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We present a new perspective concerning the study of the asymptotic behavior of variational
equations by employing function spaces techniques. We give a complete description of the
dichotomous behaviors of the most general case of skew-product flows, without any assumption
concerning the flow, the cocycle or the splitting of the state space, our study being based only on the
solvability of some associated control systems between certain function spaces. The main results
do not only point out new necessary and sufficient conditions for the existence of uniform and
exponential dichotomy of skew-product flows, but also provide a clear chart of the connections
between the classes of translation invariant function spaces that play the role of the input or
output classes with respect to certain control systems. Finally, we emphasize the significance of
each underlying hypothesis by illustrative examples and present several interesting applications.

1. Introduction

Starting from a collection of open questions related to the modeling of the equations
of mathematical physics in the unified setting of dynamical systems, the study of their
qualitative properties became a domain of large interest and with a wide applicability
area. In this context, the interaction between the modern methods of pure mathematics and
questions arising naturally from mathematical physics created a very active field of research
(see [1–18] and the references therein). In recent years, some interesting unsolved problems
concerning the long-time behavior of dynamical systems were identified, whose potential
results would be of major importance in the process of understanding, clarifying, and solving
some of the essential problems belonging to a wide range of scientific domains, among, we
mention: fluid mechanics, aeronautics, magnetism, ecology, population dynamics, and so
forth. Generally, the asymptotic behavior of the solutions of nonlinear evolution equations
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arising in mathematical physics can be described in terms of attractors, which are often
studied by constructing the skew-product flows of the dynamical processes.

It was natural then to independently consider and analyze the asymptotic behavior of
variational systems modeled by skew-product flows (see [3–5, 14–19]). In this framework,
two of the most important asymptotic properties are described by uniform dichotomy and
exponential dichotomy. Both properties focus on the decomposition of the state space into
a direct sum of two closed invariant subspaces such that the solution on these subspaces
(uniformly or exponentially) decays backward and forward in time, and the splitting holds
at every point of the flow’s domain. Precisely, these phenomena naturally lead to the study of
the existence of stable and unstable invariant manifolds. It is worth mentioning that starting
with the remarkable works of Coppel [20], Daleckii and Krein [21], andMassera and Schäffer
[22] the study of the dichotomy had a notable impact on the development of the qualitative
theory of dynamical systems (see [1–9, 13, 14, 17, 18, 23]).

A very important step in the infinite-dimensional asymptotic theory of dynamical
systems was made by Van Minh et al. in [7] where the authors proposed a unified treatment
of the stability, instability, and dichotomy of evolution families on the half-line via input-
output techniques. Their paper carried out a beautiful connection between the classical
techniques originating in the pioneering works of Perron [11] and Maı̆zel [24] and the
natural requests imposed by the development of the infinite-dimensional systems theory.
They extended the applicability area of the so-called admissibility techniques developed
by Massera and Schäffer in [22], from differential equations in infinite-dimensional spaces
to general evolutionary processes described by propagators. The authors pointed out that
instead of characterizing the behavior of a homogeneous equation in terms of the solvability
of the associated inhomogeneous equation (see [20–22]) one may detect the asymptotic
properties by analyzing the existence of the solutions of the associated integral system given
by the variation of constants formula. These new methods technically moved the central
investigation of the qualitative properties into a different sphere, where the study strongly
relied on control-type arguments. It is important to mention that the control-type techniques
have been also successfully used by Palmer (see [9]) and by Rodrigues and Ruas-Filho
(see [13]) in order to formulate characterizations for exponential dichotomy in terms of the
Fredholm Alternative. Starting with these papers, the interaction between control theory and
the asymptotic theory of dynamical systems becamemore profound, and the obtained results
covered a large variety of open problems (see, e.g., [1, 2, 12, 14–17, 23] and the references
therein).

Despite the density of papers devoted to the study of the dichotomy in the past few
years and in contrast with the apparent impression that the phenomenon is well understood,
a large number of unsolved problems still raise in this topic, most of them concerning the
variational case. In the present paper, we will provide a complete answer to such an open
question. We start from a natural problem of finding suitable conditions for the existence
of uniform dichotomy as well as of exponential dichotomy using control-type methods,
emphasizing on the identification of the essential structures involved in such a construction,
as the input-output system, the eligible spaces, the interplay between their main properties,
the specific lines that make the differences between a necessary and a sufficient condition,
and the proper motivation of each underlying condition.

In this paper, we propose an inedit link between the theory of function spaces
and the dichotomous behavior of the solutions of infinite dimensional variational systems,
which offers a deeper understanding of the subtle mechanisms that govern the control-type
approaches in the study of the existence of the invariant stable and unstable manifolds.
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We consider the general setting of variational equations described by skew-product flows,
and we associate a control system on the real line. Beside obtaining new conditions for the
existence of uniform or exponential dichotomy of skew-product flows, the main aim is to
clarify the chart of the connections between the classes of translation invariant function spaces
that play the role of the input class or of the output class with respect to the associated control
system, proposing a merger between the functional methods proceeding from interpolation
theory and the qualitative techniques from the asymptotic theory of dynamical systems in
infinite dimensional spaces.

We consider the most general case of skew-product flows, without any assumption
concerning the flow or the cocycle, without any invertibility property, and we work without
assuming any initial splitting of the state space and without imposing any invariance
property. Our central aim is to establish the existence of the dichotomous behaviors with
all their properties (see Definitions 3.5 and 4.1) based only on the minimal solvability of an
associated control system described at every point of the base space by an integral equation
on the real line. First, we deduce conditions for the existence of uniform dichotomy of skew-
product flows and we discuss the technical consequences implied by the solvability of the
associated control system between two appropriate translation invariant spaces. We point
out, for the first time, that an adequate solvability on the real line of the associated integral
control system (see Definition 3.6) implies both the existence of the uniform dichotomy
projections as well as their uniform boundedness. Next, the attention focuses on the
exponential behavior on the stable and unstable manifold, preserving the solvability concept
from the previous section and modifying the properties of the input and the output spaces.
Thus, we deduce a clear overview on the representative classes of function spaces which
should be considered in the detection of the exponential dichotomy of skew-product flows in
terms of the solvability of associated control systems on the real line. The obtained results
provide not only new necessary and sufficient conditions for exponential dichotomy, but
also a complete diagram of the specific delimitations between the classes of function spaces
which may be considered in the study of the exponential dichotomy compared with those
from the uniform dichotomy case. Moreover, we point out which are the specific properties
of the underlying spaces which make a difference between the sufficient hypotheses and
the necessary conditions for the existence of exponential dichotomy of skew-product flows.
Finally, we motivate our techniques by illustrative examples and present several interesting
applications of the main theorems which generalize the input-output type results of previous
research in this topic, among, we mention the well-known theorems due to Perron [11],
Daleckii and Krein [21], Massera and Schäffer [22], Van Minh et al. [7], and so forth.

2. Banach Function Spaces: Basic Notations and Preliminaries

In this section, for the sake of clarity, we recall several definitions and properties of Banach
function spaces, and, also, we establish the notations that will be used throughout the paper.

Let� denote the set of real numbers, let�+ = {t ∈ � : t ≥ 0}, and let�− = {t ∈ � : t ≤ 0}.
For everyA ⊂ �, χA denotes the characteristic function of the setA. LetM(�,�) be the linear
space of all Lebesgue measurable functions u : � → � identifying the functions which are
equal almost everywhere.

Definition 2.1. A linear subspace B ⊂ M(�,�) is called normed function space if there is a
mapping | · |B : B → �+ such that the following properties hold:
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(i) |u|B = 0 if and only if u = 0 a.e.;

(ii) |αu|B = |α||u|B, for all (α, u) ∈ � × B;
(iii) |u + v|B ≤ |u|B + |v|B , for all u, v ∈ B;
(iv) if |u(t)| ≤ |v(t)| a.e. t ∈ � and v ∈ B, then u ∈ B and |u|B ≤ |v|B .

If (B, | · |B) is complete, then B is called a Banach function space.

Remark 2.2. If (B, | · |B) is a Banach function space and u ∈ B, then also |u(·)| ∈ B.

Definition 2.3. A Banach function space (B, | · |B) is said to be invariant under translations if for
every (u, t) ∈ B × � the function ut : � → �, ut(s) = u(s − t) belongs to B and |ut|B = |u|B.

Let Cc(�,�) be the linear space of all continuous functions v : � → � with compact
support. We denote by T(�) the class of all Banach function spaces B which are invariant
under translations, Cc(�,�) ⊂ B and

(i) for every t > 0 there is c(t) > 0 such that
∫ t
0 |u(τ)|dτ ≤ c(t)|u|B, for all u ∈ B;

(ii) if B \ L1(�,�)/= ∅, then there is a continuous function γ ∈ B \ L1(�,�).

Remark 2.4. Let B ∈ T(�). Then, the following properties hold:
(i) if J ⊂ � is a bounded interval, then χJ ∈ B.
(ii) if un → u in B, then there is a subsequence (ukn) ⊂ (un) which converges to u a.e.

(see, e.g., [25]).

Remark 2.5. Let B ∈ T(�). If ν > 0 and eν : � → � is defined by

eν(t) =

⎧
⎨

⎩

e−νt, t ≥ 0,

0, t < 0,
(2.1)

then it is easy to see that

eν(t) =
∞∑

n=0

e−νtχ[n,n+1)(t) ≤
∞∑

n=0

e−νnχ[n,n+1)(t), ∀t ∈ �. (2.2)

It follows that eν ∈ B and |eν|B ≤ |χ[0,1)|B/(1 − e−ν).

Example 2.6. (i) If p ∈ [1,∞), then Lp(�,�) = {u ∈ M(�,�) :
∫
�
|u(t)|pdt < ∞}, with respect

to the norm ‖u‖p = (
∫
�
|u(t)|pdt)1/p, is a Banach function space which belongs to T(�).

(ii) The linear space L∞(�,�) of all measurable essentially bounded functions u : � →
� with respect to the norm ‖u‖∞ = ess supt∈�|u(t)| is a Banach function space which belongs
to T(�).

Example 2.7 (Orlicz spaces). Let ϕ : �+ → �+ be a nondecreasing left continuous function
which is not identically 0 or ∞ on (0,∞), and let Yϕ(t) :=

∫ t
0 ϕ(s)ds. If u ∈ M(�,�) let

Mϕ(u) :=
∫

�

Yϕ(|u(s)|)ds. (2.3)



Abstract and Applied Analysis 5

The linear space Oϕ(�,�) := {u ∈ M(�,�) : ∃k > 0 such thatMϕ(ku) < ∞}, with respect to
the norm

|u|ϕ := inf
{
k > 0 :Mϕ

(
u

k

)
≤ 1
}
, (2.4)

is a Banach function space called theOrlicz space associated to ϕ. It is easy to see thatOϕ(�,�)
is invariant under translations.

Remark 2.8. A remarkable example of Orlicz space is represented by Lp(�,�), for every p ∈
[1,∞]. This can be obtained for ϕ(t) = ptp−1, if p ∈ [1,∞) and for

ϕ(t) =

⎧
⎨

⎩

0, t ∈ [0, 1],

∞, t > 1,
if p = ∞. (2.5)

Lemma 2.9. If ϕ(1) <∞, then Oϕ(�,�) ∈ T(�).

