such that inequalities (3.7) are satisfied is guaranteed.
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3.3. Asymptotic Solution Estimates for Delayed Difference Equations

Let us suppose that two functions u,w : Z
∞
a−k → R are given such that

u(n) < w(n), n ∈ Z
∞
a−k, (3.22)

Δu(n) ≥ f(n, u(n), u(n − 1), . . . , u(n − k)), n ∈ Z
∞
a , (3.23)

Δw(n) ≤ f(n,w(n), w(n − 1), . . . , w(n − k)), n ∈ Z
∞
a . (3.24)

Consider the problem of whether there exists a solution v = v∗(n), n ∈ Z
∞
a−k of (1.2) such that

u(n) < v∗(n) < w(n), n ∈ Z
∞
a−k. (3.25)

The following corollary of Theorem 3.1 presents sufficient conditions for the existence of
a solution of this problem.

Corollary 3.2. Let functions u,w : Z
∞
a−k → R satisfy inequalities (3.22)–(3.24). Let f : Z

∞
a ×

R
k+1 → R be a continuous function such that

f
(
n, u(n), y2, . . . , yk+1

)
> f(n, u(n), z2, . . . , zk+1), (3.26)

f
(
n,w(n), y2, . . . , yk+1

)
> f(n,w(n), z2, . . . , zk+1) (3.27)

for every n ∈ Z
∞
a and every y2, . . . , yk+1, z2, . . . , zk+1 ∈ R such that

yi < zi, i = 2, . . . , k + 1. (3.28)

Then there exists a solution v = v∗(n) of (1.2) satisfying inequalities (3.25) for every n ∈ Z
∞
a−k.

Proof. This assertion is an easy consequence of Theorem 3.1.
Put b(n) := u(n), c(n) := w(n). Considering inequalities (3.23) and (3.26), we can see

that

Δu(n) > f(n, u(n), v2, . . . , vk+1) (3.29)

for every n ∈ Z
∞
a and every v2, . . . , vk+1 such that

b(n − i + 1) < vi < c(n − i + 1), i = 2, . . . , k + 1. (3.30)

Similarly,

Δw(n) < f(n,w(n), v2, . . . , vk+1) (3.31)

for every n ∈ Z
∞
a and every b(n − i + 1) < vi < c(n − i + 1), i = 2, . . . , k + 1.
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Obviously, inequalities (3.29) and (3.31) are equivalent with inequalities (3.4) and
(3.5), respectively. Thus, all the assumptions of Theorem 3.1 are satisfied and there exists a
solution v = v∗(n) of (1.2) satisfying inequalities (3.25) for every n ∈ Z

∞
a−k.

Example 3.3. Consider the equation

Δv(n) = v2(n) − v(n − 1) (3.32)

for n ∈ Z
∞
3 which is a second-order delayed discrete equation with delay k = 1. We will show

that there exists a solution v = v∗(n) of (3.32) that satisfies the inequalities

1 < v∗(n) < n (3.33)

for n ∈ Z
∞
2 .

We will prove that for the functions

u(n) := 1, w(n) := n, f(n, v1, v2) := v2
1 − v2 (3.34)

all the assumptions of Corollary 3.2 are satisfied. Inequality (3.22) is obviously fulfilled for
n ∈ Z

∞
2 . Inequality (3.23) can be also proved very easily:

Δu(n) = 0, f(n, u(n), u(n − 1)) = 12 − 1 = 0, (3.35)

and thus for every n ∈ Z
∞
3 , Δu(n) ≥ f(n, u(n), u(n − 1)).

As for inequality (3.24), we get

Δw(n) = 1, f(n,w(n), w(n − 1)) = n2 − n + 1 (3.36)

and thus Δw(n) ≤ f(n,w(n), w(n − 1)) for n ∈ Z
∞
3 .

Finally, the functions

f(n, u(n), v2) = 1 − v2, f(n,w(n), v2) = n2 − v2 (3.37)

are decreasing with respect to v2. Therefore, conditions (3.26) and (3.27) are satisfied, too.
Hence, due to Corollary 3.2, there exists a solution of (3.32) satisfying (3.33).

