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We first establish the existence and uniqueness of a solution for a stochastic p-Laplacian-type
equation with additive white noise and show that the unique solution generates a stochastic
dynamical system. By using the Dirichlet forms of Laplacian and an approximation procedure,
the nonlinear obstacle, arising from the additive noise is overcomewhenwemake energy estimate.
Then, we obtain a random attractor for this stochastic dynamical system. Finally, under a restrictive
assumption on the monotonicity coefficient, we find that the random attractor consists of a single
point, and therefore the system possesses a unique stationary solution.

1. Introduction

Let D ⊂ R
n, n ∈ N, be a bounded open set with regular boundary ∂D. In this paper, we

investigate the existence of a solution and a random attractor for the following quasilinear
differential equation influenced by additive white noise

du +
(
Δ
(
Φp(Δu)

)
+ g(x, u)

)
dt = f(x)dt +

m∑

j=1

φjdWj(t), x ∈ D, t ≥ 0, (1.1)

with the boundary conditions

∇u(t) = 0, u(t) = 0, x ∈ ∂D, t ≥ 0, (1.2)
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and the initial condition

u(0, x) = u0(x), x ∈ D. (1.3)

In (1.1), Φp(s) = |s|p−2s, p ≥ 2, Wj(t) (1 ≤ j ≤ m) are mutually independent two-
sided real-valued Wiener processes, φj = φj(x) (1 ≤ j ≤ m,x ∈ D) are given real-valued
functions that will be assumed to satisfy some conditions. The unknown u(t) is a real-valued
random process, sometimes denoted by u(t, x) or u(t, x,w). The exterior forced function
g(x, s) defined in D × R is subjected to the following growth and monotonicity assumptions:

g(x, s)s ≥ C1|s|q −Λ1(x), Λ1 ∈ L1(D), C1 ∈ R
+, (1.4)

∣
∣g(x, s)

∣
∣ ≤ C2|s|q−1 + Λ2(x), Λ2 ∈ Lq/(q−1)(D), C2 ∈ R

+, (1.5)
(
g(x, s1) − g(x, s2)

)
(s1 − s2) ≥ C3|s1 − s2|2, C3 ∈ R, (1.6)

where 2 ≤ q ≤ p < ∞.
In deterministic case (without random perturbed term), if g(x, u) = ku, Temam [1]

proved the existence and uniqueness of the solution, and then obtained the global attractor.
Recently, Yang et al. [2, 3] obtained the global attractors for a general p-Laplacian-type
equation on unbounded domain and bounded domain, respectively. Chen and Zhong [4]
discussed the nonautonomous case where the uniform attractor was derived.

It is well known that the long-time behavior of random dynamical systems (RDS) is
characterized by random attractors, which was first introduced by Crauel and Flandoli [5] as
a generalization of the global attractors for deterministic dynamical system. The existence of
random attractors for RDS has been extensively investigated bymany authors, see [5–12] and
references therein. However, most of these researches concentrate on the stochastic partial
differential equations of semilinear type, such as reaction-diffusion equation [5–8], Ginzburg-
Landau equation [9, 10], Navier-Stokes equation [5, 6], FitzHugh-Nagumo system [11] and
so on. To our knowledge, recently, the Ladyzhenskaya model in [12] seems the first study
on the random attractors for nonsemilinear type equations. It seems that the quasilinear type
or complete nonlinear type evolution equations with additive noise take on severe difficulty
when one wants to derive the random attractors.

In this paper, we consider the existence and uniqueness of the solution and random
attractor for (1.1) with forced term g(x, u) satisfying (1.4)–(1.6). The additive white noise∑m

j=1 φjdWj(t) characterizes all kinds of stochastic influence in nature or man-made complex
system which we must take into consideration in the concrete situation.

In order to deal with (1.1), we usually transform by employing a variable change
the stochastic equation with a random term into a deterministic one containing a random
parameter. Then the structure of the original equation (1.1) is changed by this transformation.
As a result, some extra difficulties are developed in the process of the estimate of the solution,
especially in the stronger norm space V , where V ⊂ H ⊂ V ′ is the Gelfand triple; see Section 2.
Hence, the methods (see [1–3]) used in unperturbed case are completely unavailable for
obtaining the random attractors for (1.1).

Thoughwe also follow the classic approach (based on the compact embedding)widely
used in [5, 6, 9, 10, 12] and so on, some techniques have to be developed to overcome
the difficulty of estimate of the solution to (1.1) in the Sobolev space V . Fortunately, by



Abstract and Applied Analysis 3

introducing a new inner product over the resolvent of Laplacian, we surmount this obstacle
and obtain the estimate of the solution in the Sobolev space V0, which is weaker than V , see
Lemma 4.2 in Section 4. Here some basic results about Dirichlet forms of Laplacian are used.
For details on the Dirichlet forms of a negative definite and self-adjoint operator please refer
to [13]. The existence and uniqueness of solution, which ensure the existence of continuous
RDS, are proved by employing the standard in [14]. If a restrictive assumption is imposed on
the monotonicity coefficient in (1.6)we obtain a compact attractor consisting of a single point
which attracts every deterministic bounded subset of H.

