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We are concerned with the existence and uniqueness of positive solutions for the following
nonlinear fractional boundary value problem: Dα

0+u(t) + f(t, u(t)) = 0, 0 ≤ t ≤ 1, 3 < α ≤ 4, u(0) =
u′(0) = u′′(0) = u′′(1) = 0, whereDα

0+ denotes the standard Riemann-Liouville fractional derivative.
Our analysis relies on a fixed point theorem in partially ordered sets. Some examples are also given
to illustrate the results.

1. Introduction

Differential equations of fractional order occur more frequently in different research and
engineering areas such as physics, chemistry, economics, and control of dynamical. Indeed,
we can find numerous applications in viscoelasticity, electrochemistry control, porous media,
and electromagnetism. (see, e.g., [1–7]).

For an extensive collection of results about this type of equations we refer the reader
to the monograph by Kilbas and Trujillo [8], Samko et al. [9], Miller and Ross [10], and
Podlubny [11].

On the other hand, some basic theory for the initial value problems of fractional
differential equations involving the Riemann-Liouville differential operator has been
discussed by Lakshmikantham and Vatsala [12], Lakshmikantham [13], El-Sayed and El-
Maghrabi [14], Bai [15], Bai and Ge [16], Bai and Lü [17], Zhang [18], and Kempfle et al.
[19, 20].
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In [17] the authors studied the following two-point boundary value problem of
fractional order:

Dα
0+u(t) + a(t)f(t, u(t)) = 0, 0 < t < 1, 1 < α ≤ 2,

u(0) = u(1) = 0,
(1.1)

and they proved the existence of positive solutions by means of the Krasnosel’skii fixed point
theorem and Leggett-Williams fixed point theorem.

In [18] the author investigated the existence of solutions of

cDα
0+u(t) = f(t, u(t)), 0 < t < 1, 1 < α ≤ 2,

u(0) = ν /= 0, u(1) = ρ /= 0.
(1.2)

Since boundary values are nonzero, the Riemann-Liouville fractional derivative Dα
0+ is not

suitable and the author used the Caputo fractional derivative cDα
0+ .

Motivated by these works, in this paper we discuss the existence and uniqueness of
positive solutions for the following nonlinear boundary value problem of fractional order:

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, 3 < α ≤ 4,

u(0) = u′(0) = u′′(0) = u′′(1) = 0.
(1.3)

This problem was studied in [21], where the authors use lower and upper solution
method and the Schauder fixed point theorem which cannot ensure the uniqueness of the
solution. The practical relevance of 3 < α ≤ 4 appears in problems related with other areas as
physics and economics which can be modeled by these fractional boundary values problems.
Particularly, these problems appear in the Hamiltonian formulation for the lagrangians
depending on fractional derivatives of coordinates when the systems are nonconservative
(see, e.g., [7]).

Our main interest in this paper is to give an alternative answer to the main results of
the paper [21].

Themain tool used in our study is a fixed point theorem in partially ordered sets which
gives us uniqueness of the solution.

2. Preliminaries and Previous Results

For the convenience of the reader, we present here some definitions, lemmas and basic results
that will be used in the proofs of our theorems.

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a function f :
(0,∞) → R is given by

Iα0+f(t) =
1

Γ(α)

∫ t
0
(t − s)α−1f(s)ds (2.1)

provided that the right-hand side is pointwise defined on (0,∞) and where Γ(α) denotes the
gamma function.
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Definition 2.2. The Riemann-Liouville fractional derivative of order α > 0 of a function f :
(0,∞) → R is given by

Dα
0+f(t) =

1
Γ(n − α)

(
d

dt

)n ∫ t
0

f(s)

(t − s)α−n+1
ds, (2.2)

where n = [α] + 1 and [α] denotes the integer part of α.
The following two lemmas can be found in [17, 22].

Lemma 2.3. Let α > 0 and u ∈ C(0, 1) ∩ L1(0, 1). Then fractional differential equation

Dα
0+u(t) = 0 (2.3)

has

u(t) = c1tα−1 + c2tα−2 + · · · + cntα−n (2.4)

for some ci ∈ R (i = 1, 2, . . . n) and n = [α] + 1 as unique solution.