3.4. Positive Solutions of a Linear Equation with a Single Delay

We will apply the result of Theorem 3.1 to the investigation of a simple linear difference
equation of the (k + 1)-st order with only one delay, namely, the equation

Δv(n) = −p(n)v(n − k), (3.38)

where, again, n ∈ Z
∞
a is the independent variable and k ∈ N, k ≥ 1, is the fixed delay. The

function p : Z
∞
a → R is assumed to be positive. Our goal is to give sharp sufficient conditions
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for the existence of positive solutions. The existence of such solutions is very often substantial
for a concrete model considered. For example, in biology, when a model of population
dynamics is described by an equation, the positivity of a solution may mean that the studied
biological species can survive in the supposed environment.

For its simple form, (3.38) often serves for testing new results and is very frequently
investigated. It was analyzed, for example, in papers [10, 11, 26]. A sharp result on existence
of positive solutions given in [26] is proved by a comparison method [8, 9]. Here we will use
Theorem 3.1 to generalize this result.

For the purposes of this section, define the expression lnqt, where q ∈ N, as

lnqt := ln
(
lnq−1t

)

ln0t := t.
(3.39)

We will write only ln t instead of ln1t. Further, for a fixed integer � ≥ 0 define auxiliary
functions

μ�(n) :=
1

8n2
+

1

8(n lnn)2
+ · · · + 1

8(n lnn · · · ln�n)2
,

p�(n) :=
(

k

k + 1

)k
·
(

1
k + 1

+ kμ�(n)
)
,

(3.40)

ν�(n) :=
(

k

k + 1

)n
·
√
n lnn ln2n · · · ln�n. (3.41)

In [26], it was proved that if p(n) in (3.38) is a positive function bounded by p�(n) for some
� ≥ 0, then there exists a positive solution of (3.38) bounded by the function ν�(n) for n
sufficiently large. Since limn→∞ν�(n) = 0, such solution will vanish for n → ∞. Here we
show that (3.38) has a positive solution bounded by ν�(n) even if the coefficient p(n) satisfies
a less restrictive inequality (see inequality (3.58) below). The proof of this statement will be
based on the following four lemmas. The symbols “o” and “O” stand for the Landau order
symbols and are used for n → ∞.

Lemma 3.4. The formula

ln
(
y − z

)
= lny −

∞∑

i=1

zi

iyi
(3.42)

holds for any numbers y, z ∈ R such that y > 0 and |z| < y.

Proof. The assertion is a simple consequence of the well-known Maclaurin expansion

ln(1 − x) = −
∞∑

i=1

1
i
xi for − 1 ≤ x < 1. (3.43)
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As ln(y − z) − lny = ln(1 − z/y), substituting x = z/y we get

ln
(
y − z

)
− lny = −

∞∑

i=1

zi

iyi
for − y ≤ z < y (3.44)

and adding lny to both sides of this equality, we get (3.42).

Lemma 3.5. For fixed r ∈ R \ {0} and fixed q ∈ N, the asymptotic representation

lnq(n − r) = lnqn −
r

n lnn · · · lnq−1n
− r2

2n2 lnn · · · lnq−1n

− r2

2(n lnn)2ln2n · · · lnq−1n
− · · · − r2

2
(
n lnn · · · lnq−1n

)2

− r3(1 + o(1))
3n3 lnn · · · lnq−1n

(3.45)

holds for n → ∞.

Proof. We will prove relation (3.45) by induction with respect to q. For q = 1, (3.45) reduces to

ln(n − r) = lnn − r
n
− r2

2n2
− r

3(1 + o(1))
3n3

(3.46)

which holds due to Lemma 3.4. Suppose that relation (3.45) holds for some q. We can write
lnq(n − r) = y − z with y = lnqn and

z =
r

n lnn · · · lnq−1n
+

r2

2n2 lnn · · · lnq−1n
+

r2

2(n lnn)2ln2n · · · lnq−1n

+ · · · + r2

2
(
n lnn · · · lnq−1n

)2
+

r3(1 + o(1))
3n3 lnn · · · lnq−1n

.