Proof. Let v ∈ Cc(�,�). Then, there are a, b ∈ �, a < b such that v(t) = 0, for all t ∈ � \ (a, b).
Since v is continuous on [a, b], there isM > 0 such that |v(t)| ≤M, for all t ∈ [a, b]. Then, we
have that

|v(t)| ≤ Mχ[a,b](t), ∀t ∈ �. (2.6)

We observe that

Mϕ

(
χ[a,b]

)
=
∫

�

Yϕ
(
χ[a,b](τ)

)
dτ = (b − a)Yϕ(1) ≤ (b − a)ϕ(1) <∞. (2.7)

This implies that χ[a,b] ∈ Oϕ(�,�). Using (2.6), we deduce that v ∈ Oϕ(�,�). So,
Cc(�,�) ⊂ Oϕ(�,�).

Since Yϕ is nondecreasing with limt→∞Yϕ(t) = ∞, there is q > 0 such that Yϕ(t) > 1, for
all t ≥ q.

Let t ≥ 1 and let u ∈ Oϕ(�,�) \ {0}. Taking into account that Yϕ is a convex function
and using Jensen’s inequality (see, e.g., [26]), we deduce that

Yϕ

(
1
t

∫ t

0

|u(τ)|
|u|ϕ

dτ

)

≤ 1
t

∫ t

0
Yϕ

(
|u(τ)|
|u|ϕ

)

dτ ≤Mϕ

(
u

|u|ϕ

)

≤ 1. (2.8)

This implies that

1
t

∫ t

0

|u(τ)|
|u|ϕ

dτ ≤ q, ∀t ≥ 1. (2.9)
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In addition, using (2.9), we have that

∫ t

0
|u(τ)|dτ ≤

∫1

0
|u(τ)|dτ ≤ q|u|ϕ, ∀t ∈ [0, 1). (2.10)

Taking c : (0,∞) → (0,∞), c(t) = max{qt, q}, from relations (2.9) and (2.10), it follows that

∫ t

0
|u(τ)|dτ ≤ c(t)|u|ϕ, ∀t ≥ 0. (2.11)

Since the function c does not depend on u, we obtain thatOϕ(�,�) ∈ T(�).

Example 2.10. If ϕ : �+ → �+ defined by ϕ(0) = 0, ϕ(t) = 1, for t ∈ (0, 1] and ϕ(t) = et−1, for
t > 1, then according to Lemma 2.9 we have that the Orlicz spaceOϕ(�,�) ∈ T(�). Moreover,
it is easy to see thatOϕ(�,�) is a proper subspace of L1(�,�).

Example 2.11. Let p ∈ [1,∞) and let Mp(�,�) be the linear space of all u ∈ M(�,�) with
supt∈�

∫ t+1
t |u(s)|pds < ∞. With respect to the norm

‖u‖Mp := sup
t∈�

(∫ t+1

t

|u(s)|pds
)1/p

, (2.12)

this is a Banach function space which belongs to T(�).

Remark 2.12. If B ∈ T(�), then B ⊂M1(�,�).
Indeed, let c(1) > 0 be such that

∫1
0 |u(τ)|dτ ≤ c(1)|u|B, for all u ∈ B. If u ∈ Bwe observe

that

∫ t+1

t

|u(τ)|dτ =
∫1

0
|ut(ξ)|dξ ≤ c(1)|ut|B = c(1)|u|B, ∀t ∈ �, (2.13)

so u ∈M1(�,�).

In what follows, we will introduce three remarkable subclasses of T(�), which will
have an essential role in the study of the existence of dichotomy from the next sections. To do
this, we first need the following.

Definition 2.13. Let B ∈ T(�). The mapping FB : (0,∞) → �+ , FB(t) = |χ[0,t)|B is called the
fundamental function of the space B.

Remark 2.14. If B ∈ T(�), then the fundamental function FB is nondecreasing.

Notation 1. We denote by Q(�) the class of all Banach function spaces B ∈ T(�) with the
property that supt>0FB(t) = ∞.
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Lemma 2.15. If ϕ(t) ∈ (0,∞), for all t > 0, then Oϕ(�,�) ∈ Q(�).

Proof. It is easy to see that Yϕ is strictly increasing, continuous with Yϕ(0) = 0 and Yϕ(t) ≥
(t − 1)ϕ(1), for all t > 1, so limt→∞Yϕ(t) = ∞. Hence, Yϕ is bijective.

Let t > 0. Since

Mϕ

(
1
k
χ[0,t)

)
= tYϕ

(
1
k

)
, ∀k > 0, (2.14)

it follows thatMϕ((1/k)χ[0,t)) ≤ 1 if and only if 1/Y−1
ϕ (1/t) ≤ k. This implies that

FOϕ(�,�)(t) =
1

Y−1
ϕ (1/t)

, ∀t > 0. (2.15)

Since Y−1
ϕ (0) = 0, from (2.15), we obtain that Oϕ(�,�) ∈ Q(�).

Another distinctive subclass of T(�) is introduced in the following.

Notation 2. Let L(�) denote the class of all Banach function spaces B ∈ T(�) with the
property that B \ L1(�,�)/= ∅.

Remark 2.16. According to Remark 2.2, we have that if B ∈ L(�), then there is a continuous
function γ : � → �+ such that γ ∈ B \ L1(�,�).

We will also see, in this paper, that the necessary conditions for the existence of
exponential dichotomy should be expressed using another remarkable subclass ofT(�)—the
rearrangement invariant spaces, see the definitions below.

Definition 2.17. Let u, v ∈ M(�,�). We say that u and v are equimeasurable if for every t > 0
the sets {s ∈ � : |u(s)| > t} and {s ∈ � : |v(s)| > t} have the same measure.

Definition 2.18. A Banach function space (B, | · |B) is rearrangement invariant if for every
equimeasurable functions u, v with u ∈ B, we have that v ∈ B and |u|B = |v|B .

Notation 3. We denote by R(�) the class of all Banach function spaces B ∈ T(�) which are
rearrangement invariant.

Remark 2.19. If B ∈ R(�), then B is an interpolation space between L1(�,�) and L∞(�,�) (see
[27, Theorem 2.2, page 106]).

Remark 2.20. The Orlicz spaces are rearrangement invariant (see [27]). Using Lemma 2.9, we
deduce that if ϕ(1) <∞, then Oϕ(�,�) ∈ R(�).

Lemma 2.21. Let B ∈ R(�) and let ν > 0. Then for every u ∈ B, the functions ϕu, ψu : � → �

defined by

ϕu(t) =
∫ t

−∞
e−ν(t−τ)u(τ)dτ, ψu(t) =

∫∞

t

e−ν(τ−t)u(τ)dτ (2.16)



8 Abstract and Applied Analysis

belong to B. Moreover, there is γB,ν > 0 which depends only on B and ν such that

∣∣ϕu
∣∣
B ≤ γB,ν|u|B,

∣∣ψu
∣∣
B ≤ γB,ν|u|B, ∀u ∈ B. (2.17)

Proof. We consider the operators

Z : L∞(�,�) −→ L∞(�,�) , (Z(u))(t) =
∫ t

−∞
e−ν(t−τ)u(τ)dτ,

W : L∞(�,�) −→ L∞(�,�), (W(u))(t) =
∫∞

t

e−ν(τ−t)u(τ)dτ.

(2.18)

We have that Z and W are correctly defined bounded linear operators. Moreover, the
restrictions Z| : L1(�,�) → L1(�,�) and W| : L1(�,�) → L1(�,�) are correctly defined
and bounded linear operators. Since B ∈ R(�), then, from Remark 2.19, we have that B
is an interpolation space between L1(�,�) and L∞(�,�). This implies that the restrictions
Z|B : B → B and W|B : B → B are correctly defined and bounded linear operators. Setting
γB,ν = max {‖Z|B‖, ‖W|B‖}, the proof is complete.

Notations

If X is a Banach space, for every Banach function space B ∈ T(�), we denote by B(�, X) the
space of all Bochner measurable functions v : � → X with the property that the mapping
Nv : � → �+ , Nv(t) = ‖v(t)‖ belongs to B. With respect to the norm

‖v‖B(�,X) := |Nv|B, (2.19)

B(�, X) is a Banach space. We also denote by C0,c(�, X) the linear space of all continuous
functions v : � → X with compact support contained in (0,∞). It is easy to see that
C0,c(�, X) ⊂ B(�, X), for all B ∈ T(�).

3. Uniform Dichotomy for Skew-Product Flows

In this section, we start our investigation by studying the existence of by the upper and lower
uniform boundedness of the solution in a uniform way on certain complemented subspaces.
We will employ a control-type technique and we will show that the use of the function
spaces, from the class T(�) introduced in the previous section, provides several interesting
conclusions concerning the qualitative behavior of the solutions of variational equations.

Let X be a real or complex Banach space and let Id denote the identity operator on X.
The norm on X and on B(X)—the Banach algebra of all bounded linear operators on X, will
be denoted by ‖ · ‖. Let (Θ, d) be a metric space.

Definition 3.1. A continuous mapping σ : Θ × � → Θ is called a flow on Θ if σ(θ, 0) = θ and
σ(θ, s + t) = σ(σ(θ, s), t), for all (θ, s, t) ∈ Θ × �2 .

Definition 3.2. A pair π = (Φ, σ) is called a skew-product flow on X ×Θ if σ is a flow on Θ and
the mapping Φ : Θ × �+ → B(X) called cocycle, satisfies the following conditions:
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(i) Φ(θ, 0) = Id and Φ(θ, t + s) = Φ(σ(θ, s), t)Φ(θ, s), for all (θ, t, s) ∈ Θ × �2
+ ;

(ii) there areM ≥ 1 and ω > 0 such that ‖Φ(θ, t)‖ ≤Meωt, for all (θ, t) ∈ Θ × �+ ;

(iii) for every (x, θ) ∈ X ×Θ, the mapping t �→ Φ(θ, t)x is continuous on �+ .

Example 3.3 (Particular cases). The class described by skew-product flows generalizes the
autonomous systems as well as the nonautonomous systems, as the following examples
show:

(i) If Θ = �, then let σ̃(θ, t) = θ + t and let {U(t, s)}t≥s be an evolution family on the
Banach space X. Setting ΦU(θ, t) := U(θ + t, θ), we observe that πU = (ΦU, σ̃) is a
skew-product flow.

(ii) Let {T(t)}t≥0 be a C0-semigroup on the Banach space X and let Θ be a metric space.

(ii)1 If σ is an arbitrary flow on Θ and ΦT (θ, t) := T(t), then πT = (ΦT , σ) is a skew-
product flow.

(ii)2 Let σ̂ : Θ × � → Θ, σ̂(θ, t) = θ be the projection flow on Θ and let
{P(θ)}θ∈Θ ⊂ B(X) be a uniformly bounded family of projections such that
P(θ)T(t) = T(t)P(θ), for all (θ, t) ∈ Θ × �+ . If ΦP(θ, t) := P(θ)T(t), then
πP = (ΦP , σ̂) is a skew-product flow.

Starting with the remarkable work of Foias et al. (see [19]), the qualitative theory
of dynamical systems acquired a new perspective concerning the connections between
bifurcation theory and themathematical modeling of nonlinear equations. In [19], the authors
proved that classical equations like Navier-Stokes, Taylor-Couette, and Bubnov-Galerkin can
be modeled and studied in the unified setting of skew-product flows. In this context, it was
pointed out that the skew-product flows often proceed from the linearization of nonlinear
equations. Thus, classical examples of skew-product flows arise as operator solutions for
variational equations.

