Hindawi Publishing Corporation
Abstract and Applied Analysis

Volume 2011, Article ID 571795, 7 pages
doi:10.1155/2011/571795

Research Article

Bounds of Solutions of
Integrodifferential Equations

Zdenék Smarda

Department of Mathematics, Faculty of Electrical Engineering and Communication, Technicki 8,
Brno University of Technology, 61600 Brno, Czech Republic

Correspondence should be addressed to Zden&k Smarda, smarda@feec.vutbr.cz

Received 20 January 2011; Accepted 24 February 2011

Academic Editor: Miroslava Razitkova

Copyright © 2011 Zden&k Smarda. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

Some new integral inequalities are given, and bounds of solutions of the following integro-
differential equation are determined: x’(t)—?(t,x(t),jé k(t,s,x(t),x(s))ds) = h(t), x(0) = xo, where
h:R, - R k:R>xR* - R, ¥:R, x R — Rare continuous functions, R, = [0, o).

1. Introduction
Ou Yang [1] established and applied the following useful nonlinear integral inequality.

Theorem 1.1. Let u and h be nonnegative and continuous functions defined on R, and let ¢ > 0 be a
constant. Then, the nonlinear integral inequality

t
W) <t + 2f h(s)u(s)ds, te€R, (1.1)
0
implies
t
u(t) <c+ J. h(s)ds, teR,. (1.2)
0

This result has been frequently used by authors to obtain global existence, uniqueness,
boundedness, and stability of solutions of various nonlinear integral, differential, and
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integrodifferential equations. On the other hand, Theorem 1.1 has also been extended and
generalized by many authors; see, for example, [2-19]. Like Gronwall-type inequalities,
Theorem 1.1 is also used to obtain a priori bounds to unknown functions. Therefore, integral
inequalities of this type are usually known as Gronwall-Ou Yang type inequalities.

In the last few years there have been a number of papers written on the discrete
inequalities of Gronwall inequality and its nonlinear version to the Bihari type, see [13, 16,
20]. Some applications discrete versions of integral inequalities are given in papers [21-23].

Pachpatte [11, 12, 14-16] and Salem [24] have given some new integral inequalities
of the Gronwall-Ou Yang type involving functions and their derivatives. Lipovan [7] used
the modified Gronwall-Ou Yang inequality with logarithmic factor in the integrand to the
study of wave equation with logarithmic nonlinearity. Engler [5] used a slight variant of the
Haraux’s inequality for determination of global regular solutions of the dynamic antiplane
shear problem in nonlinear viscoelasticity. Dragomir [3] applied his inequality to the stability,
boundedness, and asymptotic behaviour of solutions of nonlinear Volterra integral equations.

In this paper, we present new integral inequalities which come out from above-
mentioned inequalities and extend Pachpatte’s results (see [11, 16]) especially. Obtained
results are applied to certain classes of integrodifferential equations.

2. Integral Inequalities

Lemma 2.1. Let u, f, and g be nonnegative continuous functions defined on R.. If the inequality
t s
u(t) <up+ f f(s) <u(s) + f g(T)(u(s) + u(T))dT> ds (2.1)
0 0

holds where ug is a nonnegative constant, t € R, then

u(t) <up [1 + JZf(s) exp(f: <2g(T) + f(7) (1 + J.: g(a)da>>d7>d5] (2.2)

forteR,.

Proof. Define a function v(t) by the right-hand side of (2.1)
o(t) = ug + f ; £(s) <u(s) + fo g(7) (u(s) + u(T))dT> ds. (2.3)
Then, v(0) = u, u(t) < v(t) and
v(t) = f(tyu(t) + f(t) f; g(s)(u(t) + u(s))ds

(2.4)
t
< FBolt) + F(B fo 2(5)(0(t) + v(s))ds.
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Define a function m(t) by
t t
m(t) =ov(t) + f g(s)v(s)ds +v(t) f g(s)ds, (2.5)
0 0
then m(0) = v(0) = uy, v(t) < m(t),
o' (t) < f(ym(t), (2.6)

m'(t) = 2g(t)v(t) + V' (t) <1 + It g(s)ds>
0

t
< m(t) [Zg(t) + f(t) <1 + fo g(s)ds)].