The organization of this paper is as follows. In the next section, we present some
notions and results on the theory of RDS and Dirichlet forms which are necessary to our
discussion. In Section 3, we prove the existence and uniqueness of the solution to the p-
Laplacian-type equation with additive noise and obtain the corresponding RDS. In Section 4,
we give some estimates for the solution satisfying (1.1)–(1.6) in given Hilbert space and
then prove the existence of a random attractor for this RDS. In the last section, we prove
the existence of the single point attractor under the given condition.

2. Preliminaries

In this section, we first recall some notions and results concerning the random attractor and
the random flow, which can be found in [5, 6]. For more systematic theory of RDS we refer to
[15]. We then list the Sobolev spaces, Laplacian and its semigroup and Dirichlet forms.

The basic notion in RDS is a measurable dynamical system (MSD). The form
(Ω,F,P, θs) is called a MSD if (Ω,F,P) is a complete probability space and {θs : Ω → Ω,
s ∈ R} is a family of measure-preserving transformations such that (s,w) 
→ θsw is
measurable, θ0 = id and θt+s = θtθs for all s, t ∈ R.

A continuous RDS on a complete separable metric space (X, d) with Borel sigma-
algebra B(X) over MSD (Ω,F,P, θs) is by definition a measurable map

ϕ : R
+ ×Ω ×X −→ X, (t,w, x) 
−→ ϕ(t,w)x (2.1)

such that P-a.s. w ∈ Ω

(i) ϕ(0, w) = id on X,

(ii) ϕ(t + s,w) = ϕ(t, θsw)ϕ(s,w) for all s, t ∈ R
+ (cocycle property),

(iii) ϕ(t,w) : X → X is continuous for all t ∈ R
+.

A continuous stochastic flow is by definition a family of measurable mapping
S(t, s;w) : X → X,−∞ ≤ s ≤ t ≤ ∞, such that P-a.s. w ∈ Ω

S(t, r;w)S(r, s;w)x = S(t, s;w)x, x ∈ X,

S(t, s;w)x = S(t − s, 0.; θsw)x, x ∈ X,
(2.2)

for all s ≤ r ≤ t, and s 
→ S(t, s;w)x is continuous in X for all s ≤ t and x ∈ X.
A random compact set {K(w)}w∈Ω is a family of compact sets indexed by w such that

for every x ∈ X the mapping w 
→ d(x,K(w)) is measurable with respect to F.
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Let A(w) be a random set. One says that A(w) is attracting if for P-a.s. w ∈ Ω and
every deterministic bounded subset B ⊂ X

lim
t→∞

dist
(
ϕ(t, θ−tw)B,A(w)

)
= 0, (2.3)

where dist(·, ·) is defined by dist(A,B) = supx∈Ainfy∈Bd(x, y).
We say thatA(w) absorbs B ⊂ X if P-a.s.w ∈ Ω, there exists tB(w) > 0 such that for all

t ≥ tB(w),

ϕ(t, θ−tw)B ⊂ A(w). (2.4)

Definition 2.1. Recall that a random compact setw 
→ A(w) is called to be a random attractor
for the RDS ϕ if for P-a.s. w ∈ Ω

(i) A(w) is invariant, that is, ϕ(t,w)A(w) = A(θtw), for all t ≥ 0;

(ii) A(w) is attracting.

Theorem 2.2 (see [5]). Let ϕ(t,w) be a continuous RDS over a MDS (Ω,F,P; θt) with a separable
Banach Space X. If there exists a compact random absorbing set K(w) absorbing every deterministic
bounded subset of X, then ϕ possesses a random attractorA(w) defined by

A(w) =
⋃

B∈B(X)

⋂

s≥0

⋃

t≥s
ϕ(t, θ−tw)B, (2.5)

where B(X) denotes all the bounded subsets of X.

Let Lp(D) be the p-times integrable functions space on D with norm denoted by ‖ · ‖p,
V(D) be the space consisting of infinitely continuously differential real-valued-functions with
a compact support in D. We use V to denote the norm closure of V(D) in Sobolev space
W2,p(D), that is, V = W

2,p
0 (D). Since D is a bounded smooth domain in R

n, we can endow
the Sobolev space V with equivalent norm (see [1, page 166])

‖v‖V = ‖Δv‖p =
(∫

D

|Δv|pdx
)1/p

, v ∈ V. (2.6)

Define V ′ = the dual of V , that is, V ′ = W−2,p′(D). Then we have

T ∈ W−2,p′(D) ⇐⇒ T =
∑

|α|≤2
Dαfα, fα ∈ Lp′(D), (2.7)

where 1/p + 1/p′ = 1. Let H denote the closure of L2(D) in V(D) with the usual scalar
product and norm {(·, ·), ‖·‖2}. IdentifyingH with its dual spaceH ′ by the Riesz isomorphism
i : H → H ′, we have the following Gelfand triple:

V ⊂ H ≡ H ′ ⊂ V ′, (2.8)
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or concretely

W
2,p
0 (D) ⊂ L2(D) ⊂

(
W

2,p
0 (D)

)′
= W−2,p/(p−1)(D), (2.9)

where the injections are continuous and each space is dense in the following one.
We define the linear operator A by Au = Δu for u ∈ H1