Example 3.4 (The variational equation). Let Θ be a locally compact metric space and let σ be
a flow on Θ. Let X be a Banach space and let {A(θ) : D(A(θ)) ⊆ X → X : θ ∈ Θ} be a family
of densely defined closed operators. We consider the variational equation

ẋ(t) = A(σ(θ, t))x(t), (θ, t) ∈ Θ × �+ . (A)

A cocycle Φ : Θ × �+ → B(X) is said to be a solution of (A) if for every θ ∈ Θ, there is
a dense subset Dθ ⊂ D(A(θ)) such that for every initial condition xθ ∈ Dθ the mapping
t �→ x(t) := Φ(θ, t)xθ is differentiable on �+ , for every t ∈ �+x(t) ∈ D(A(σ(θ, t))) and the
mapping t �→ x(t) satisfies (A).

An important asymptotic behavior of skew-product flows is described by the uniform
dichotomy, which relies on the splitting of the Banach space X at every point θ ∈ Θ into a
direct sum of two invariant subspaces such that on the first subspace the trajectory solution
is uniformly stable, on the second subspace the restriction of the cocycle is reversible and
also the trajectory solution is uniformly unstable on the second subspace. This is given by the
following.
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Definition 3.5. A skew-product flow π = (Φ, σ) is said to be uniformly dichotomic if there exist
a family of projections {P(θ)}θ∈Θ ⊂ B(X) and a constant K ≥ 1 such that the following
properties hold:

(i) Φ(θ, t)P(θ) = P(σ(θ, t))Φ(θ, t), for all (θ, t) ∈ Θ × �+ ;

(ii) ‖Φ(θ, t)x‖ ≤ K‖x‖, for all t ≥ 0, all x ∈ RangeP(θ) and all θ ∈ Θ;

(iii) the restrictionΦ(θ, t)| : KerP(θ) → KerP(σ(θ, t)) is an isomorphism, for all (θ, t) ∈
Θ × �+ ;

(iv) ‖Φ(θ, t)y‖ ≥ (1/K)‖y‖, for all t ≥ 0, all y ∈ KerP(θ) and all θ ∈ Θ;

(v) supθ∈Θ‖P(θ)‖ <∞.

In what follows, our main attention will focus on finding suitable conditions for the
existence of uniform dichotomy for skew-product flows. To do this, we will introduce an
integral control system associated with a skew-product flow such that the input and the
output spaces of the system belong to the general classT(�). We will emphasize that the class
T(�) has an essential role in the study of the dichotomous behavior of variational equations.

Let I, O be two Banach function spaces with I, O ∈ T(�). Let π = (Φ, σ) be a skew-
product flow on X × Θ. We associate with π the input-output control system Eπ = (Eθ)θ∈Θ,
where for every θ ∈ Θ

f(t) = Φ(σ(θ, s), t − s)f(s) +
∫ t

s

Φ(σ(θ, τ), t − τ)v(τ)dτ, ∀t ≥ s, (Eθ)

such that the input function v ∈ C0,c(�, X) and the output function f ∈ O(�, X).

Definition 3.6. The pair (O(�, X), I(�, X)) is said to be uniformly admissible for the system (Eπ )
if there is L > 0 such that for every θ ∈ Θ, the following properties hold:

(i) for every v ∈ C0,c(�, X) there exists f ∈ O(�, X) such that the pair (f, v) satisfies
(Eθ);

(ii) if v ∈ C0,c(�, X) and f ∈ O(�, X) are such that the pair (f, v) satisfies (Eθ), then
‖f‖O(�,X) ≤ L‖v‖I(�,X).

Remark 3.7. (i) According to this admissibility concept, it is sufficient to choose all the input
functions from the spaceC0,c(�, X), and, thus, we point out that C0,c(�, X) is in fact the smaller
possible input space that can be used in the input-output study of the dichotomy.

(ii) It is also interesting to see that the norm estimation from (ii) reflects the presence
(and implicitly the structure) of the space I(�, X). Actually, condition (ii) shows that the
norm of each output function in the space O(�, X) is bounded by the norm of the input
function in the space I(�, X) uniformly with respect to θ ∈ Θ.

(iii) In the admissibility concept, there is no need to require the uniqueness of the
output function in the property (i), because this follows from condition (ii). Indeed, if the
pair (O(�, X), I(�, X)) is uniformly admissible for the system (Eπ), then from (ii)we deduce
that for every θ ∈ Θ and every v ∈ C0,c(�, X) there exists a unique f ∈ O(�, X) such that the
pair (f, v) satisfies (Eθ).

In what follows we will analyze the implications of the uniform admissibility of the
pair (O(�, X), I(�, X)) with I, O ∈ T(�) concerning the asymptotic behavior of skew-product
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flows. With this purpose we introduce two category of subspaces (stable and unstable) and
we will point out their role in the detection of the uniform dichotomy.

For every (x, θ) ∈ X ×Θ, we consider the function

λx,θ : � −→ X, λx,θ(t) =

⎧
⎨

⎩

Φ(θ, t)x, t ≥ 0,

0, t < 0,
(3.1)

called the trajectory determined by the vector x and the point θ ∈ Θ.
For every θ ∈ Θ, we denote by F(θ) the linear space of all functions ϕ : � → X with

the property that

ϕ(t) = Φ(σ(θ, s), t − s)ϕ(s), ∀s ≤ t ≤ 0. (3.2)

For every θ ∈ Θ, we consider the stable subset

S(θ) = {x ∈ X : λx,θ ∈ O(�, X)} (3.3)

and, respectively, the unstable subset

U(θ) =
{
x ∈ X : ∃ϕ ∈ O(�, X) ∩ F(θ) with ϕ(0) = x

}
. (3.4)

Remark 3.8. It is easy to see that for every θ ∈ Θ, S(θ), and U(θ) are linear subspaces.
Therefore, in all what follows, we will refer S(θ) as the stable subspace and, respectively,
U(θ) as the unstable subspace, for each θ ∈ Θ.

Proposition 3.9. For every (θ, t) ∈ Θ × �+ , the following assertions hold:

(i) Φ(θ, t)S(θ) ⊆ S(σ(θ, t));

(ii) Φ(θ, t)U(θ) = U(σ(θ, t)).

Proof. The property (i) is immediate. To prove the assertion (ii) let M,ω > 0 be given by
Definition 3.2(ii). Let (θ, t) ∈ Θ × (0,∞). Let x ∈ U(θ). Then, there is ϕ ∈ O(�, X) ∩ F(θ) with
ϕ(0) = x. We set y = Φ(θ, t)x, and we consider

ψ : � −→ X, ψ(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, s > t,

Φ(θ, s)x, s ∈ [0, t],

ϕ(s), s < 0.

(3.5)

We observe that ‖ψ(s)‖ ≤ ‖ϕ(s)‖ +Meωtχ[0,t](s)‖x‖, for all s ∈ �, and since ϕ ∈ O(�, X), we
deduce that ψ ∈ O(�, X). Using the fact that ϕ ∈ F(θ), we obtain that

ψ(s) = Φ(σ(θ, τ), s − τ)ψ(τ), ∀τ ≤ s ≤ t. (3.6)
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Then, we define the function δ : � → X, δ(s) = ψ(s+ t) and since O(�, X) is invariant under
translations, we deduce that δ ∈ O(�, X). Moreover, from (3.6), it follows that

δ(r) = Φ(σ(θ, ξ + t), r − ξ)δ(ξ) = Φ(σ(σ(θ, t), ξ), r − ξ)δ(ξ), ∀ξ ≤ r ≤ 0. (3.7)

The relation (3.7) implies that δ ∈ F(σ(θ, t)), so y = δ(0) ∈ U(σ(θ, t)).
Conversely, let z ∈ U(σ(θ, t)). Then, there is h ∈ F(σ(θ, t)) ∩ O(�, X) with h(0) = z.

Taking q : � → X, q(s) = h(s − t), we have that q ∈ O(�, X) and

q(s) = Φ(σ(θ, τ), s − τ)q(τ), ∀τ ≤ s ≤ t. (3.8)

In particular, for τ ≤ s ≤ 0, from (3.8), we deduce that q ∈ F(θ). This implies that q(0) ∈ U(θ).
Then, z = h(0) = q(t) = Φ(θ, t)q(0) ∈ Φ(θ, t)U(θ) and the proof is complete.

Remark 3.10. From Proposition 3.9(ii), we have that for every (θ, t) ∈ Θ × �+ the restriction
Φ(θ, t)| : U(θ) → U(σ(θ, t)) is surjective. We also note that according to Proposition 3.9
one may deduce that, the stable subspace and the unstable subspace are candidates for the
possible splitting of the main space X required by any dichotomous behavior.

In what follows, we will study the behavior of the cocycle on the stable subspace and
also on the unstable subspace and we will deduce several interesting properties of these
subspaces in the hypothesis that a pair (O(�, X), I(�, X)) of spaces from the class T(�) is
admissible for the control system associated with the skew-product flow.

Theorem 3.11 (The behavior on the stable subspace). If the pair (O(�, X), I(�, X)) is uniformly
admissible for the system (Eπ ), then the following assertions hold:

(i) there is K > 0 such that ‖Φ(θ, t)x‖ ≤ K‖x‖, for all t ≥ 0, all x ∈ S(θ) and all θ ∈ Θ;

(ii) S(θ) is a closed linear subspace, for all θ ∈ Θ.

Proof. Let L > 0 be given by Definition 3.6 and let M,ω > 0 be given by Definition 3.2. Let
α : � → [0, 2] be a continuous function with suppα ⊂ (0, 1) and

∫1
0 α(τ)dτ = 1.

(i) Let θ ∈ Θ and let x ∈ S(θ). We consider the functions

v : � −→ X, v(t) = α(t)Φ(θ, t)x,

f : � −→ X, f(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Φ(θ, t)x, t ≥ 1,
∫ t

0
α(τ)dτ Φ(θ, t)x, t ∈ [0, 1),

0, t < 0.