(3.47)

Now we will show that (3.45) holds for q + 1. Notice that in our case, the condition |z| < y
from Lemma 3.4 is fulfilled for n sufficiently large because z → 0 for n → ∞, meanwhile
y → ∞ for n → ∞. Thus we are justified to use Lemma 3.4 and doing so, we get
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lnq+1(n − r) = ln
(
lnq(n − r)

)

= ln
(
y − z

)
= lny − 1

y
z − 1

2y2
z2 − · · ·

= ln
(
lnqn

)
− 1

lnqn
·
(

r

n lnn · · · lnq−1n
+

r2

2n2 lnn · · · lnq−1n
+ · · ·

+
r2

2
(
n lnn · · · lnq−1n

)2
+

r3(1 + o(1))
3n3 lnn · · · lnq−1n

)

− 1

2
(
lnqn

)2
·
(

r2

(
n lnn · · · lnq−1n

)2
+O

(
1

n3
(
lnn · · · lnq−1n

)2

))

+O

(
1

(
n lnn · · · lnqn

)3

)

= lnq+1n −
r

n lnn · · · lnqn
− r2

2n2 lnn · · · lnqn
− r2

2(n lnn)2ln2n · · · lnqn

− · · · − r2

2
(
n lnn · · · lnqn

)2
− r3(1 + o(1))

3n3 lnn · · · lnqn
.

(3.48)

Thus, formula (3.45) holds for q + 1, too, which ends the proof.

Lemma 3.6. For fixed r ∈ R \ {0} and fixed q ∈ N, the asymptotic representations

√
lnq(n − r)

lnqn
= 1 − r

2n lnn · · · lnqn
− r2

4n2 lnn · · · lnqn
− r2

4(n lnn)2ln2n · · · lnqn
− · · ·

− r2

4
(
n lnn · · · lnq−1n

)2lnqn
− r2

8
(
n lnn · · · lnqn

)2
− r3(1 + o(1))

6n3 lnn · · · lnqn
,

(3.49)

√
n − r
n

= 1 − r

2n
− r2

8n2
− r3

16n3
+ o
(

1
n3

)
(3.50)

hold for n → ∞.

Proof. Both these relations are simple consequences of the asymptotic formula

√
1 − x = 1 − 1

2
x − 1

8
x2 − 1

16
x3 + o

(
x3
)

for x −→ 0 (3.51)

and of Lemma 3.5 (for formula (3.49)). In the case of relation (3.49), we put

x =
r

n lnn · · · lnqn
+

r2

2n2 lnn · · · lnqn
+ · · · + r2

2
(
n lnn · · · lnq−1n

)2lnqn
+

r3(1 + o(1))
3n3 lnn · · · lnqn

(3.52)

and in the case of relation (3.50), we put x = r/n.
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Lemma 3.7. For fixed r ∈ R \ {0} and fixed q ∈ N, the asymptotic representation

√
(n − r)
n

ln(n − r)
lnn

· · ·
lnq(n − r)

lnqn

= 1 − r
(

1
2n

+
1

2n lnn
+ · · · + 1

2n lnn · · · lnqn

)

− r2μq(n) −
r3

16n3
+ o
(

1
n3

) (3.53)

holds for n → ∞.

Proof. We will prove relation (3.53) by induction with respect to q. For q = 1, (3.53) reduces to

√
(n − r)
n

ln(n − r)
lnn

= 1 − r
(

1
2n

+
1

2n lnn

)
− r2μ1(n) −

r3

16n3
+ o
(

1
n3

)

= 1 − r
(

1
2n

+
1

2n lnn

)
− r2

(
1

8n2
+

1

8(n lnn)2

)

− r3

16n3
+ o
(

1
n3

)
.