0(D)
⋂
H2(D). Then A is

negative definite and self-adjoint. It is well-known that A (with domain W
2,p
0 (D)) generates

a strongly continuous semigroup M(t) on Lp(D) which is contractive and positive. Here
“contractive” means ‖M(t)‖p ≤ 1 and “positive” means M(t)u ≥ 0 for every 0 ≤ u ∈ Lp(D).
The resolvent of generatorA denoted by R(λ,A), λ ∈ ρ(A), where ρ(A) is the resolvent set of
A. By Lumer-Phillips Theorem in [16], it follows that (0,∞) ⊂ ρ(A) and for u ∈ Lp(D)

R(λ,A)u = (λ −A)−1u =
∫∞

0
e−λtM(t)udt, λ > 0, (2.10)

M(t)u = lim
n→∞

[
n

tR(n/t,A)

]n
u, t > 0. (2.11)

Furthermore, by (2.10) for every u ∈ Lp(D)we have

‖λR(λ,A)u‖p ≤ ‖u‖p, λ > 0,

λR(λ,A)u −→ u, as λ → ∞,
(2.12)

where the convergence is in the Lp-norms. Moreover, for u ∈ D(A), it follows that R(λ,A)u ∈
D(A), and AR(λ,A)u = R(λ,A)Au.

SinceA is negative definite and self-adjoint operator onH1
0(D)

⋂
H2(D), we associate

Awith the Dirichlet forms [13] ε by

ε(u, v) =
(√

−Au,
√
−Av

)
, u, v ∈ H1

0(D). (2.13)

ε is unique determined by A. For u, v ∈ H1
0(D), we define a new inner product by

ε(λ)(u, v) = λ(u − λR(λ,A)u, v), λ > 0, (2.14)

where R(λ,A) is the resolvent of A. Then, we have the basic fact (see [13]) that ε(λ)(u, v) ↑ as
λ → ∞, and

lim
λ→∞

ε(λ)(u, v) = ε(u, v), (2.15)

for u, v ∈ H1
0(D).
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3. Existence and Uniqueness of RDS

We introduce an auxiliary Wiener process, which enables us to change (1.1) to a deterministic
evolution equation depending on a random parameter. Here, we assume that W(t) is a two-
sided Wiener process on a complete probability space (Ω,F,P), where Ω = {w ∈ C(R,Rm) :
w(0) = 0}, F is the Borel sigma-algebra induced by the compact-open topology of Ω and P is
the corresponding Wiener measure on (Ω,F). Then we have

w(t) = W(t) = (W1(t),W2(t), . . . ,Wm(t)), t ∈ R. (3.1)

Define the time shift by

θtw(s) = w(s + t) −w(t), w ∈ Ω, t, s ∈ R. (3.2)

Then (Ω,F, P, θt) is a ergodic measurable dynamical system.
In order to obtain the random attractor, in our following discussion, we always assume

that φj (1 ≤ j ≤ m) belong toW
4,p
0 (D) and ∇φj (1 ≤ j ≤ m) = 0.

We now employ the approach similar to [5] to translate (1.1) by one classical change
of variables

v(t) = u(t) − z(t), (3.3)

where, for short, z(t) = z(t,w) =
∑m

j=1 φjWj(t). Then, formally, v(t) satisfies the following
equation parameterized by w ∈ Ω:

dv

dt
+ Δ(Φ(Δv + Δz)) + g(x, v + z) = f(x), x ∈ D, t ≥ s, (3.4)

v(s) = u(s) − z(s), x ∈ D, s ∈ R, (3.5)

∇v = 0, v = 0, x ∈ ∂D, t ≥ s, (3.6)

where g(x, u) satisfies (1.4)–(1.6) and f is given in V ′, 2 ≤ q ≤ p < ∞.
We define a nonlinear operator Ψ on V

Ψ(v) = Δ
(
Φp(Δ(v + z))

)
+ g(x, v + z) − f(x), (3.7)

for v ∈ V , x ∈ D. Then we have

Ψ(v) = Ψ(u), (3.8)

where we define Ψ(u) = Δ(Φp(Δu)) + g(x, u) − f(x) with u = v + z as in (3.3). So we can
deduce problem (1.1) to the problem

dv

dt
+ Ψ(v) = 0, t ≥ s, (3.9)
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with initial condition v(s) = u(s) − z(s) for s ∈ R. Moreover, by (3.9), it follows that the
solutions w-wise satisfy the following:

v(t) = v(s) −
∫ t

s

Ψ(v(τ))dτ, (3.10)

with v(s) = u(s) − z(s) and t ≥ s.
Since p ≥ q, by our assumption (1.4)–(1.6) and f ∈ V ′, it is easy to check that the

operatorΨ : v 
→ Ψ(v)mappingW2,p(D) intoW−2,p′(D) is well-defined, where p′ = p/(p−1).
We now prove the existence and uniqueness of solution to (3.4).

Theorem 3.1. Assume that g satisfies (1.4)–(1.6) and f is given in V ′, 2 ≤ q ≤ p < ∞. Then for all
s ∈ R and v0 ∈ H with v0 = v(s), (3.4) has a unique solution

v(t,w; s, v0) ∈ L
p

loc([s,∞), V )
⋂

C([s,∞),H) (3.11)

for t ≥ s and P-a.s. w ∈ Ω. Furthermore, the mapping v0 
→ v(t,w; s, v0) from H into H is
continuous for all t ≥ s.