(3.9)

Then, v ∈ C0c(�, X) and

‖f(t)‖ ≤ ‖λx,θ(t)‖, ∀t ∈ �. (3.10)
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Since x ∈ S(θ), we have that λx,θ ∈ O(�, X). Then, from (3.10), we obtain that f ∈ O(�, X).
An easy computation shows that the pair (f, v) satisfies (Eθ). Then,

∥∥f
∥∥
O(�,X) ≤ L‖v‖I(�,X). (3.11)

From ‖v(t)‖ ≤ α(t)Meω‖x‖, for all t ∈ �, we obtain that ‖v‖I(�,X) ≤ Meω|α|I‖x‖.
Let t ≥ 2. From

‖Φ(θ, t)x‖ ≤ Meω‖Φ(θ, s)x‖, ∀s ∈ [t − 1, t), (3.12)

it follows that

‖Φ(θ, t)x‖χ[t−1,t)(s) ≤ Meω‖f(s)‖, ∀s ∈ �. (3.13)

Since O is invariant under translations, we deduce that

‖Φ(θ, t)x‖FO(1) ≤Meω‖f‖O(�,X). (3.14)

Using relations (3.11) and (3.14), we have that

‖Φ(θ, t)x‖ ≤ M2e2ω
L|α|I
FO(1)

‖x‖, ∀t ≥ 2. (3.15)

Since ‖Φ(θ, t)x‖ ≤ Me2ω‖x‖, for all t ∈ [0, 2), setting K := max{(M2e2ωL|α|I)/FO(1),Me2ω}
we deduce that ‖Φ(θ, t)x‖ ≤ K‖x‖, for all t ≥ 0. Taking into account that K does not depend
on θ or x, it follows that

‖Φ(θ, t)x‖ ≤ K‖x‖, ∀t ≥ 0, ∀x ∈ S(θ), ∀θ ∈ Θ. (3.16)

(ii) Let θ ∈ Θ and let (xn) ⊂ S(θ) with xn →
n→∞

x. For every n ∈ �, we consider the
sequence

vn : � −→ X, vn(t) = α(t)Φ(θ, t)xn,

fn : � −→ X, fn(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Φ(θ, t)xn, t ≥ 1,
∫ t

0
α(τ)dτ Φ(θ, t)xn, t ∈ [0, 1),

0, t < 0.

(3.17)

We have that vn ∈ C0c(�, X), for all n ∈ � and using similar arguments with those used
in relation (3.10), we obtain that fn ∈ O(�, X), for all n ∈ �. An easy computation shows
that the pair (fn, vn) satisfies (Eθ). Let v : � → X, v(t) = α(t)Φ(θ, t)x. Then, v ∈ C0c(�, X).
According to our hypothesis there is, f ∈ O(�, X) such that the pair (f, v) satisfies (Eθ).
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Taking un = vn −v and gn = fn −f we observe that un ∈ C0c(�, X), gn ∈ O(�, X), and the pair
(gn, un) satisfies (Eθ). This implies that

∥∥fn − f
∥∥
O(�,X) ≤ L‖vn − v‖I(�,X), ∀n ∈ �. (3.18)

From ‖vn(t) − v(t)‖ ≤ α(t)Meω‖xn − x‖, for all t ∈ � and all n ∈ �, we deduce that

‖vn − v‖I(�,X) ≤Meω|α|I‖xn − x‖, ∀n ∈ �. (3.19)

From (3.18) and (3.19), it follows that fn →
n→∞

f in O(�, X). From Remark 2.4(ii), we have

that there is a subsequence (fkn) and a negligible set A ⊂ � such that fkn(t) →
n→∞

f(t), for all

t ∈ � \A. In particular, it follows that there is r > 1 such that

f(r) = lim
n→∞

fkn(r) = lim
n→∞

Φ(θ, r)xkn = Φ(θ, r)x. (3.20)

Because the pair (f, v) satisfies (Eθ), we obtain that

f(t) = Φ(σ(θ, r), t − r)f(r) = Φ(θ, t)x, ∀t ≥ r. (3.21)

This shows that f(t) = λx,θ(t), for all t ≥ r. Then, from

‖λx,θ(t)‖ ≤ ‖f(t)‖ +Meωr‖x‖χ[0,r)(t), ∀t ∈ �, (3.22)

using the fact that f ∈ O(�, X) and Remark 2.4(i), we obtain that λx,θ ∈ O(�, X), so x ∈ S(θ).
In conclusion, S(θ) is a closed linear subspace, for all θ ∈ Θ.

Theorem 3.12 (The behavior on the unstable subspace). If the pair (O(�, X), I(�, X)) is
uniformly admissible for the system (Eπ), then the following assertions hold:

(i) there isK > 0 such that ‖Φ(θ, t)y‖ ≥ (1/K)‖y‖, for all t ≥ 0, all y ∈ U(θ) and all θ ∈ Θ;

(ii) U(θ) is a closed linear subspace, for all θ ∈ Θ.

Proof. Let L > 0 be given by Definition 3.6 and let M,ω > 0 be given by Definition 3.2. Let
α : � → [0, 2] be a continuous function with suppα ⊂ (0, 1) and

∫1
0 α(τ)dτ = 1.

(i) Let θ ∈ Θ and let y ∈ U(θ). Then, there is ϕ ∈ F(θ) ∩ O(�, X) with ϕ(0) = y. Let
t > 0. We consider the functions

v : � −→ X, v(s) = −α(s − t)Φ(θ, s)y,

f : � −→ X, f(s) =

⎧
⎪⎨

⎪⎩

∫∞

s

α(τ − t)dτ Φ(θ, s)y, s ≥ 0,

ϕ(s), s < 0.

(3.23)
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We have that v ∈ C0c(�, X) and f is continuous. Let m = sups∈[0,t+1]‖f(s)‖. Then, we have
that

‖f(s)‖ ≤ ‖ϕ(s)‖ +mχ[0,t+1](s), ∀s ∈ �. (3.24)

From (3.24) and Remark 2.4(i), we deduce that f ∈ O(�, X). An easy computation shows that
the pair (f, v) satisfies (Eθ). Then, according to our hypothesis, we have that

∥∥f
∥∥
O(�,X) ≤ L‖v‖I(�,X). (3.25)

From ‖v(s)‖ ≤ α(s − t)Meω‖Φ(θ, t)y‖, for all s ∈ �, we obtain that

‖v‖I(�,X) ≤ |α|IMeω‖Φ(θ, t)y‖. (3.26)

Since y = ϕ(0) = Φ(σ(θ, s),−s)ϕ(s), for all s ∈ [−1, 0), we have that

‖y‖χ[−1,0)(s) ≤ Meω‖ϕ(s)‖χ[−1,0)(s) ≤Meω‖f(s)‖, ∀s ∈ �. (3.27)

Using the invariance under translations of the spaceO from relation (3.27), we obtain that

‖y‖FO(1) ≤ Meω
∥∥f
∥∥
O(�,X). (3.28)

Taking K = (M2e2ωL|α|I)/FO(1) from relations (3.25), (3.26), and (3.28), it follows that
‖Φ(θ, t)y‖ ≥ (1/K)‖y‖. Taking into account thatK does not depend on t, y or θ, we conclude
that

‖Φ(θ, t)y‖ ≥ 1
K
‖y‖, ∀t ≥ 0, ∀y ∈ U(θ), ∀θ ∈ Θ. (3.29)

(ii) Let θ ∈ Θ and let (yn) ⊂ U(θ) with yn → y. Then, for every n ∈ �, there is
ϕn ∈ O(�, X) ∩ F(θ) with ϕn(0) = yn. For every n ∈ �, we consider the functions

vn : � −→ X, vn(t) = −α(t)Φ(θ, t)yn,

fn : � −→ X, fn(t) =

⎧
⎪⎨

⎪⎩

∫∞

t

α(τ)dτ Φ(θ, t)yn, t ≥ 0,

ϕn(t), t < 0.

(3.30)

We have that vn ∈ C0c(�, X), and, using similar arguments with those used in relation (3.24),
we deduce that fn ∈ O(�, X), for all n ∈ �. An easy computation shows that the pair (fn, vn)
satisfies (Eθ). Let

v : � −→ X, v(t) = −α(t)Φ(θ, t)y. (3.31)
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According to our hypothesis, there is f ∈ O(�, X) such that the pair (f, v) satisfies (Eθ). In
particular, this implies that f ∈ F(θ). Moreover, for every n ∈ �, the pair (fn − f, vn − v)
satisfies (Eθ). According to our hypothesis, it follows that

∥∥fn − f
∥∥
O(�,X) ≤ L‖vn − v‖I(�,X), ∀n ∈ �. (3.32)

We have that ‖vn(t) − v(t)‖ ≤ α(t)Meω‖yn − y‖, for all t ∈ � and all n ∈ �, so

‖vn − v‖I(�,X) ≤ Meω|α|I‖yn − y‖, ∀n ∈ �. (3.33)

From (3.32) and (3.33) it follows that fn →
n→∞

f in O(�, X). Then, from Remark 2.4(ii), there

is a subsequence (fkn) ⊂ (fn) and a negligible set A ⊂ � such that fkn(t) →
n→∞

f(t), for all

t ∈ � \ A. In particular, there is h < 0 such that fkn(h) →
n→∞

f(h). Since f, fkn ∈ F(θ), we

successively deduce that

y = lim
n→∞

ykn = lim
n→∞

fkn(0) = lim
n→∞

Φ(σ(θ, h),−h)fkn(h) = Φ(σ(θ, h),−h)f(h) = f(0). (3.34)

This implies that y ∈ U(θ), so U(θ) is a closed linear subspace.

Taking into account the above results it makes sense to study whether the uniform
admissibility of a pair of function spaces from the class T(�) is a sufficient condition for the
existence of the uniform dichotomy. Thus, the main result of this section is as follows.

Theorem 3.13 (Sufficient condition for uniform dichotomy). Let O, I ∈ T(�) and let π =
(Φ, σ) be a skew-product flow on X × Θ. If the pair (O(�, X), I(�, X)) is uniformly admissible for
the system (Eπ), then π is uniformly dichotomic.

Proof. Let L > 0 be given by Definition 3.6. Let M,ω > 0 be given by Definition 3.2. Let
α : � → [0, 2] be a continuous function with suppα ⊂ (0, 1) and

∫1
0 α(τ)dτ = 1.

Step 1. We prove that S(θ) ∩ U(θ) = {0}, for all θ ∈ Θ.
Let θ ∈ Θ and let x ∈ S(θ) ∩U(θ). Then, there is ϕ ∈ O(�, X) ∩F(θ) with ϕ(0) = x. We

consider the function

f : � → X, f(t) =

⎧
⎨

⎩

Φ(θ, t)x, t ≥ 0,

ϕ(t), t < 0.
(3.35)

Then, ‖f(t)‖ ≤ ‖ϕ(t)‖ + ‖λx,θ(t)‖, for all t ∈ �. This implies that f ∈ O(�, X). An easy
computation shows that the pair (f, 0) satisfies (Eθ). Then, according to our hypothesis, it
follows that ‖f‖O(�,X) = 0, so f(t) = 0 a.e. t ∈ �. Observing that f is continuous, we obtain
that f(t) = 0, for all t ∈ �. In particular, we have that x = f(0) = 0.

Step 2. We prove that S(θ) +U(θ) = X, for all θ ∈ Θ.
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Let θ ∈ Θ and let x ∈ X. Let v : � → X, v(t) = α(t)Φ(θ, t)x. Then, v ∈ C0c(�, X),
so there is f ∈ O(�, X) such that the pair (f, v) satisfies (Eθ). In particular, this implies that
f ∈ F(θ), so f(0) ∈ U(θ). In addition, we observe that

f(t) = Φ(θ, t)f(0) +

(∫ t

0
α(τ)dτ

)

Φ(θ, t)x = Φ(θ, t)
(
f(0) + x

)
, ∀t ≥ 1. (3.36)

Setting zx = f(0) + x from (3.36), we have that λzx,θ(t) = f(t), for all t ≥ 1. It follows that

‖λzx,θ(t)‖ ≤ ‖f(t)‖ +Meω‖zx‖χ[0,1)(t), ∀t ∈ �. (3.37)

From relation (3.37) and Remark 2.4(i) we obtain that λzx,θ ∈ O(�, X), so zx ∈ S(θ). This
shows that x = zx − f(0) ∈ S(θ) +U(θ), so S(θ) +U(θ) = X.