(3.54)

On the other hand, using Lemma 3.6, we get

√
(n − r)
n

ln(n − r)
lnn

=

(

1 − r

2n
− r2

8n2
− r3

16n3
+ o
(

1
n3

))

×
(

1 − r

2n lnn
− r2

4n2 lnn
− r2

8(n lnn)2
− r

3(1 + o(1))
6n3 lnn

)

= 1 − r

2n lnn
− r2

4n2 lnn
− r2

8(n lnn)2
− r

2n
+

r2

4n2 lnn
− r2

8n2
− r3

16n3
+ o
(

1
n3

)

= 1 − r
(

1
2n

+
1

2n lnn

)
− r2

(
1

8n2
+

1

8(n lnn)2

)

− r3

16n3
+ o
(

1
n3

)
.

(3.55)

Thus, for q = 1, relation (3.53) holds. Now suppose that (3.53) holds for some q and prove
that it holds for q + 1. In the following calculations, we use Lemma 3.6 and we skip some
tedious expressions handling.
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√

(n − r)
n

ln(n − r)
lnn

· · ·
lnq+1(n − r)

lnq+1n

=

√
(n − r)
n

ln(n − r)
lnn

· · ·
lnq(n − r)

lnqn
·
√

lnq+1(n − r)
lnq+1n

=

(

1 − r
(

1
2n

+
1

2n lnn
+ · · · + 1

2n lnn · · · lnqn

)

− r2μq(n) −
r3

16n3
+ o
(

1
n3

))

×
(

1 − r

2n lnn · · · lnq+1n
− r2

4n2 lnn · · · lnq+1n
− · · ·

− r2

4
(
n lnn · · · lnqn

)2lnq+1n
− r2

8
(
n lnn · · · lnq+1n

)2
+ o
(

1
n3

))

= 1 − r
(

1
2n

+
1

2n lnn
+ · · · + 1

2n lnn · · · lnq+1n

)

− r2μq+1(n) −
r3

16n3
+ o
(

1
n3

)
.

(3.56)

We can see that formula (3.53) holds for q + 1, too, which ends the proof.

Now we are ready to prove that there exists a bounded positive solution of (3.38).
Remind that functions p� and ν� were defined by (3.40) and (3.41), respectively.

Theorem 3.8. Let ω : Z
∞
a → R satisfy the inequality

|ω(n)| ≤ ε
(

k

k + 1

)k
·
k
(
2k2 + k − 1

)

16n3(k + 1)
, n ∈ Z

∞
a , (3.57)

for a fixed ε ∈ (0, 1). Suppose that there exists an integer � ≥ 0 such that the function p satisfies the
inequalities

0 < p(n) ≤ p�(n) +ω(n) (3.58)

for every n ∈ Z
∞
a . Then there exists a solution v = v∗(n), n ∈ Z

∞
a−k of (3.38) such that for n

sufficiently large the inequalities

0 < v∗(n) < ν�(n) (3.59)

hold.

Proof. Show that all the assumptions of Theorem 3.1 are fulfilled. For (3.38), f(n, v1, . . . ,
vk+1) = −p(n)vk+1. This is a continuous function. Put

b(n) := 0, c(n) := ν�(n). (3.60)
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We have to prove that for every v2, . . . , vk+1 such that b(n−i+1) < vi < c(n−i+1), i = 2, . . . , k+1,
the inequalities (3.4) and (3.5) hold for n sufficiently large. Start with (3.4). That gives that
for b(n − k) < vk+1 < c(n − k), it has to be

0 − p(n) · vk+1 < 0. (3.61)

This certainly holds, because the function p is positive and so is vk+1.
Next, according to (3.5), we have to prove that

ν�(n) − p(n)vk+1 > ν�(n + 1) (3.62)

which is equivalent to the inequality

−p(n)vk+1 > ν�(n + 1) − ν�(n). (3.63)

Denote the left-hand side of (3.63) as L(3.63). As vk+1 < c(n − k) = ν�(n − k) and as by (3.40),
(3.58), and (3.57)

p(n) ≤
(

k

k + 1

)k
·
(

1
k + 1

+ kμ�(n)
)
+ ε
(

k

k + 1

)k
·
k
(
2k2 + k − 1

)