Proof. We will show that Ψ(v) possesses hemicontinuity, monotonicity, coercivity, and
boundedness properties. Then for every v0 ∈ H with v0 = v(s), the existence and uniqueness
of solution v(t) = v(t,w; s, v0) ∈ L

p

loc([s,∞), V ) follow from [13, Theorem 4.2.4]. If the
solution v ∈ Lp([s, T], V ), T > 0, then it is elementary to check that Ψ(v) belongs to
Lp′([s, T], V ′) by our assumption p ≥ q and f ∈ V ′. Thus, from (3.9), we get that vt ∈
Lp′([s, T], V ′). Now by the general fact (see [1, page 164, line 1–3]) it follows that v is almost
everywhere equal to a function belonging to C([s, T],H). The continuity of the mapping
v0 
→ v(t,w; s, v0) from H intoH is easily proved by using the monotonicity of Ψ.

By [13, Theorem 4.2.4], it remains to show that Ψ(v) possesses hemicontinuity,
monotonicity, coercivity, and boundedness properties. For convenience of our discussion
in the following, we decompose Ψ(v) = Ψ1(v) + Ψ2(v), where Ψ1(v) = Δ(Φp(Δu)) and
Ψ2(v) = Ψ(v) −Ψ1(v), where Ψ is as in (3.7).

We first prove the hemicontinuity, that is, for every v1, v2, v3 ∈ V , the function λ →
(Ψ(v1 + λv2), v3) is continuous from R → R. But it suffices to prove the continuity at λ = 0.
So we assume that |λ| < 1. For v1, v2, v3 ∈ V , by integration by parts, we see that

(Ψ1(v1 + λv2), v3) =
∫

D

|Δ(v1 + λv2 + z)|p−2Δ(v1 + λv2 + z)Δv3dx. (3.12)

By Hölder’s inequality and Young’s inequality, it yields that

∣∣∣|Δ(v1 + λv2 + z)|p−2Δ(v1 + λv2 + z)Δv3

∣∣∣

≤ |Δ(v1 + λv2 + z)|p−1|Δv3|

≤ 2p−2
(
|Δ(v1 + z)|p−1 + |Δv2|p−1

)
|Δv3|

≤ 2p−2
(|Δ(v1 + z)|p + |Δv2|p + 2|Δv3|p

)
,

(3.13)
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which the right-hand side is in L1(D) for v1, v2, v3 ∈ V . Hence the expression of the right-hand
side of inequality (3.13) is the control function for the integrant in (3.12). Then the Lebesgue’s
dominated convergence theorem can be apply to (3.12) when we take the limit λ → 0. This
proves the hemicontinuity of Ψ1(v). As for the hemicontinuity of Ψ2(v), noting that by our
assumption (1.5) and f ∈ V ′ we have

(Ψ2(v1 + λv2), v3) =
∫

D

g(x, v1 + λv2 + z)v3dx −
∫

D

f(x)v3dx

≤ C2

∫

D

|v1 + λv2 + z|q−1|v3|dx +
∫

D

Λ2(x)|v3|dx −
∫

D

f(x)v3dx.

(3.14)

It suffices to find the control function for the first integrand above, but we can get this by
noting that q ≤ p and using approach similar to (3.13).

Second, we prove the monotonicity of Ψ(v). We first prove the monotonicity for Ψ1.
For v1, v2 ∈ V , since v1 = u1 − z, v2 = u2 − z, we have

(Ψ1(v1) −Ψ1(v2), v1 − v2)

=
(
|Δu1|p−2Δu1 − |Δu2|p−2Δu2,Δu1 −Δu2

)

=
∫

D

(
|Δu1|p + |Δu2|p − |Δu1|p−2Δu1Δu2 − |Δu2|p−2Δu2Δu1

)
dx

≥
∫

D

(
|Δu1|p + |Δu2|p − |Δu1|p−1|Δu2| − |Δu2|p−1|Δu1|

)
dx

=
∫

D

(
|Δu1|p−1 − |Δu2|p−1

)
(|Δu1| − |Δu2|)dx ≥ 0.

(3.15)

Since p ≥ 2, the function sp−1 is increasing for s ≥ 0, which shows that the last inequality in
the above proof is correct. On the other hand, by our assumption (1.6), we have (Ψ2(v1) −
Ψ2(v2), v1 − v2) ≥ C3‖v1 − v2‖22, and therefore it follows that for v1, v2 ∈ V

(Ψ(v1) −Ψ(v2), v1 − v2) ≥ C3‖v1 − v2‖2, (3.16)

where C3 is as in (1.6). Hence, we have showed the monotonicity of Ψ(v).
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As for the coercivity, for v ∈ V , by our assumptions (1.4) and (1.5), using Hölder’
inequality, we have

(Ψ(v), v) =
∫

D

Δ
(
|Δu|p−2Δu

)
v dx +

∫

D

g(x, v + z)v dx −
∫

D

f(x)v dx

= ‖Δu‖pp −
∫

D

(
|Δu|p−2Δu

)
Δzdx +

∫

D

g(x, u)udx −
∫

D

g(x, u)zdx −
∫

D

f(x)v dx

≥ ‖Δu‖pp − ‖Δu‖p−1p ‖Δz‖p + C1‖u‖qq − ‖Λ1‖1 − C2‖u‖q−1q ‖z‖q
− ‖Λ2‖q′ ‖z‖q −

∥
∥f

∥
∥
V ′ ‖v‖V ,

(3.17)

where C1 and C2 are defined in (1.4) and (1.5). By employing the ε-Young’s inequality, that
is, ab ≤ ε(ar/r) + ε−r