According to Steps 1 and 2, Theorem 3.11(ii), and Theorem 3.12(ii), we deduce that

S(θ) ⊕ U(θ) = X, ∀θ ∈ Θ. (3.38)

For every θ ∈ Θwe denote by P(θ) the projection with the property that

RangeP(θ) = S(θ), KerP(θ) = U(θ). (3.39)

Using Proposition 3.9 we obtain that

Φ(θ, t)P(θ) = P(σ(θ, t))Φ(θ, t), ∀(θ, t) ∈ Θ × �+ . (3.40)

Let (θ, t) ∈ Θ×�+ . From Proposition 3.9(ii), it follows that the restrictionΦ(θ, t)| : KerP(θ) →
KerP(σ(θ, t)) is correctly defined and surjective. According to Theorem 3.12(ii) we have that
Φ(θ, t)| is also injective, so this is an isomorphism, for all (θ, t) ∈ Θ × �+ .

Step 3. We prove that supθ∈Θ‖P(θ)‖ <∞.
Let θ ∈ Θ and let x ∈ X. Let xθs = P(θ)x and let xθu = (I − P(θ))x. Since xθu ∈ KerP(θ) =

U(θ), there is ψ ∈ F(θ) ∩O(�, X) with ψ(0) = xθu. We consider the functions

v : � −→ X, v(t) = α(t)Φ(θ, t)x,

f : � → X, f(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Φ(θ, t)xθs , t ≥ 1,

−Φ(θ, t)xθu +

(∫ t

0
α(τ)dτ

)

Φ(θ, t)x, t ∈ [0, 1),

−ψ(t), t < 0.

(3.41)
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We have that v ∈ C0c(�, X) and f is continuous. From xθs ∈ RangeP(θ) = S(θ), we have that
the function λxθs ,θ belongs to O(�, X). Settingm = supt∈[0,1]‖f(t)‖ and observing that

‖f(t)‖ ≤ ‖ψ(t)‖ +mχ[0,1](t) + ‖λxθs ,θ(t)‖, ∀t ∈ �, (3.42)

from (3.42), we deduce that f ∈ O(�, X). An easy computation shows that the pair (f, v)
satisfies (Eθ). This implies that

∥∥f
∥∥
O(�,X) ≤ L‖v‖I(�,X). (3.43)

Since ψ ∈ F(θ), we have that xθu = ψ(0) = Φ(σ(θ, s),−s)ψ(s), for all s ∈ [−1, 0). This implies
that

‖xθu‖ ≤ Meω‖ψ(s)‖ =Meω‖f(s)‖, ∀s ∈ [−1, 0), (3.44)

and we obtain that

‖xθu‖χ[−1,0)(s) ≤ Meω‖f(s)‖, ∀s ∈ �. (3.45)

Using the invariance under translations of the spaceO, from relation (3.45) we deduce that

‖xθu‖FO(1) ≤Meω
∥
∥f
∥
∥
O(�,X). (3.46)

In addition, from

‖v(t)‖ ≤ α(t)Meω‖x‖, ∀t ∈ �, (3.47)

we obtain that

‖v‖I(�,X) ≤ |α|IMeω‖x‖. (3.48)

Setting γ := [L|α|IM2e2ω/FO(1)] from relations (3.43), (3.46), and (3.48), we have that

‖(I − P(θ))x‖ = ‖xθu‖ ≤ γ‖x‖. (3.49)

This implies that

‖P(θ)x‖ ≤
(
1 + γ

)
‖x‖. (3.50)

Taking into account that γ does not depend on θ or x, it follows that relation (3.50) holds, for
all θ ∈ Θ and all x ∈ X, so ‖P(θ)‖ ≤ 1 + γ , for all θ ∈ Θ.
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Finally, from Theorem 3.11(i) and Theorem 3.12(i), we conclude that π is uniformly
dichotomic.

Remark 3.14. Relation (3.39) shows that the stable subspace and the instable subspace play a
central role in the detection of the dichotomous behavior of a skew-product flow and gives a
comprehensible motivation for their usual appellation.

4. Exponential Dichotomy of Skew-Product Flows

In the previous section, we have obtained sufficient conditions for the uniform dichotomy of
a skew-product flow π = (Φ, σ) on X × Θ in terms of the uniform admissibility of the pair
(O(�, X), I(�, X)) for the associated control system (Eπ), where O, I ∈ T(�). The natural
question arises: which are the additional (preferably minimal) hypotheses under which this
admissibility may provide the existence of the exponential dichotomy? In this context, the
main purpose of this section is to establish which are the most general classes of Banach
function spaces where O or I may belong to, such that the uniform admissibility of the pair
(O(�, X), I(�, X)) for the control system (Eπ ) is a sufficient (and also a necessary) condition
for the existence of exponential dichotomy.

LetX be a real or complex Banach space and let (Θ, d) be a metric space. Let π = (Φ, σ)
be a skew-product flow on X ×Θ.

Definition 4.1. A skew-product flow π = (Φ, σ) is said to be exponentially dichotomic if there
exist a family of projections {P(θ)}θ∈Θ ⊂ B(X) and two constants K ≥ 1 and ν > 0 such that
the following properties hold:

(i) Φ(θ, t)P(θ) = P(σ(θ, t))Φ(θ, t), for all (θ, t) ∈ Θ × �+ ;

(ii) ‖Φ(θ, t)x‖ ≤ Ke−νt‖x‖, for all t ≥ 0, all x ∈ Range P(θ) and all θ ∈ Θ;

(iii) the restrictionΦ(θ, t)| : KerP(θ) → KerP(σ(θ, t)) is an isomorphism, for all (θ, t) ∈
Θ × �+ ;

(iv) ‖Φ(θ, t)y‖ ≥ (1/K)eνt‖y‖, for all t ≥ 0, all y ∈ KerP(θ) and all θ ∈ Θ.

Before proceeding to the next steps, we need a technical lemma.

Lemma 4.2. If a skew-product flow π is exponentially dichotomic with respect to a family of
projections {P(θ)}θ∈Θ, then supθ∈Θ‖P(θ)‖ <∞.

Proof. Let K, ν > 0 be given by Definition 4.1 and letM,ω > 0 be given by Definition 3.2. For
every (x, θ) ∈ X ×Θ and every t ≥ 0, we have that

1
K
eνt‖(I − P(θ))x‖ ≤ ‖Φ(θ, t)(I − P(θ))x‖ ≤Meωt‖x‖ +Ke−νt‖P(θ)x‖

≤
(
Meωt +K

)
‖x‖ +Ke−νt‖(I − P(θ))x‖,

(4.1)

which implies that

(
e2νt −K2

)e−νt

K
‖(I − P(θ))x‖ ≤

(
Meωt +K

)
‖x‖, ∀t ≥ 0, ∀(x, θ) ∈ X ×Θ. (4.2)
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Let h > 0 be such that e2νh − K2 > 0. Setting α := (e2νh −K2)e−νh/K and δ := (Meωh +K), it
follows that ‖(I−P(θ))x‖ ≤ (δ/α)‖x‖, for all (x, θ) ∈ X×Θ. This implies that ‖I−P(θ)‖ ≤ δ/α,
for all θ ∈ Θ, so ‖P(θ)‖ ≤ 1 + (δ/α), for all θ ∈ Θ, and the proof is complete.

Remark 4.3. (i) Using Lemma 4.2, we deduce that if a skew-product flow π is exponentially
dichotomic with respect to a family of projections {P(θ)}θ∈Θ, then π is uniformly dichotomic
with respect to the same family of projections.

(ii) If a skew-product flow π is exponentially dichotomic with respect to a family of
projections {P(θ)}θ∈Θ, then this family is uniquely determined (see, e.g., [18], Remark 2.5).

Remark 4.4. In the description of any dichotomous behavior, the properties (i) and (iii) are
inherent, because beside the splitting of the space ensured by the presence of the dichotomy
projections, these properties reflect both the invariance with respect to the decomposition
induced by each projection as well as the reversibility of the cocycle restricted to the kernel
of each projection.

In this context, it is extremely important to note that if in the detection of the dichotomy
one assumes from the very beginning that there exist a projection family such that the
invariance property (i) and the reversibility condition (iii) hold, then the dichotomy concept
is resumed to a stability property (ii) and to an instability condition (iv), which via (iii) will
consist only of a double stability. Thus, if in the study of the dichotomy one considers (i) and
(iii) as working hypotheses, then the entire investigation is reduced to a quasitrivial case of
(double) stability.

In conclusion, in the study of the existence of (uniform or) exponential dichotomy, it is
essential to determine conditions which imply the existence of the projection family and also the
fulfillment of all the conditions from Definition 4.1.

Now let O, I be two Banach function spaces such that O, I ∈ T(�). According to
the main result in the previous section (see Theorem 3.13), if the pair (O(�, X), I(�, X)) is
uniformly admissible for the system (Eπ), then π is uniformly dichotomic with respect to a
family of projections {P(θ)}θ∈Θ with the property that

RangeP(θ) = S(θ), KerP(θ) = U(θ), ∀θ ∈ Θ. (4.3)

In what follows, we will see that by imposing some conditions either on the output space O
or on the input space I, the admissibility becomes a sufficient condition for the exponential
dichotomy.

Theorem 4.5 (The behavior on the stable subspace). Let O, I be two Banach function spaces
such that eitherO ∈ Q(�) or I ∈ L(�). If the pair (O(�, X),I(�, X)) is uniformly admissible for the
system (Eπ), then there areK, ν > 0 such that

‖Φ(θ, t)x‖ ≤ Ke−νt‖x‖, ∀t ≥ 0, ∀x ∈ RangeP(θ), ∀θ ∈ Θ. (4.4)

Proof. Let δ > 0 be such that

‖Φ(θ, t)x‖ ≤ δ‖x‖, ∀t ≥ 0, ∀x ∈ RangeP(θ), ∀θ ∈ Θ. (4.5)
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We prove that there is h > 0 such that

‖Φ(θ, h)x‖ ≤ 1
e
‖x‖, ∀x ∈ Range P(θ), ∀θ ∈ Θ. (4.6)

Let L > 0 be given by Definition 3.6 and letM,ω > 0 be given by Definition 3.2.