Integrating (2.7) from O to ¢, we have

m(t) < ug exp<JZ <2g(s) + f(s) <1 + J: g(o)d0>>ds>. (2.8)

Using (2.8) in (2.6), we obtain

'(t) <uof(b) exp<£ <2g(s) + f(s) (1 + Jj g(a)d0>>d5>. (2.9)

Integrating from 0 to t and using u(t) < v(t), we get inequality (2.2). The proof is complete.
O

(2.7)

Lemma 2.2. Let u, f, and g be nonnegative continuous functions defined on R, w(t) be a positive
nondecreasing continuous function defined on R.. If the inequality

t s
u(t) <w(t) + fo f(s) (u(s) + fo g(7)(u(s) + u(T))dT)dS, (2.10)

holds, where uy is a nonnegative constant, t € R., then

u(t) <w(t) [1 + JZf(s) exp(J.: <2g(7') + f(7) <1 + J.OT g(a)da))ch‘)ds], (2.11)

wheret € R,.
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Proof. Since the function w(t) is positive and nondecreasing, we obtain from (2.10)

u) 1+ f;f(s) < u(s) + Jj g(T)< u(s) + M)dr) ds. (2.12)

w(t) ~ w(s) w(s)  w(r)

Applying Lemma 2.1 to inequality (2.12), we obtain desired inequality (2.11). O

Lemma 2.3. Let u, f, g, and h be nonnegative continuous functions defined on R., and let c be a
nonnegative constant.

If the inequality
t s
uA(t) <+ ZI:J‘ f(s)u(s) <u(s) + f g(T)(u(t) + u(s))d7‘> + h(s)u(s)] ds (2.13)
0 0
holds for t € R, then

u(t) <p(t) [1 + JZ f(s) exp(f: <2g(7') + f(7) <1 + J: g(o)do))d’r) ds], (2.14)

where

t

plt) =c+ fo h(s)ds. (2.15)

Proof. Define a function z(t) by the right-hand side of (2.13)
t s
z(t) = + Z[I f(s)u(s) (u(s) + J. g(T)(u(r) + u(s))dT> + h(s)u(s)] ds. (2.16)
0 0
Then z(0) = ¢?, u(t) < \/z(t) and

t
Z(t) =2 [f(t)u(t) <u(t) + L g(s)(u(t) + u(S))dS> + h(t)u(f)]

(2.17)
t
< 24/z(t) [f(t) <\/z(t + fo g(s)(\/z(t + \/z(s))ds) + h(t)].
Differentiating \/z(t) and using (2.17), we get
L e W)
dt( Z(t)> NG
(2.18)

<10 (V0 [ 509 (V20 + Vo) s ) + 10,
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Integrating inequality (2.18) from O to ¢, we have

V=) <pt) + f; £(s) (@ + fo () (@ + @)aﬁ)azs, (2.19)

where p(t) is defined by (2.15), p(t) is positive and nondecreasing for t € R,. Now, applying
Lemma 2.2 to inequality (2.19), we get

\/% <p(t) [1 + J:f(s) exp (JZ <2g(7‘) + f(7) <1 + JZ g(o)da))d’r)ds]. (2.20)

Using (2.20) and the fact that u(t) < \/z(t), we obtain desired inequality (2.14). O

3. Application of Integral Inequalities

Consider the following initial value problem
t
x'(t) - ?(t,x(t),f k(t, s,x(t),x(S))dS> = h(t), x(0) = xo, (3.1)
0

where h: R, — R, k:R?2xR*> — R, ¥: R, x R> — R are continuous functions. We assume
that a solution x(#) of (3.1) exists on R,.

Theorem 3.1. Suppose that

|k(t, s, u1,u2)| < f(1)g(s)(lua| +ual)  for (t,s,u1,u2) € R; x R,
(3.2)
|F(t, u,v1)] < f()|ua] + |o1]  for (t,u1,v1) € Ry x R?,

where f, g are nonnegative continuous functions defined on R.. Then, for the solution x(t) of (3.1)
the inequality

[x(®)| < r(t) [1 + JZf(s) exp(Jj <2g(T) + f(7) (1 + J.: g(a)da))dr) ds],

r(t) = xol + f0|h(t>|dt

(3.3)

holds on R,.

Proof. Multiplying both sides of (3.1) by x(¢) and integrating from 0 to ¢ we obtain

x2(t) = xé +2 f; [x(s)? <s,x(s), f: k(s, T,x(S),x(T))dT) + x(s)h(s)] ds. (3.4)
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From (3.2) and (3.4), we get

t s
P < ol +2 fo [f(s)lx(s)l x <|x<s>| + fo (1) (1x(s)] + |x<r)|>dr) s |h<s)||x(s>|] ds.
(3.5)

Using inequality (2.14) in Lemma 2.3, we have

|x(t)] < r(t) [1 + JZ f(s) exp(J.: <2g(7') + f(7) <1 + JZ g(o)do))d’r)ds], (3.6)

where
t
r(t) = xol + f0|h<t>|dt, (3.7)

which is the desired inequality (3.3). O

Remark 3.2. It is obvious that inequality (3.3) gives the bound of the solution x(t) of (3.1) in
terms of the known functions.
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