′/r(br
′
/r ′) for r > 1 and 1/r + 1/r ′ = 1, we find that

‖Δu‖p−1p ‖Δz‖p ≤ 1
4
p − 1
p

‖Δu‖pp +
22p−2

p
‖Δz‖pp ≤ 1

4
‖Δu‖pp + 22p−2‖Δz‖pp. (3.18)

Similarly, we have

C2‖u‖q−1q ‖z‖q ≤
C1

2
‖u‖qq + 2q−1C1−q

1 C
q

2‖z‖
q
q, (3.19)

∥∥f
∥∥
V ′ ‖v‖V ≤ 1

4
‖Δu‖pp + 22/(p−1)

∥∥f
∥∥p/(p−1)
V ′ +

∥∥f
∥∥
V ′ ‖Δz‖p, (3.20)

then, by (3.17)–(3.20), we obtain that

(Ψ(v), v) ≥ 1
2
‖Δu‖pp +

C1

2
‖u‖qq − p1(t,w), (3.21)

with

p1(t,w) = 22p−2‖Δz‖pp + 2q−1C1−q
1 C

q

2‖z‖
q
q + ‖Λ2‖q′ ‖z‖q

+ 22/(p−1)
∥∥f

∥∥p/(p−1)
V ′ +

∥∥f
∥∥
V ′ ‖Δz‖p ≥ 0,

(3.22)

where q′ is the dual number of q. At the same time, (3.21) is one form of coercivity which will
be used in Section 4, but in order to prove the existence and uniqueness of solution to (3.4),
we will give another form.

Noting that by Hölder’s inequality it follows with u(t) = v(t) + z(t) that

‖u‖qq = ‖v(t) + z(t)‖qq ≥ 21−q‖v‖qq − ‖z‖qq, (3.23)
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then by the inverse ε-Young’s inequality, that is, ab ≥ ε(ar/r) + ε−r
′/r(br

′
/r ′) when r < 1 and

1/r + 1/r ′ = 1, we get from (3.23) that

‖u‖qq ≥ 21−q‖v‖qq − ‖z‖qq ≥ 21−qηq

0‖v‖
q

2 − ‖z‖qq ≥
q

2
‖v‖22 − ‖z‖qq − C′, (3.24)

where C′ = ((q − 2)/2)2(2−2q)/(2−q)η2q/(2−q)
0 and η0 is the Sobolev embedding coefficient of

Lq(D) ↪→ L2(D). Hence, it follows from (3.21) that

(Ψ(v), v) ≥ 1
2
‖Δu‖pp +

q

2
‖v‖22 − p2(t,w), (3.25)

with p2(t,w) = p1(t,w) + ‖z‖qq + C′ ≥ 0, where p1(t,w) is defined as in (3.22). Note that if
q = 2, we omit this procedure and directly (3.21) passes to (3.25). Hence we have proved the
coercivity for Ψ.

We finally prove the the boundedness for Ψ(v) for fixed v ∈ V , that is, for fixed v ∈ V ,
Ψ(v) is a linear bounded functional on W

2,p
0 (D). Indeed, for v, h ∈ V , by applying Hölder’s

inequality and repeatedly using Sobolev’s embedding inequality, we have

(Ψ(v), h) ≤
∫

D

|Δu|p−1|Δh|dx +
∫

D

∣∣g(x, u)
∣∣|h|dx +

∫

D

∣∣f(x)
∣∣|h|dx

≤ ‖Δu‖p−1p ‖Δh‖p + C2‖u‖q−1q ‖h‖q + ‖Λ2‖q′ ‖h‖q +
∥∥f

∥∥
V ′ ‖h‖V

≤
(
‖Δu‖p−1p + c1‖Δu‖q−1p + c2‖Λ2‖q′ +

∥∥f
∥∥
V ′

)
‖Δh‖p

≤
(
2‖Δu‖p−1p + c3 + c2‖Λ2‖q′ +

∥∥f
∥∥
V ′

)
‖Δh‖p

≤
(
2p−1‖Δv‖p−1p + p3(t,w)

)
‖Δh‖p

(3.26)

with the random variable p3(t,w) = 2p−1‖Δz‖p−1p + c2‖Λ2‖q′ + c2‖f‖V ′ + c3 ≥ 0 and the positive
constants ci (i = 1, 2, 3) independent of v, h. Therefore, from (3.26) we finally find that

‖Ψ(v)‖V ′ ≤ 2p−1‖Δv‖p−1p + p3(t,w), (3.27)

is a bounded linear operator on W
2,p
0 (D) for fixed v ∈ V . From the proof we know that the

assumption p ≥ q ≥ 2 is necessary. This completes the proof of Theorem 3.1.