Case 1. Suppose that O ∈ Q(�). Let α : � → [0, 2] be a continuous function with suppα ⊂
(0, 1) such that

∫1
0 α(τ)dτ = 1. Since supt>0FO(t) = ∞, there is r > 0 such that

FO(r) ≥ eδ2L|α|I . (4.7)

Let θ ∈ Θ and let x ∈ RangeP(θ). If Φ(θ, 1)x/= 0, then we consider the functions

v : � −→ X, v(t) = α(t)
Φ(θ, t)x
‖Φ(θ, t)x‖

,

f : � −→ X, f(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

aΦ(θ, t)x, t ≥ 1,
∫ t

0

α(τ)
‖Φ(θ, τ)x‖

dτ Φ(θ, t)x, t ∈ [0, 1],

0, t < 0,

(4.8)

where

a :=
∫1

0

α(τ)
‖Φ(θ, τ)x‖

dτ. (4.9)

We observe that f is continuous and

‖f(t)‖ ≤ a‖λx,θ(t)‖, ∀t ∈ �. (4.10)

Since x ∈ RangeP(θ) = S(θ), we have that λx,θ ∈ O(�, X). Then using Remark 2.4(i), we
deduce that f ∈ O(�, X). In addition, we have that v ∈ C0c(�, X) and an easy computation
shows that the pair (f, v) satisfies (Eθ). Then, according to our hypothesis, it follows that

∥
∥f
∥
∥
O(�,X) ≤ L‖v‖I(�,X). (4.11)

Because ‖v(t)‖ = α(t), for all t ∈ �, the relation (4.11) becomes

∥∥f
∥∥
O(�,X) ≤ L|α|I . (4.12)

Using relation (4.5), we deduce that

‖Φ(θ, r + 1)x‖ ≤ δ‖Φ(θ, t)x‖ =
δ

a
‖f(t)‖, ∀t ∈ [1, r + 1), (4.13)



22 Abstract and Applied Analysis

so

‖Φ(θ, r + 1)x‖χ[1,r+1)(t) ≤
δ

a
‖f(t)‖, ∀t ∈ �. (4.14)

Using the invariance under translations of the spaceO from relation (4.14), we obtain that

‖Φ(θ, r + 1)x‖FO(r) ≤
δ

a

∥∥f
∥∥
O(�,X). (4.15)

Setting h := r + 1 from relations (4.12) and (4.15), it follows that

‖Φ(θ, h)x‖FO(r) ≤
δL|α|I
a

. (4.16)

Moreover, from relation (4.5), we have that ‖Φ(θ, τ)x‖ ≤ δ‖x‖, for all τ ∈ [0, 1), so

a =
∫1

0

α(τ)
‖Φ(θ, τ)x‖

dτ ≥ 1
δ‖x‖ .

(4.17)

From relations (4.7), (4.16), and (4.17), it follows that

‖Φ(θ, h)x‖ ≤ 1
e
‖x‖. (4.18)

If Φ(θ, 1)x = 0, thenΦ(θ, h)x = 0, so the above relation holds. Taking into account that h does
not depend on θ or x, we obtain that in this case, there is h > 0 such that relation (4.6) holds.

Case 2. Suppose that I ∈ L(�). In this situation, from Remark 2.16, we have that there is a
continuous function γ : � → �+ such that γ ∈ I \ L1(�,�). Since the space I is invariant
under translations, we may assume that there is r > 1 such that

∫ r

1
γ(τ)dτ ≥

eLδ2
∣∣γ
∣∣
I

FO(1)
. (4.19)

Let β : � → [0, 1] be a continuous function with supp β ⊂ (0, r + 1) and β(t) = 1, for all
t ∈ [1, r].

Let θ ∈ Θ and let x ∈ RangeP(θ). We consider the functions

v : � −→ X, v(t) = β(t)γ(t)Φ(θ, t)x,

f : � −→ X, f(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

qΦ(θ, t)x, t ≥ r + 1,
∫ t

0
β(τ)γ(τ)dτ Φ(θ, t)x, t ∈ [0, r + 1),

0, t < 0,

(4.20)
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where

q =
∫ r+1

0
β(τ)γ(τ)dτ. (4.21)

We have that v ∈ C0c(�, X), f is continuous, and ‖f(t)‖ ≤ q‖λx,θ(t)‖, for all t ∈ �. Using
similar arguments with those used in relation (4.10), we deduce that f ∈ O(�, X). An easy
computation shows that the pair (f, v) satisfies (Eθ). Then, we have that

∥∥f
∥∥
O(�,X) ≤ L‖v‖I(�,X). (4.22)

Using relation (4.5), we obtain that

‖v(t)‖ ≤ δγ(t)‖x‖, ∀t ∈ �, (4.23)

which implies that

‖v‖I(�,X) ≤ δ
∣∣γ
∣∣
I
‖x‖. (4.24)

In addition, from ‖Φ(θ, r + 2)x‖ ≤ δ‖Φ(θ, t)x‖, for all t ∈ [r + 1, r + 2), we deduce that

‖Φ(θ, r + 2)x‖χ[r+1,r+2)(t) ≤
δ

q
‖f(t)‖, ∀t ∈ �. (4.25)

Using the invariance under translations of the spaceO from relations (4.25), (4.22), and (4.24)
we have that

q‖Φ(θ, r + 2)x‖FO(1) ≤ δ
∥
∥f
∥
∥
O(�,X) ≤ Lδ

2∣∣γ
∣
∣
I
‖x‖. (4.26)

Since q ≥
∫r
1 γ(τ)dτ , from relations (4.19), (4.21), and (4.26), it follows that

‖Φ(θ, r + 2)x‖ ≤ 1
e
‖x‖. (4.27)

Setting h = r + 2 and taking into account that h does not depend on θ or x, we obtain that
relation (4.6) holds.

In conclusion, in both situations, there is h > 0 such that

‖Φ(θ, h)x‖ ≤ 1
e
‖x‖, ∀x ∈ Range P(θ), ∀θ ∈ Θ. (4.28)
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Let ν := 1/h and let K = δe. Let θ ∈ Θ and let x ∈ RangeP(θ). Let t > 0. Then, there
are k ∈ � and τ ∈ [0, h) such that t = kh + τ . Using relations (4.5) and (4.6), we successively
deduce that

‖Φ(θ, t)x‖ ≤ δ‖Φ(θ, kh)x‖ ≤ δe−k‖x‖ ≤ Ke−νt‖x‖. (4.29)

Theorem 4.6 (The behavior on the unstable subspace). Let O, I be two Banach function spaces
such that either O ∈ Q(�) or I ∈ L(�). If the pair (O(�, X), I(�, X)) is uniformly admissible for
the system (Eπ), then, there areK, ν > 0 such that

‖Φ(θ, t)y‖ ≥ 1
K
eνt‖y‖, ∀t ≥ 0, ∀y ∈ KerP(θ), ∀θ ∈ Θ. (4.30)

Proof. Let δ > 0 be such that

‖Φ(θ, t)y‖ ≥ 1
δ
‖y‖, ∀t ≥ 0, ∀y ∈ KerP(θ), ∀θ ∈ Θ. (4.31)

Let L > 0 be given by Definition 3.6 and let M,ω > 0 be given by Definition 3.2. We prove
that there is h > 0 such that

‖Φ(θ, h)y‖ ≥ e‖y‖, ∀y ∈ KerP(θ), ∀θ ∈ Θ. (4.32)

Case 1. Suppose that O ∈ Q(�). Let α : � → [0, 2] be a continuous function with suppα ⊂
(0, 1) and

∫1
0 α(τ)dτ = 1. In this case, there is r > 0 such that

FO(r) ≥ eδ2L|α|I . (4.33)

Let θ ∈ Θ and let y ∈ KerP(θ)\{0}. Then,Φ(θ, t)y /= 0, for all t ≥ 0. Since y ∈ KerP(θ) =
U(θ), there is ϕ ∈ F(θ) ∩O(�, X) with ϕ(0) = y. We consider the functions

v : � −→ X, v(t) = −α(t − r)
Φ(θ, t)y
‖Φ(θ, t)y‖

f : � −→ X, f(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫∞

t

α(τ − r)
‖Φ(θ, τ)y‖

dτ Φ(θ, t)y, t ≥ r,

aΦ(θ, t)y, t ∈ [0, r),

aϕ(t), t < 0,

(4.34)

where

a :=
∫ r+1

r

α(τ − r)
‖Φ(θ, τ)y‖dτ.

(4.35)



Abstract and Applied Analysis 25

We have that v ∈ C0c(�, X) and f is continuous. Moreover, from

‖f(t)‖ ≤ a‖ϕ(t)‖ + aMeω(r+1)‖y‖χ[0,r+1)(t), ∀t ∈ �, (4.36)

we obtain that f ∈ O(�, X). An easy computation shows that the pair (f, v) satisfies (Eθ), so

∥∥f
∥∥
O(�,X) ≤ L‖v‖I(�,X). (4.37)

Observing that ‖v(t)‖ = α(t − r), for all t ∈ �, the relation (4.37) becomes

∥
∥f
∥
∥
O(�,X) ≤ L|α|I . (4.38)

From relation (4.31), we have that

‖Φ(θ, r + 1)y‖ ≥ 1
δ
‖Φ(θ, τ)y‖, ∀τ ∈ [r, r + 1]. (4.39)

This implies that

a ≥ 1
δ‖Φ(θ, r + 1)y‖

. (4.40)

In addition, from relation (4.31), we have that

‖Φ(θ, t)y‖ ≥ 1
δ
‖y‖, ∀t ∈ [0, r) (4.41)

which implies that

‖y‖χ[0,r)(t) ≤ δ‖Φ(θ, t)y‖χ[0,r)(t) ≤
δ

a
‖f(t)‖, ∀t ∈ �. (4.42)

From relation (4.42), it follows that

‖y‖FO(r) ≤
δ

a

∥
∥f
∥
∥
O(�,X). (4.43)

From relations (4.38), (4.40), and (4.43), we deduce that

‖y‖FO(r) ≤
δL|α|I
a

≤ δ2L|α|I‖Φ(θ, r + 1)y‖. (4.44)

From relations (4.44) and (4.33), we have that

‖Φ(θ, r + 1)y‖ ≥ e‖y‖. (4.45)
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Setting h := r + 1 and taking into account that h does not depend on y or θ we obtain that
relation (4.32) holds.

Case 2. Suppose that I ∈ L(�). In this situation, using Remark 2.16 and the translation
invariance of the space I, we have that there is a continuous function γ : � → �+ with
γ ∈ I \ L1(�,�) and r > 1 such that

∫ r

1
γ(τ)dτ ≥ eω+1

LMδ
∣∣γ
∣∣
I

FO(1)
. (4.46)

Let β : � → [0, 1] be a continuous function with supp β ⊂ (0, r + 1) and β(t) = 1, for all
t ∈ [1, r].