Lemma 2.4. Assume that u ∈ C(0, 1) ∩ L1(0, 1) with a fractional derivative of order α > 0 that
belongs to C(0, 1) ∩ L1(0, 1). Then

Iα0+D
α
0+u(t) = u(t) + c1t

α−1 + c2tα−2 + · · · + cntα−n, (2.5)

for some ci ∈ R (i = 1, . . . , n) and n = [α] + 1.

Using Lemma 2.4, in [21] the following result is proved.

Lemma 2.5. Given f ∈ C[0, 1] and f(t) ≥ 0, the unique nonnegative solution for

Dα
0+u(t) + f(t) = 0, 0 < t < 1, 3 < α ≤ 4,

u(0) = u′(0) = u′′(0) = u′′(1) = 0
(2.6)

is

u(t) =
∫1

0
G(t, s)f(s)ds, (2.7)

where

G(t, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

tα−1(1 − s)α−3 − (t − s)α−1
Γ(α)

, 0 ≤ s ≤ t ≤ 1,

tα−1(1 − s)α−3
Γ(α)

, 0 ≤ t ≤ s ≤ 1.

(2.8)
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In the sequel, we present the fixed-point theorems which we will use later. These
results appear in [23].

Theorem 2.6. Let (X,≤) be a partially ordered set and suppose that there exists a metric d in X such
that (X, d) is a complete metric space. Assume that X satisfies the following condition

if {xn} is a nondecreasing sequence in X such that xn → x, then xn ≤ x ∀n ∈ N. (2.9)

Let T : X → X be a nondecreasing mapping such that

d
(
Tx, Ty

) ≤ d(x, y) − ψ(d(x, y)), for x ≥ y, (2.10)

where ψ : [0,∞) → [0,∞) is a continuous and nondecreasing function such that ψ is positive in
(0,∞), ψ(0) = 0 and limt→∞ψ(t) = ∞. If there exists x0 ∈ X with x0 ≤ T(x0) then T has a fixed
point.

Moreover, if (X,≤) satisfies the following condition:

for x, y ∈ X there exists z ∈ X which is comparable to x and y, (2.11)

which appears in [24], the following result is proved [23].

Theorem 2.7. Adding condition (2.11) to the hypotheses of Theorem 2.6 one obtains the uniqueness
of the fixed point.

Remark 2.8. In Theorems 2.6 and 2.7 the condition limt→∞ψ(t) = ∞ is redundant.

In our considerations we will work in the Banach space C[0, 1] = {x : [0, 1] → R,
continuous}with the standard norm ‖x‖ = sup{|x(t)| : t ∈ [0, 1]}.

Notice that this space can be equipped with a partial order given by

x, y ∈ C[0, 1], x ≤ y ⇐⇒ x(t) ≤ y(t), for t ∈ [0, 1]. (2.12)

In [24] it is proved that (C[0, 1],≤) with the classical metric given by

d
(
x, y
)
= sup

0≤t≤1

{∣∣x(t) − y(t)∣∣} (2.13)

satisfies condition (2.9) of Theorem 2.6. Moreover, for x, y ∈ C[0, 1], as the function
max(x, y) ∈ C[0, 1], (C[0, 1],≤) satisfies condition (2.11).

Finally, by F we denote the class of functions ψ : [0,∞) → [0,∞) continuous, nonde-
creasing, positive in (0,∞) and ψ(0) = 0.

By J we denote the class of functions ϕ : [0,∞) → [0,∞) continuous, nondecreasing,
satisfying that I − ϕ ∈ F, where I denotes the identity mapping on [0,∞).
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3. Main Result

The main result of the paper is the following.

Theorem 3.1. Problem (1.3) has a unique positive solution u(t) if the following conditions are
satisfied.

(H1) f : [0, 1] × [0,∞) → [0,∞) is continuous and nondecreasing with respect to the second
argument.

(H2) There exists t0 ∈ [0, 1] such that f(t0, 0) > 0.