16n3(k + 1)
, (3.64)

we have

L(3.63) > −
(

k

k + 1

)k( 1
k + 1

+ kμ�(n) + ε ·
k
(
2k2 + k − 1

)

16n3(k + 1)

)

×
(

k

k + 1

)n−k√
(n − k) ln(n − k) · · · ln�(n − k)

= −
(

k

k + 1

)n( 1
k + 1

+ kμ�(n) + ε ·
k
(
2k2 + k − 1

)

16n3(k + 1)

)

·
√
(n − k) ln(n − k) · · · ln�(n − k).

(3.65)

Further, we can easily see that

ν�(n + 1) − ν�(n) =
(

k

k + 1

)n√
n lnn · · · ln�n

⎛

⎝ k

k + 1

√
(n + 1)
n

ln(n + 1)
lnn

· · · ln�(n + 1)
ln�n

− 1

⎞

⎠.

(3.66)
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Thus, to prove (3.63), it suffices to show that for n sufficiently large,

−
(

1
k + 1

+ kμ�(n) + ε ·
k
(
2k2 + k − 1

)

16n3(k + 1)

)√
(n − k)
n

ln(n − k)
lnn

· · · ln�(n − k)
ln�n

>
k

k + 1

√
(n + 1)
n

ln(n + 1)
lnn

· · · ln�(n + 1)
ln�n

− 1.

(3.67)

Denote the left-hand side of inequality (3.67) as L(3.67) and the right-hand side asR(3.67). Using
Lemma 3.7 with r = k and q = �, we can write

L(3.67) = −
(

1
k + 1

+ kμ�(n) + ε ·
k
(
2k2 + k − 1

)

16n3(k + 1)

)

×
(

1 − k
(

1
2n

+
1

2n lnn
+ · · · + 1

2n lnn · · · ln�n

)
− k2μ�(n) −

k3

16n3
+ o
(

1
n3

))

= − 1
k + 1

+
k

k + 1

(
1

2n
+

1
2n lnn

+ · · · + 1
2n lnn · · · ln�n

)

+
k2

k + 1
μ�(n) +

k3

16n3(k + 1)
− kμ�(n) +

k2

16n3
− ε ·

k
(
2k2 + k − 1

)

16n3(k + 1)
+ o
(

1
n3

)

= − 1
k + 1

+
k

k + 1

(
1

2n
+

1
2n lnn

+ · · · + 1
2n lnn · · · ln�n

)

− k

k + 1
μ�(n) +

2k3(1 − ε) + k2(1 − ε) + kε
16n3(k + 1)

+ o
(

1
n3

)
.

(3.68)

Using Lemma 3.7 with r = −1 and q = �, we get for R(3.67)

R(3.67) =
k

k + 1

(
1 +

1
2n

+
1

2n lnn
+ · · · + 1

2n lnn · · · ln�n
− μ�(n) +

1
16n3

+ o
(

1
n3

))
− 1

=
−1
k + 1

+
k

k + 1

(
1

2n
+

1
2n lnn

+ · · · + 1
2n lnn · · · ln�n

)

− k

k + 1
· μ�(n) +

k

16n3(k + 1)
+ o
(

1
n3

)
.

(3.69)

It is easy to see that the inequality (3.67) reduces to

2k3(1 − ε) + k2(1 − ε) + kε
16n3(k + 1)

+ o
(

1
n3

)
>

k

16n3(k + 1)
+ o
(

1
n3

)
. (3.70)
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This inequality is equivalent to

k
(
2k2(1 − ε) + k(1 − ε) − (1 − ε)

)

16n3(k + 1)
+ o
(

1
n3

)
> 0. (3.71)

The last inequality holds for n sufficiently large because k ≥ 1 and 1 − ε ∈ (0, 1). We have
proved that all the assumptions of Theorem 3.1 are fulfilled and hence there exists a solution
of (3.38) satisfying conditions (3.59).
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