Let θ ∈ Θ and let y ∈ KerP(θ). Since KerP(θ) = U(θ) there is ϕ ∈ F(θ) ∩O(�, X) with
ϕ(0) = y. We consider the functions

v : � −→ X, v(t) = −β(t)γ(t)Φ(θ, t)y,

f : � −→ X, f(t) =

⎧
⎪⎨

⎪⎩

∫∞

t

β(τ)γ(τ)dτΦ(θ, t)y, t ≥ 0,

qϕ(t), t < 0,

(4.47)

where q :=
∫ r+1
0 β(τ)γ(τ)dτ . We have that v ∈ C0c(�, X), and, using similar arguments with

those from Case 1, we obtain that f ∈ O(�, X). An easy computation shows that the pair
(f, v) satisfies (Eθ), so

∥∥f
∥∥
O(�,X) ≤ L‖v‖I(�,X). (4.48)

From (4.31), we have that ‖Φ(θ, r + 1)y‖ ≥ (1/δ)‖Φ(θ, t)y‖, for all t ∈ [0, r + 1]. This implies
that

‖v(t)‖ ≤ γ(t)δ‖Φ(θ, r + 1)y‖, ∀t ∈ �, (4.49)

so

‖v‖I(�,X) ≤
∣∣γ
∣∣
I
δ‖Φ(θ, r + 1)y‖. (4.50)

Since ϕ ∈ F(θ), we have that

‖y‖ = ‖ϕ(0)‖ = ‖Φ(σ(θ, t),−t)ϕ(t)‖ ≤Meω‖ϕ(t)‖, ∀t ∈ [−1, 0). (4.51)

From relation (4.51), it follows that

‖y‖χ[−1,0)(t) ≤Meω‖ϕ(t)‖χ[−1,0)(t) ≤
Meω

q
‖f(t)‖, ∀t ∈ �. (4.52)
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Using the translation invariance of the space O from (4.52), we obtain that

q‖y‖FO(1) ≤ Meω
∥∥f
∥∥
O(�,X). (4.53)

Since q ≥
∫r
1 γ(τ)dτ , from relations (4.46), (4.48), (4.50) we deduce that

‖Φ(θ, r + 1)y‖ ≥ e‖y‖. (4.54)

Setting h := r+1 and since h does not depend on y or θ, we have that the relation (4.32) holds.
In conclusion, in both situations there is h > 0 such that

‖Φ(θ, h)y‖ ≥ e‖y‖, ∀y ∈ KerP(θ), ∀θ ∈ Θ. (4.55)

Let ν = 1/h and let K = δe. Let θ ∈ Θ and let y ∈ KerP(θ). Let t > 0. Then, there are j ∈ �

and s ∈ [0, h) such that t = jh + s. Using relations (4.31) and (4.32), we obtain that

‖Φ(θ, t)y‖ ≥ 1
δ
‖Φ
(
θ, jh

)
y‖ ≥ 1

δ
ej‖y‖ ≥ 1

K
eνt‖y‖. (4.56)

According to the previous results we may formulate now a sufficient condition for the
existence of the exponential dichotomy. Moreover, for the converse implication we will show
that it sufficient to chose one of the spaces in the admissible pair from the class R(�). Thus,
the main result of this section is as follows.

Theorem 4.7 (Necessary and sufficient condition for exponential dichotomy). Let π = (Φ, σ)
be a skew-product flow on E = X × Θ and let O, I be two Banach function spaces with O, I ∈ T(�)
such that either O ∈ Q(�) or I ∈ L(�). The following assertions hold:

(i) if the pair (O(�, X), I(�, X)) is uniformly admissible for the system (Eπ ), then π is
exponentially dichotomic.

(ii) if I ⊂ O and one of the spaces I or O belongs to the class R(�), then π is exponentially
dichotomic if and only if the pair (O(�, X), I(�, X)) is uniformly admissible for the system (Eπ ).

Proof. (i) This follows from Theorem 3.13, Theorem 4.5, and Theorem 4.6.
(ii) Since I ⊂ O, it follows that there is α > 0 such that

|u|O ≤ α|u|I , ∀u ∈ I. (4.57)

Necessity. Suppose that π is exponentially dichotomic with respect to the family of
projections {P(θ)}θ∈Θ and let K, ν > 0 be two constants given by Definition 4.1. According
to Lemma 4.2, we have that q := supθ∈Θ‖P(θ)‖ < ∞. For every (θ, t) ∈ Θ × �+ we denote by
Φ(θ, t)−1| the inverse of the operator Φ(θ, t)| : KerP(θ) → KerP(σ(θ, t)).
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Let θ ∈ Θ and let v ∈ C0c(�, X). We consider the function fv : � → X given by

fv(t) =
∫ t

−∞
Φ(σ(θ, τ), t − τ)P(σ(θ, τ))v(τ)dτ

−
∫∞

t

Φ(σ(θ, t), τ − t)−1| (I − P(σ(θ, τ))) v(τ)dτ.
(4.58)

We have that fv is continuous, and a direct computation shows that the pair (fv, v) satisfies
(Eθ). In addition, we have that

‖fv(t)‖ ≤ qK
∫ t

−∞
e−ν(t−τ)‖v(τ)‖dτ

+
(
1 + q

)
K

∫∞

t

e−ν(τ−t)‖v(τ)‖dτ, ∀t ∈ �.
(4.59)

If I ∈ R(�), let γI,ν > 0 be the constant given by Lemma 2.21. Then, from (4.59) and
Lemma 2.21, it follows that fv ∈ I(�, X) and

∥∥fv
∥∥
I(�,X) ≤

(
1 + 2q

)
KγI,ν‖v‖I(�,X). (4.60)

Then, from (4.57) and (4.60), we deduce that fv ∈ O(�, X) and

∥∥fv
∥∥
O(�,X) ≤ α

(
1 + 2q

)
KγI,ν‖v‖I(�,X). (4.61)

If O ∈ R(�), let γO,ν > 0 be the constant given by Lemma 2.21. Then, from (4.59), (4.57) and
using Lemma 2.21, we successively obtain that fv ∈ O(�, X) and

∥∥fv
∥∥
O(�,X) ≤

(
1 + 2q

)
KγO,ν‖v‖O(�,X) ≤ α

(
1 + 2q

)
KγO,ν‖v‖I(�,X). (4.62)

Let

γ :=

⎧
⎨

⎩

γI,ν, if I ∈ R(�),

γO,ν, if I /∈ R(�), O ∈ R(�).
(4.63)

Then setting L := α(1 + 2q)Kγ from relations (4.61) and (4.62), we have that

∥∥fv
∥∥
O(�,X) ≤ L‖v‖I(�,X). (4.64)

Now let v ∈ C0c(�, X) and f ∈ O(�, X) be such that the pair (f, v) satisfies (Eθ). We set
ϕ := f − fv, and we have that ϕ ∈ O(�, X) and

ϕ(t) = Φ(σ(θ, s), t − s)ϕ(s), ∀t ≥ s. (4.65)



Abstract and Applied Analysis 29

Let ϕ1(t) = P(σ(θ, t))ϕ(t), for all t ∈ � and let ϕ2(t) = (I − P(σ(θ, t)))ϕ(t), for all t ∈ �. Then
from (4.65), we obtain that

ϕk(t) = Φ(σ(θ, s), t − s)ϕk(s), ∀t ≥ s, ∀k ∈ {1, 2}. (4.66)

Let t0 ∈ �. From (4.66), it follows that

‖ϕ1(t0)‖ ≤ Ke−ν(t0−s)‖ϕ1(s)‖ ≤ qKe−ν(t0−s)‖ϕ(s)‖, ∀s ≤ t0. (4.67)

Since ϕ ∈ O(�, X), from Remark 2.12 it follows that ϕ ∈ M1(�, X). Then, from (4.67), we
have that

‖ϕ1(t0)‖ ≤ qK
∫ s

s−1
e−ν(t0−τ)‖ϕ(τ)‖dτ ≤ qKe−ν(t0−s)

∫ s

s−1
‖ϕ(τ)‖dτ

≤ qKe−ν(t0−s)‖ϕ‖M1(�,X), ∀s ≤ t0.
(4.68)

For s → −∞ in (4.68), it follows that ϕ1(t0) = 0. In addition, from (4.66) we have that

1
K
eν(t−t0)‖ϕ2(t0)‖ ≤ ‖ϕ2(t)‖ ≤

(
1 + q

)
‖ϕ(t)‖, ∀t ≥ t0. (4.69)

This implies that

1
K
eν(t−t0)‖ϕ2(t0)‖ ≤

(
1 + q

)
∫ t+1

t

‖ϕ(τ)‖dτ ≤
(
1 + q

)∥∥ϕ
∥∥
M1(�,X), ∀t ≥ t0. (4.70)

The relation (4.70) shows that

‖ϕ2(t0)‖ ≤ K
(
1 + q

)
e−ν(t−t0)

∥∥ϕ
∥∥
M1(�,X), ∀t ≥ t0. (4.71)

For t → ∞ in (4.71), it follows that ϕ2(t0) = 0. This shows that ϕ(t0) = ϕ1(t0) + ϕ2(t0) = 0.
Since t0 ∈ � was arbitrary, we deduce that ϕ = 0, so f = fv. Then, from (4.64), we have that

∥∥f
∥∥
O(�,X) ≤ L‖v‖I(�,X). (4.72)

Taking into account that L does not depend on θ ∈ Θ or on v ∈ C0c(�, X), we finally conclude
that the pair (O(�, X), I(�, X)) is uniformly admissible for the system (Eπ ).

Sufficiency follows from (i).

Corollary 4.8. Let π = (Φ, σ) be a skew-product flow on E = X ×Θ and let V be a Banach function
space with V ∈ T(�). Then, the following assertions hold:

(i) if the pair (V (�, X), V (�, X)) is uniformly admissible for the system (Eπ), then, π is
exponentially dichotomic;
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(ii) if V ∈ R(�), then, π is exponentially dichotomic if and only if the pair (V (�, X),V (�, X))
is uniformly admissible for the system (Eπ).

Proof. We prove that either V ∈ Q(�) or V ∈ L(�). Indeed, suppose by contrary that V /∈
Q(�) and V /∈ L(�). Then, M := supt>0FV (t) < ∞ and V ⊂ L1(�,�). From V ⊂ L1(�,�), it
follows that there is γ > 0 such that

‖v‖1 ≤ γ |v|V , ∀v ∈ V. (4.73)

In particular, from v = χ[0,t) in relation (4.73), we deduce that

t ≤ γ
∣
∣χ[0,t)

∣
∣
V
= γFV (t) ≤ γM, ∀t > 0, (4.74)

which is absurd. This shows that the assumption is false, which shows that either V ∈ Q(�)
or V ∈ L(�). By applying Theorem 4.7, we obtain the conclusion.

5. Applications and Conclusions

We have seen in the previous section that in the study of the exponential dichotomy of
variational equations the classes Q(�) and, respectively, L(�) have a crucial role in the
identification of the appropriate function spaces in the admissible pair. Moreover, it was also
important to point out that it is sufficient to impose conditions either on the input space
or on the output space. In this context, the natural question arises if these conditions are
indeed necessary and whether our hypotheses may be dropped. The aim of this section is to
answer this question. With this purpose, we will present an illustrative example of uniform
admissibility, and we will discuss the concrete implications concerning the existence of the
exponential dichotomy.

Let X be a Banach space. We denote by C0(�, X) the space of all continuous functions
u : � → X with limt→∞u(t) = limt→−∞u(t) = 0, which is a Banach space with respect to the
norm

‖|u|‖ := sup
t∈�

‖u(t)‖. (5.1)

We start with a technical lemma.

Lemma 5.1. If O is a Banach function space with O ∈ T(�) \ Q(�), then, C0(�,�) ⊂ O.

Proof. Let c := supt>0FO(t). Let u ∈ C0(�,�). Then, there is an unbounded increasing sequence
(tn) ⊂ (0,∞) such that |u(t)| ≤ 1/(n + 1), for all |t| ≥ tn and all n ∈ �. Setting un = uχ[−tn,tn) we
have that

∣∣un+p − un
∣∣
O
≤

∣∣
∣χ[−tn+p,−tn)

∣∣
∣
O

n + 1
+

∣∣
∣χ[tn,tn+p)

∣∣
∣
O

n + 1
≤ 2c
n + 1

, ∀n ∈ �, ∀p ∈ �∗ . (5.2)

From relation (5.2), it follows that the sequence (un) is fundamental in O, so this is
convergent, that is, there exists v ∈ O such that un → v in O. According to Remark 2.4(ii),



Abstract and Applied Analysis 31

there exists a subsequence (ukn) such that ukn(t) → v(t) for a.e. t ∈ �. This implies that
v(t) = u(t) for a.e. t ∈ �, so v = u in O. In conclusion, u ∈ O, and the proof is complete.