We now define

S(t, s;w)u0 = v(t,w; s, u0 − z(s,w)) + z(t,w), t ≥ s ∈ R, (3.28)
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with u0 = u(s). Then S(t, s;w)u0 is the solution to (1.1) in certain meaning for every u0 ∈ H
and t ≥ s ∈ R. By the uniqueness part of solution in Theorem 3.1, we immediately get that
S(t, s,w) is a stochastic flow, that is, for every u0 ∈ H and t ≥ r ≥ s ∈ R

S(t, s;w)u0 = S(t, r;w)S(r, s;w)u0, (3.29)

S(t, s;w)u0 = S(t − s, 0; θsw)u0. (3.30)

Hence if we define

ϕ(t,w)u0 = S(t, 0;w)u0 = v(t,w; 0, u0 − z(0, w)) + z(t,w) (3.31)

with u0 = u(0), then by Theorem 3.1 ϕ is a continuous stochastic dynamical system associated
with quasilinear partial differential equation (1.1), with the following fact

ϕ(t, θ−tw)u0 = u(0, w;−t, u0), ∀t ≥ 0, (3.32)

that is to say, ϕ(t, θ−tw)u0 can be interpreted as the position of the trajectory at time 0, which
was in u0 at time −t (see [5]).

4. Existence of Compact Random Attractor for RDS

In this section, we will compute some estimates in space H = L2(D) and V0 = H1
0(D).

Note that pi(t,w) (i = 1, 2, 3) appearing in the proofs are given in Section 3. In the following
computation, w ∈ Ω; the results will hold for P-a.s. w ∈ Ω.

Lemma 4.1. Suppose that g satisfies (1.4)–(1.6) and f is given in V ′. Then there exist random radii
r1(w), r2(w) > 0, such that for all ρ > 0 there exists s = s(w, ρ) ≤ −1 such that for all s ≤ s(w, ρ)
and all u0 ∈ H with ‖u0‖2 ≤ ρ, the following inequalities hold for P-a.s. w ∈ Ω

‖v(t,w; s, u0 − z(s))‖22 ≤ r21(w), ∀t ∈ [−1, 0],
∫0

−1

(
‖Δu(τ,w; s, u0)‖pp + ‖u(τ,w; s, u0)‖qq

)
dτ ≤ r22(w),

(4.1)

where v(t,w; s, u0 − z(s)) is the solution to (3.4) with v(t,w; s, u0 − z(s)) = u(t,w; s, u0) − z(t,w)
and u0 = u(s).

Proof. For simplicity, we abbreviate v(t) := v(t,w; s, u0 − z(s)) and u(t) := u(t,w; s, u0) for
fixed u0, w ∈ Ω and t ≥ s with u0 = u(s). Multiplying both sides of (3.9) by v(t) and then
integrating over D, we obtain that

1
2
d

dt
‖v‖22 + (Ψ(v), v) = 0. (4.2)
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Then, by (3.25), we have

d

dt
‖v‖22 + ‖Δu‖pp + q‖v‖22 ≤ 2p2(t,w). (4.3)

Applying the Gronwall’s lemma to (4.3) from s to t, t ∈ [−1, 0], it yields that

‖v(t)‖22 ≤ e−q(t−s)‖v(s)‖22 + 2
∫ t

s

p2(τ,w)e−q(t−τ)dτ

≤ 2eq
(

eqs‖u0‖22 + eqs‖z(s)‖22 +
∫0

−∞
p2(τ,w)eqτdτ

)

,

(4.4)

where p2(τ,w) grows at most polynomially as τ → −∞ (see [5]). Since p2(τ,w) is multiplied
by a function which decays exponentially, the integral in (4.4) is convergent.

Given every fixed ρ > 0, we can choose s(w, ρ), depending only on w and ρ, such
that eqs‖u0‖22 ≤ 1. Similarly, ‖z(s)‖22 grows at most polynomially as s → −∞, and ‖z(s)‖22 is
multiplied by a function which decays exponentially. Then we have

sup
s≤0

eqs‖z(s)‖22 < +∞. (4.5)

Hence by (4.4)we can give the final estimate for ‖v(t)‖22

‖v(t)‖22 ≤ r21(w) := 2eq
(

1 + sup
s≤0

eqs‖z(s)‖22 +
∫0

−∞
p2(τ,w)eqτdτ

)

, (4.6)

for t ∈ [−1, 0]. Following (4.2), by using (3.21), we find that

d

dt
‖v‖22 + ‖Δu‖pp + C1‖u‖qq ≤ 2p1(t,w), (4.7)

where p1(t,w) is the same as in (3.22). Integrating (4.7) for t on [−1, 0], we get that

∫0

−1
‖Δu(τ)‖pp + C1‖u(τ)‖qqdτ ≤ 2

∫0

−1
p1(τ,w)dτ + ‖v(−1)‖22, (4.8)

which gives an expression for r22(w).

In the following, we give the estimate of ‖∇u(t)‖2. This is the most difficult part in
our discussion. Because the nonlinearity of Ψ1 and Ψ2 in (3.4) or (3.9), it seems impossible to
derive the V -norm estimate by the way as [1, page 169]. So we relax to bound the solution in
a weaker Sobolev V0 = H1

0(D)with equivalent norms denoted by ‖∇u‖2 for u ∈ V0. Here, just
as our statement in the introduction, we make the inner product over the resolvent R(λ,A)
which is defined in Section 2, then by using the Dirichlet forms ofAwe obtain technically the
estimate of ‖∇u(t)‖2.
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Lemma 4.2. Suppose that g satisfies (1.4)–(1.6) and f is given in V ′. Then there exists a random
radius r3(w) > 0, such that for all ρ > 0 there exists s = s(w, ρ) ≤ −1 such that for all s ≤ s(w, ρ)
and all u0 ∈ H with ‖u0‖2 ≤ ρ, the following inequality holds for P-a.s. w ∈ Ω