(H3) There exists 0 < λ ≤ (α − 2)Γ(α + 1)/2 such that, for x, y ∈ [0,∞) with y ≥ x and
t ∈ [0, 1],

f
(
t, y
) − f(t, x) ≤ λ · ψ(y − x), (3.1)

where ψ ∈ J.

Before the proof of Theorem 3.1, we will need some properties of Green’s function
appearing in Lemma 2.5.

Lemma 3.2. G(t, s) ≥ 0, and G is a continuous function on [0, 1] × [0, 1].

Proof. The continuity of G is easily checked. In order to prove the nonnegativness of G(t, s),
for 0 ≤ t ≤ s ≤ 1, it is obvious that

G(t, s) =
tα−1(1 − s)α−3

Γ(α)
≥ 0. (3.2)

In the case of 0 ≤ s ≤ t ≤ 1 with t /= 0, we have

G(t, s) =
1

Γ(α)

(
tα−1(1 − s)α−3 − (t − s)α−1

)

=
1

Γ(α)

(
tα−1
[
(1 − s)α−3 −

(
1 − s

t

)α−1])
.

(3.3)

As s ≤ s/t, we have 1 − s ≥ 1 − (s/t) and, consequently,

(1 − s)α−3 ≥
(
1 − s

t

)α−3
. (3.4)

Taking into account that the function g(α) = tα with α > 0 and t ∈ (0, 1) is decreasing we have

(1 − s)α−3 ≥
(
1 − s

t

)α−3
≥
(
1 − s

t

)α−1
. (3.5)

The last inequality and (3.3) give us G(t, s) ≥ 0 with t /= 0. Finally, notice that G(0, s) = 0, and
this finishes the proof.
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Lemma 3.3. One has

sup
t∈[0,1]

∫1

0
G(t, s)ds =

2
(α − 2)Γ(α + 1)

. (3.6)

Proof. Since

∫1

0
G(t, s)ds =

∫ t
0
G(t, s)ds +

∫1

t

G(t, s)ds

=
1

Γ(α)

∫ t
0

(
tα−1(1 − s)α−3 − (t − s)α−1

)
ds +

1
Γ(α)

∫1

t

tα−1(1 − s)α−3ds

=
1

Γ(α)

(
tα−1

α − 2
− 1
α
tα
)

(3.7)

and if we put ϕ(t) =
∫1
0 G(t, s)ds = (1/Γ(α))((tα−1)/(α − 2) − (1/α)tα), then, as

ϕ′(t) =
1

Γ(α)

(
α − 1
α − 2

tα−2 − tα−1
)
> 0, for t > 0, (3.8)

we deduce that ϕ(t) =
∫1
0 G(t, s)ds is strictly increasing and, consequently,

sup
t∈[0,1]

∫1

0
G(t, s)ds =

∫1

0
G(1, s)ds =

1
Γ(α)

(
1

α − 2
− 1
α

)

=
2

α(α − 2)Γ(α)
=

2
(α − 2)Γ(α + 1)

.

(3.9)

In the sequel, we give the proof of Theorem 3.1.

Proof of Theorem 3.1. Consider the cone

P = {u ∈ C[0, 1] : u(t) ≥ 0}. (3.10)

Obviously, P is a closed set ofC[0, 1], and, thus, P is a complete metric space with the distance
given by d(u, v) = supt∈[0,1]{|u(t) − v(t)|}. P can be equipped with a partial order defined by

x, y ∈ P, x ≤ y ⇐⇒ x(t) ≤ y(t), for t ∈ [0, 1]. (3.11)

Using a similar argument to that in [24], it can be proved that (P,≤) satisfies condition (2.9)
of Theorem 2.6. Moreover, as for x, y ∈ P the function max(x, y) ∈ P , (P,≤) satisfies condition
(2.11).
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Now, we consider the operator T defined on P and given by