In what follows, we present a concrete situation which illustrates the relevance of the
hypotheses on the underlying function spaces considered in the admissible pair, for the study
of the dichotomous behavior of skew-product flows.

Example 5.2. Let X = � × � which is a Banach space with respect to the norm ‖(x1, x2)‖ =
|x1| + |x2|. Let Θ = � and let σ : Θ × � → Θ, σ(θ, t) = θ + t. We have that σ is a flow on Θ. Let

ϕ : � −→ (0,∞), ϕ(t) =

⎧
⎨

⎩

2
t + 1

, t ≥ 0,

1 + e−t, t < 0.
(5.3)

For every (θ, t) ∈ Θ × �+ , we consider the operator

Φ(θ, t) : X −→ X, Φ(θ, t)(x1, x2) =
(
ϕ(θ + t)
ϕ(θ)

x1, e
tx2

)
. (5.4)

It is easy to see that π = (Φ, σ) is a skew-product flow.
Now, letO, I be two Banach function spaces withO, I ∈ T(�) such thatO /∈ Q(�) and

I /∈ L(�). It follows that I ⊂ L1(�,�), and, using Lemma 5.1, we obtain that C0(�,�) ⊂ O.
Then, there are α, β > 0 such that

‖u‖1 ≤ α|u|I , ∀u ∈ I,

‖u‖O ≤ β‖|u|‖, ∀u ∈ C0(�,�).
(5.5)

Step 1. We prove that the pair (O(�, X), I(�, X)) is uniformly admissible for the system (Eπ).
Let θ ∈ Θ and let v = (v1, v2) ∈ C0c(�, X) and let h > 0 be such that supp v ⊂ (0, h). We

consider the function f : � → X where f = (f1, f2) and

f1(t) =
∫ t

−∞

ϕ(θ + t)
ϕ(θ + τ)

v1(τ)dτ, f2(t) = −
∫∞

t

e−(τ−t)v2(τ)dτ, ∀t ∈ �. (5.6)

We have that f is continuous and an easy computation shows that the pair (f, v) satisfies
(Eθ). Since suppv ⊂ (0, h), we obtain that f1(t) = 0, for all t ≤ 0 and f2(t) = 0, for all t ≥ h.
From

f1(t) = ϕ(θ + t)
∫h

0

v1(τ)
ϕ(θ + τ)

dτ, ∀t ≥ h, (5.7)

we have that limt→∞f1(t) = 0. In addition, from

f2(t) = −et
∫h

0
e−τv2(τ)dτ, ∀t ≤ 0, (5.8)
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we deduce that limt→−∞f2(t) = 0. Thus, we obtain that f ∈ C0(�, X) so f ∈ O(�, X).
Moreover, from

∣∣f1(t)
∣∣ ≤
∫ t

−∞
|v1(τ)|dτ ≤ ‖v1‖L1(�,�), ∀t ∈ �,

∣∣f2(t)
∣∣ ≤
∫∞

t

|v2(τ)|dτ ≤ ‖v2‖L1(�,�), ∀t ∈ �,
(5.9)

it follows that

∥∥∣∣f
∣∣∥∥ ≤ ‖v‖L1(�,X). (5.10)

From relations (5.5) and (5.10), we obtain that

∥
∥f
∥
∥
O(�,X) ≤ αβ‖v‖I(�,X). (5.11)

Let f̃ ∈ O(�, X) be such that the pair (f̃ , v) satisfies (Eθ) and let g = f̃ − f . Then,
g ∈ O(�, X) and g(t) = Φ(σ(θ, s), t − s)g(s), for all t ≥ s. More exactly, if g = (g1, g2), then we
have that

g1(t) =
ϕ(θ + t)
ϕ(θ + s)

g1(s), ∀t ≥ s, (5.12)

g2(t) = et−sg2(s), ∀t ≥ s. (5.13)

Since g ∈ O(�, X) from Remark 2.12, it follows that g ∈M1(�, X), so g1, g2 ∈ M1(�,�).
Let t0 ∈ �. For every s ≤ t0 from relation (5.12), we have that

∣∣g1(t0)
∣∣

ϕ(θ + t0)
=
∫ s

s−1

∣∣g1(τ)
∣∣

ϕ(θ + τ)
dτ ≤ 1

ϕ(θ + s)

∫ s

s−1

∣∣g1(τ)
∣∣dτ ≤

∥∥g1
∥∥
M1(�,�)

ϕ(θ + s)
. (5.14)

Since ϕ(r) → ∞ as r → −∞, for s → −∞ in (5.14), we obtain that g1(t0) = 0. In addition, for
every t ≥ t0 from relation (5.13) we have that

e−t0
∣∣g2(t0)

∣∣ =
∫ t+1

t

e−τ
∣∣g2(τ)

∣∣dτ ≤ e−t
∫ t+1

t

∣∣g2(τ)
∣∣dτ ≤ e−t

∥∥g2
∥∥
M1(�,�). (5.15)

For t → ∞ in (5.15) we deduce that g2(t0) = 0. So, we obtain that g(t0) = 0. Taking into
account that t0 ∈ � was arbitrary it follows that g = 0. This implies that f̃ = f . Then, from
relation (5.11) we have that

∥
∥∥f̃
∥
∥∥
O(�,X)

≤ αβ‖v‖I(�,X). (5.16)
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We set L = αβ, and, taking into account that L does not depend on θ or v, we conclude that
the pair (O(�, X), I(�, X)) is uniformly admissible for the system (Eπ).

Step 2. We prove that π is not exponentially dichotomic. Suppose by contrary that π is
exponentially dichotomic with respect to the family of projections {P(θ)}θ∈Θ and let K, ν > 0
be two constants given by Definition 4.1. In this case, according to Proposition 2.1 from [18]
we have that

ImP(θ) = {x ∈ X : Φ(θ, t)x −→ 0 as t −→ ∞}, ∀θ ∈ Θ. (5.17)

This characterization implies that ImP(θ) = � × {0}, for all θ ∈ Θ. Then, from

‖Φ(θ, t)x‖ ≤ Ke−νt‖x‖, ∀t ≥ 0, ∀x ∈ ImP(θ), ∀θ ∈ Θ, (5.18)

we obtain that

ϕ(θ + t)
ϕ(θ)

|x1| ≤ Ke−νt|x1|, ∀x1 ∈ �, ∀t ≥ 0, ∀θ ∈ Θ, (5.19)

which shows that

ϕ(θ + t)
ϕ(θ)

≤ Ke−νt, ∀t ≥ 0, ∀θ ∈ Θ. (5.20)

In particular, for θ = 0, from (5.20), we have that

1
t + 1

≤ Ke−νt, ∀t ≥ 0, (5.21)

which is absurd. This shows that the assumption is false, so π is not exponentially dichotomic.

Remark 5.3. The above example shows that if I, O are two Banach function spaces from
the class T(�) such that O /∈ Q(�) and I /∈ L(�), then the uniform admissibility of the
pair (O(�, X), I(�, X)) for the system (Eπ) does not imply the existence of the exponential
dichotomy of π . This shows that the hypotheses of the main result from the previous section
are indeed necessary and emphasizes the fact that in the study of the exponential dichotomy
in terms of the uniform admissibility at least one of the output space or the input space should
belong to, respectively, Q(�) or L(�).

Finally, we complete our study with several consequences of the main result, which
will point out some interesting conclusions for some usual classes of spaces often used in
control-type problems arising in qualitative theory of dynamical systems. We will also show
that, in our approach, the input space can be successively minimized, and we will discuss
several optimization directions concerning the admissibility-type techniques.

Remark 5.4. The input-output characterizations for the asymptotic properties of systems have
a wider applicability area if the input space is as small as possible and the output space is
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very general. In our main result, given by Theorem 4.7, the input functions belong to the
space C0c(�, X) while the output space is a general Banach function space. By analyzing
condition (ii) from Definition 3.6, we observe that the input-output characterization given by
Theorem 4.7 becomes more flexible and provides a more competitive applicability spectrum
when the norm on the input space is larger.

Another interesting aspect that must be noted is that the class T(�) is closed to finite
intersections. Indeed, if I1, . . . , In ∈ T(�), then we may define I := I1 ∩ I2 ∩ · · · In with respect
to the norm

|u|I := max
{
|u|I1 , |u|I2 , . . . , |u|In

}
, (5.22)

which is a Banach function space which belongs to T(�). So, taking as input space a Banach
function space which is obtained as an intersection of Banach function spaces from the class
T(�) we will have a “larger” norm in our admissibility condition, and, thus the estimation
will be more permissive and more general.

As a consequence of the aspects presented in the above remark we deduce the
following corollaries.

Corollary 5.5. Let π = (Φ, σ) be a skew-product flow on X × Θ. Let Oϕ be an Orlicz space with
0 < ϕ(t) < ∞, for all t > 0. Let n ∈ �

∗ , let Oϕ1 , . . . , Oϕn be Orlicz spaces such that ϕk(1) < ∞, for
all k ∈ {1, . . . , n} and let I := Oϕ1(�,�) ∩ · · · ∩ Oϕn(�,�) ∩ Oϕ(�,�). Then, π is exponentially
dichotomic if and only if the pair (Oϕ(�, X), I(�, X)) is uniformly admissible for the system (Eπ ).

Proof. From Lemma 2.15 and Remark 2.20, it follows that Oϕ ∈ Q(�) ∩ R(�). By applying
Theorem 4.7, the proof is complete.

Corollary 5.6. Let π = (Φ, σ) be a skew-product flow on X × Θ and let p ∈ [1,∞). Let n ∈
�
∗ , q1, . . . , qn ∈ [1,∞] and I = Lq1(�,�) ∩ · · · ∩ Lqn(�,�) ∩ Lp(�,�). Then, π is exponentially

dichotomic if and only if the pair (Lp(�, X), I(�, X)) is admissible for the system (Eπ).

Proof. This follows from Corollary 5.5.

Corollary 5.7. Let π = (Φ, σ) be a skew-product flow on X × Θ and let p ∈ (1,∞]. Let n ∈
�
∗ , q1, . . . , qn ∈ (1,∞] and I = Lq1(�,�) ∩ · · · ∩ Lqn(�,�) ∩ Lp(�,�). Then π is exponentially

dichotomic if and only if the pair (Lp(�, X), I(�, X)) is uniformly admissible for the system (Eπ ).

Proof. This follows from Theorem 4.7 by observing that I ∈ L(�).

Remark 5.8. According to Remark 2.12, the largest space from the class T(�) is M1(�,�).
Thus, considering the output space M1(�,�), in order to obtain optimal input-output
characterizations for exponential dichotomy in terms of admissibility, it is sufficient to work
with smaller and smaller input spaces.

Corollary 5.9. Let π = (Φ, σ) be a skew-product flow on X × Θ. Let n ∈ �
∗ , q1, . . . , qn ∈ (1,∞]

and I = Lq1(�,�) ∩ · · · ∩ Lqn(�,�). Then, π is exponentially dichotomic if and only if the pair
(M1(�, X), I(�, X)) is uniformly admissible for the system (Eπ).
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Proof. We observe that I ∈ L(�), and, from Remark 2.12, we have that I ⊂ M1(�,�). By
applying Theorem 4.7, we obtain the conclusion.
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