‖∇u(t,w; s, u0)‖22 ≤ r23(w), ∀t ∈ [−1, 0], (4.9)

where u(t,w; s, u0) is the solution to (1.1) with u0 = u(s). In particular,

‖∇u(0, w; s, u0)‖22 ≤ r23(w). (4.10)

Proof. Taking the inner product of (3.9) with −λAR(λ,A)v where λ > 0, v ∈ V , we get

−
∫

D

vtλAR(λ,A)v dx =
∫

D

Ψ1(u)λAR(λ,A)v dx +
∫

D

Ψ2(u)λAR(λ,A)v dx. (4.11)

By the semigroup theory (see [16])we have

AR(λ,A)v = R(λ,A)Av = λR(λ,A)v − v, (4.12)

for v ∈ D(A). We now estimate every terms on the right-hand side of (4.11). The first term on
the right-hand side of (4.11) is rewritten as

∫

D

Ψ1(u)λAR(λ,A)v dx =
∫

D

Ψ1(u)λAR(λ,A)udx −
∫

D

Ψ1(u)λAR(λ,A)zdx. (4.13)

Employing (4.12) and by integration by parts, it yields that

∫

D

Ψ1(u)λAR(λ,A)udx = λ

∫

D

Ψ1(u)(λR(λ,A)u − u)dx

= −λ
∫

D

Δ
(
|Δu|p−2Δu

)
udx + λ

∫

D

Δ
(
|Δu|p−2Δu

)
λR(λ,A)udx

= −λ‖Δu‖pp + λ

∫

D

(
|Δu|p−2Δu

)
λΔR(λ,A)udx

≤ −λ‖Δu‖pp + λ

∫

D

|Δu|p−1|λR(λ,A)Δu|dx

≤ −λ‖Δu‖pp + λ‖Δu‖p−1p ‖λR(λ,A)Δu‖p
≤ −λ‖Δu‖pp + λ‖Δu‖pp = 0,

(4.14)
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where we use the contraction property of λR(λ,A) on Lp(D), that is, ‖λR(λ,A)Δu‖p ≤ ‖Δu‖p
for Δu ∈ Lp(D) and every λ > 0. We now bound the second term on the right-hand side of
(4.13)

−
∫

D

Ψ1(u)λAR(λ,A)zdx ≤ ‖Ψ1(u)‖V ′ ‖λAR(λ,A)z‖V

= ‖Ψ1(u)‖V ′ ‖λR(λ,A)Az‖V ,
(4.15)

where we use our assumption φj (1 ≤ j ≤ m) ∈ W
4,p
0 (D). Since Ψ1 maps V into V ′, then for

fixed u ∈ V and every h ∈ V , we have

(Ψ1(u), h) =
∫

D

Δ
(
|Δu|p−2Δu

)
hdx =

∫

D

(
|Δu|p−2Δu

)
Δhdx

≤
∫

D

|Δu|p−1|Δh|dx ≤ ‖Δu‖p−1p ‖Δh‖p.
(4.16)

So for fixed u ∈ V , ‖Ψ1(u)‖V ′ ≤ ‖Δu‖p−1p , and therefore by (4.15)we obtain that

−
∫

D

Ψ1(u)λAR(λ,A)zdx ≤ ‖Δu‖p−1p ‖λR(λ,A)Az‖V

≤ C‖Δu‖p−1p ‖Az‖V ≤ ‖Δu‖pp + Cp‖Az‖pV ,
(4.17)

where ‖λR(λ,A)Az‖V ≤ C‖Az‖V and C is a constant independent of λ, v(t) and u(t). Here
we should note that λR(λ,A) is a bounded linear operator on V . Hence, by (4.14)–(4.17) the
first term on the right-hand side of (4.11) is finally bounded by

∫

D

Ψ1(u)λAR(λ,A)v dx ≤ ‖Δu‖pp + Cp‖Az‖pV . (4.18)

By our assumption (1.5), the second term on the right-hand side of (4.11) is estimated as

∫

D

Ψ2(u)λAR(λ,A)v dx

=
∫

D

(
g(x, u) − f(x)

)
λR(λ,A)Av dx

≤
∫

D

∣∣g(x, u)
∣∣|λR(λ,A)Av|dx +

∫

D

∣∣f(x)
∣∣|λAR(λ,A)v|dx

≤
∫

D

(
C2|u|q−1 + Λ2(x)

)
|λR(λ,A)Av|dx +

∫

D

∣∣f(x)
∣∣|λR(λ,A)Av|dx

≤ C2‖u‖q−1q ‖λR(λ,A)Av‖q + ‖Λ2‖q′ ‖λR(λ,A)Av‖q +
∥∥f

∥∥
2‖λR(λ,A)Av‖2

≤ C2‖u‖q−1q ‖Av‖q + ‖Λ2‖q′ ‖Av‖q +
∥∥f

∥∥
2‖Av‖2

≤ ‖u‖qq +
(
C

q

2 + 1
)
‖Av‖qq + ‖Λ2‖q

′

q′ +
∥∥f

∥∥2
2 + ‖Av‖22,

(4.19)
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where we employ Young’s inequality ab ≤ ar + br/(r−1) for r > 1. But, by Sobolev’s inequality
and Young’s inequality, it yields that