(Tu)(t) =
∫1

0
G(t, s)f(s, u(s))ds, for u ∈ P. (3.12)

By (H1) and Lemma 3.2, T applies P into itself.
In the sequel we check that T satisfies the assumptions of Theorem 2.6.
Firstly, we prove that T is a nondecreasing operator. In fact, by (H1), for u, v ∈ P with

u ≥ v and t ∈ [0, 1], we have

(Tu)(t) =
∫1

0
G(t, s)f(s, u(s))ds ≥

∫1

0
G(t, s)f(s, v(s))ds = (Tv)(t). (3.13)

Now, we prove that T satisfies the contractive condition appearing in Theorem 2.6.
In fact, for u, v ∈ P and u ≥ v, taking into account assumption (H3), we get

d(Tu, Tv) = sup
t∈[0,1]

{|(Tu)(t) − (Tv)(t)|} = sup
t∈[0,1]

((Tu)(t) − (Tv)(t))

= sup
t∈[0,1]

∫1

0
G(t, s)

(
f(s, u(s)) − f(s, v(s)))ds

≤ sup
t∈[0,1]

∫1

0
G(t, s)λ · ψ(u(s) − v(s))ds.

(3.14)

As ψ ∈ J and, thus, ψ is nondecreasing and by Lemma 3.3, from the last inequality we obtain

d(Tu, Tv) ≤ λψ(d(u, v)) · sup
t∈[0,1]

∫1

0
G(t, s)ds

= λ · ψ(d(u, v)) · 2
(α − 2)Γ(α + 1)

.

(3.15)

Using the fact that λ ≤ 2/(α − 2)Γ(α + 1) (assumption (H3)), we have

d(Tu, Tv) ≤ ψ(d(u, v)) = d(u, v) − (d(u, v) − ψ(d(u, v))). (3.16)

Put ϕ(x) = x − ψ(x), As ψ ∈ J, this means that ϕ ∈ F. The last inequality gives us

d(Tu, Tv) ≤ d(u, v) − ϕ(d(u, v)). (3.17)

This proves that T satisfies the contractive condition of Theorem 2.6.
Finally, as G(t, s) ≥ 0 (Lemma 3.2) and f ≥ 0 (assumption (H1)), we have

(T0)(t) =
∫1

0
G(t, s)f(s, 0)ds ≥ 0, (3.18)

where 0 denotes the zero function.
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Now, Theorem 2.6 shows that problem (1.3) has at least one nonnegative solution. As
(P,≤) satisfies condition (2.11), we obtain the uniqueness of the solution.

In what follows, we will prove that this solution is positive (this means that x(t) > 0,
for t ∈ (0, 1)).

Finally, we will prove that the zero function is not the solution for problem (1.3). In
fact, in contrary case, the zero function is a fixed point of T and, thus, we have

0 =
∫1

0
G(0, s)f(s, 0)ds, for t ∈ [0, 1]. (3.19)

The nonnegative character of the functions G and f and the last expression give us

G(t, s) · f(s, 0) = 0 a.e. (s), for t ∈ [0, 1]. (3.20)

This and the fact that G(t, s)/= 0 a.e. (s) for any t ∈ [0, 1] because G(t, s) is given by a polyno-
mial implies

f(s, 0) = 0 a.e. (s). (3.21)

Taking into account assumption (H2), f(t0, 0) > 0 for certain t0 ∈ [0, 1]. By the continuity of f
we can find a set A ⊂ [0, 1] with t0 ∈ A and μ(A) > 0, where μ is the Lebesgue measure, such
that f(t, 0) > 0 for t ∈ A. This contradicts (3.21).

This proves that the zero function is not the solution for problem (1.3). Now, we will
prove that the solution x is positive.

In the contrary case, we find 0 < t∗ < 1 such that x(t∗) = 0. As the solution x is a fixed
point of the operator T , this means that

x(t∗) =
∫1

0
G(t∗, s)f(s, x(s))ds = 0. (3.22)

Since x ∈ P and, thus, x ≥ 0 and by the fact that f is nondecreasing in the second variable
and G(t, s) ≥ 0, we can get

0 = x(t∗) =
∫1

0
G(t∗, s)f(s, x(s))ds ≥

∫1

0
G(t∗, s)f(s, 0)ds ≥ 0, (3.23)

and this inequality implies

x(t∗) =
∫1

0
G(t∗, s)f(s, 0)ds = 0. (3.24)

Using a similar reasoning to the one above used we obtain a contradiction.
Therefore, x(t) > 0, for t ∈ [0, 1].
This finishes the proof.
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Remark 3.4. In Theorem 3.1, condition (H2) seems to be a strong condition in order to obtain
a positive solution for problem (1.3), but when there is uniqueness of solution one will see
that this condition is a very adjusted one. More precisely, under the assumption that problem
(1.3) has a unique nonnegative solution x(t) one has

f(t0, 0) > 0 for certain t0 ∈ [0, 1] if and only if x(t) is a positive solution. (3.25)

In fact, if f(t0, 0) > 0 for certain t0 ∈ [0, 1] the argument used in the proof of Theorem 3.1 give
us that x(t) is a positive solution.

For the other implication, suppose that f(t, 0) = 0 for any t ∈ [0, 1]. Under this assump-
tion, our problem (1.3) admits as solutions the function x(t) and the zero function and this
contradicts the hypothesis about uniqueness of solution to problem (1.3). Therefore, f(t0, 0) >
0 for certain t0 ∈ [0, 1].

Remark 3.5. Notice that the assumptions in Theorem 3.1 are invariant by additive pertur-
bations. More precisely, if f(t, 0) = 0 for any t ∈ [0, 1] and f satisfies (H1) and (H3) of
Theorem 3.1, then g(t, u) = a(t)+f(t, u), with a : [0, 1] → [0,∞) a nondecreasing continuous
function with a(t0)/= 0 for certain t0 ∈ [0, 1], satisfies (H1), (H2), and (H3) of Theorem 3.1 and
the following nonlinear boundary value problem of fractional order:

Dα
0+u(t) + g(t, u(t)) = 0, 0 < t < 1, 3 < α ≤ 4,

u(0) = u′(0) = u′′(0) = u′′(1) = 0
(3.26)

has a unique positive solution (by Theorem 3.1).

In the sequel we present an example where the results can be applied.

Example 3.6. Consider the fractional boundary value problem

D7/2
0+ u(t) +

(
t2 + 1

)
ln(2 + u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = u′′(0) = u′′(1) = 0.
(3.27)

In this case, f(t, u) = (t2 + 1) ln(2 + u) for (t, u) ∈ [0, 1] × [0,∞). Obviously, f is a continuous
function and f(t, 0) = (t2 + 1) ln 2/= 0 for t ∈ [0, 1]. As ∂f/∂u = (t2 + 1)(1/(2 + u)) > 0 for
u ∈ [0,∞), f is nondecreasing with respect to the second variable.

Besides, for u ≥ v and t ∈ [0, 1], we have

(
t2 + 1

)
[ln(2 + u) − ln(2 + v)]=

(
t2 + 1

)
· ln
(
2 + u
2 + v

)

=
(
t2 + 1

)
ln
(
2 + v + u − v

2 + v

)
=
(
t2 + 1

)
ln
(
1 +

u − v
2 + v

)

≤
(
t2 + 1

)
ln(1 + (u − v)) ≤ 2 ln(1 + (u − v)).

(3.28)

A straightforward calculation gives us that ψ(x) = ln(1 + x) satisfies that ψ ∈ J.
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Moreover, in this case λ = 2, α = 7/2 and we have

(α − 2)Γ(α + 1)
2

=
(7/2 − 2)Γ(7/2 + 1)

2
=

3
4
Γ
(
7
2
+ 1
)

=
3
4
· 7
2
· Γ
(
7
2

)
≈ 8.7228 > 2 = λ.

(3.29)

Finally, Theorem 3.1 proves the existence and uniqueness of a positive solution for problem
(3.27).

4. A Final Remark

In connection with problem (1.3), the main result in [21] is the following.

Theorem 4.1 (see [21, Theorem 3.1]). Problem (1.3) has a positive solution u(t) if the following
conditions are satisfied:

(Hf) f(t, u) ∈ C([0, 1] × [0,∞),R+) is nondecreasing relative to u, f(t, p(t))/= 0 for t ∈ (0, 1),
where p(t) =

∫1
0 G(t, s)ds = (1/Γ(α))((tα−1)/(α−2)−(1/α)tα), and there exists a positive

constant μ < 1 such that

kμf(t, u) ≤ f(t, ku), ∀ 0 ≤ k ≤ 1. (4.1)

In the sequel, we present an example which can be treated by Theorem 3.1 and it
cannot be covered by Theorem 4.1.

Example 4.2. Consider the fractional boundary value problem

D7/2
O+ u(t) +

(
t2 + 1

)(
ρu(t) + c

)
= 0, 0 ≤ t ≤ 1,

u(0) = u′(0) = u′′(0) = u′′(1) = 0,

(4.2)

with c > 0 and 0 < ρ < 1.
In this case, f(t, u) = (t2+1)(ρu+c), for (t, u) ∈ [0, 1]×[0,∞). Obviously, f is continuous

and nondecreasing with respect to the second variable since ∂f/∂u = ρ(t2 + 1) > 0.
Besides, if u ≥ v and t ∈ [0, 1], we have

f(t, u) − f(t, v) =
(
t2 + 1

)[
ρu + c − (ρv + c

)]

=
(
t2 + 1

)
ρ(u − v) ≤ 2ρ(u − v).

(4.3)

In this case, ψ(x) = ρx and it is easily seen that ϕ(x) = x − ψ(x) = (1 − ρ)x belongs to F.
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Moreover, in this case, λ = 2 and, as α = 7/2, we have

(α − 2)Γ(α + 1)
2

=
(7/2 − 2)Γ(7/2 + 1)

2
=

3
4
Γ
(
7
2
+ 1
)

=
3
4
· 7
2
· Γ
(
7
2

)
≈ 8.7228 > 2 = λ.

(4.4)

As f(t, 0) = c(t2 + 1) > 0 for any t ∈ [0, 1], Theorem 3.1 gives us the existence and uniqueness
of positive solution for problem (4.2).

On the other hand, we will show that f(t, u) = (t2 + 1)(ρu + c)with 0 < ρ < 1 and c > 0
does not satisfy (Hf) of Theorem 4.1. In fact, suppose that there exists 0 < μ < 1 such that

kμf(t, u) ≤ f(t, ku), for any 0 ≤ k ≤ 1. (4.5)

This implies that

kμ ≤ f(t, ku)
f(t, u)

=

(
t2 + 1

)(
ρku + c

)
(t2 + 1)

(
ρu + c

) =
ρku + c
ρu + c

. (4.6)

Notice that limu→∞(ρku+ c/ρu+ c) = k, and, consequently, taking limit as u → ∞ in the last
inequality, we get

kμ ≤ k, (4.7)

this is false because 0 < μ < 1 and the function h(α) = kα is decreasing when 0 < k <
1. Therefore, problem (4.2) can be covered by Theorem 3.1 and it cannot be studied by
Theorem 4.1.

5. Conclusions

Our main contribution in this paper is to prove under certain assumptions the existence and
the uniqueness of positive solution for problem (1.3) which was treated in [21]. In [21] the
question of uniqueness of solution was not considered. Moreover, we present an example
which can be covered by the results of this paper and cannot be treated by the ones obtained
in [21].
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[20] S. Kempfle, I. Schäfer, and H. Beyer, “Fractional calculus via functional calculus: theory and
applications,” Nonlinear Dynamics, vol. 29, no. 1–4, pp. 99–127, 2002.

[21] S. Liang and J. Zhang, “Positive solutions for boundary value problems of nonlinear fractional
differential equation,” Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 11, pp. 5545–
5550, 2009.

[22] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential
Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, The
Netherlands, 2006.

[23] J. Harjani and K. Sadarangani, “Fixed point theorems for weakly contractive mappings in partially
ordered sets,” Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 7-8, pp. 3403–3410, 2009.
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