‖Av‖qq ≤ η
q

1‖Av‖qp ≤ η
p

1‖Av‖pp + 1 ≤ 2p−1ηp

1‖Au‖pp + 2p−1ηp

1‖Az‖pp + 1; (4.20)

similarly

‖Av‖22 ≤ 2p−1ηp

2‖Au‖pp + 2p−1ηp

2‖Az‖pp + 1, (4.21)

where the positive constants η1, η2 are Sobolev’s embedding constants independent of λ. Then
by (4.19)–(4.21), there exist positive constants c1, c2 such that

∫

D

Ψ2(u)λAR(λ,A)v dx ≤ ‖u‖qq + c1‖Au‖pp + c2‖Az‖pp + ‖Λ2‖q
′

q′ +
∥∥f

∥∥2
2 + 2, (4.22)

where q′ = q/(q − 1). By (4.18) and (4.22), we find that (4.11) becomes

−
∫

D

vtλAR(λ,A)v dx ≤ c3‖Δu‖pp + ‖u‖qq + p4(t,w), (4.23)

where p4(t,w) = Cp‖Az‖pV + c2‖Az‖pp +‖Λ2‖q
′

q′ +‖f‖22 +2 ≥ 0 and c3 = c1 +1. On the other hand,
by (4.12) and the Dirichlet forms (2.14), we have

−
∫

D

vtλAR(λ,A)v dx = ε(λ)(v, vt). (4.24)

Hence by (4.24), (4.23) is rewritten as

ε(λ)(v, vt) ≤ c3‖Δu‖pp + ‖u‖qq + p4(t,w). (4.25)

Note that the right-hand side of (4.25) is independent of λ. So taking limit on both side of
(4.25) for λ → ∞, association with (2.15), we deduce that

1
2
d

dt
‖∇v‖22 ≤ c3‖Δu‖pp + ‖u‖qq + p4(t,w). (4.26)

Integrating (4.26) from s to t (−1 ≤ s ≤ t ≤ 0), it yields that

‖∇v(t)‖22 ≤ 2c3

∫ t

s

‖Δu(τ)‖ppdτ + 2
∫ t

s

‖u(τ)‖qqdτ + 2
∫ t

s

p4(τ,w)dτ + ‖∇v(s)‖22

≤ 2c3

∫0

−1
‖Δu(τ)‖ppdτ + 2

∫0

−1
‖u(τ)‖qqdτ + 2

∫0

−1
p4(τ,w)dτ + ‖∇v(s)‖22.

(4.27)
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Therefore, by Lemma 4.1, we find that

‖∇v(t)‖22 ≤ 2(c3 + 1)r22(w) + 2
∫0

−1
p4(τ,w)dτ + ‖∇v(s)‖22. (4.28)

Integrating (4.28) for s from −1 to 0, we have

‖∇v(t)‖22 ≤ 2(c3 + 1)r22(w) + 2
∫0

−1
p4(τ,w)dτ +

∫0

−1
‖∇v(s)‖22ds, (4.29)

for all t ∈ [−1, 0]. By Poincare’s inequality, and Young’s inequality, there exist positive
constants c4, c5, c6 such that

‖∇v(s)‖22 ≤ c4‖Δv(s)‖22 ≤ 2c4‖Δu(s)‖22 + 2c4‖Δz(s)‖22
≤ 2c5‖Δu(s)‖pp + 2c5‖Δz(s)‖22 + c6.

(4.30)

Hence, by (4.30) and using Lemma 4.1 again, (4.29) follows

‖∇v(t)‖22 ≤ 2(c3 + c5 + 1)r22(w) + 2
∫0

−1
p4(τ,w)dτ + 2c5

∫0

−1
‖Δz(τ)‖22dτ + c6, (4.31)

with t ∈ [−1, 0]. See that v(t) = u(t) − z(t). Then, we have

‖∇u(t)‖22 ≤ 2‖∇v(t)‖22 + 2‖∇z(t)‖22

≤ 2(c3 + c5 + 1)r22(w) + 2
∫0

−1
p4(τ,w)dτ

+ 2c5

∫0

−1
‖Δz(τ)‖22dτ + 2 sup

−1≤t≤0
‖∇z(t)‖22 + c6,

(4.32)

which gives an expression for r23(w). This completes the proof.

By Theorem 2.2 and Lemma 4.2, we have obtained our main result in this section.

Theorem 4.3. Assume that g satisfies (1.4)–(1.6) and f is given in V ′. Then the RDS ϕ(t, ω)
generated by the stochastic equation (1.1) possesses a random attractorA(w) defined as

A(w) =
⋃

B∈B(H)

⋂

s≥0

⋃

t≥s
ϕ(t, θ−tw)B, (4.33)

where B(H) denotes all the bounded subsets ofH and the closure is the H-norm.

Remark 4.4. As stated in Theorem 3.1, under the assumptions (1.4)–(1.6), the solutions of (1.1)
are inW

2,p
0 (D). So it is possible in theory to obtain a compact random attractor inW

1,p
0 (D) or
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W
2,p
0 (D). But it seems most difficulty to derive the estimate of solution inW2,p(D) due to the

nonlinear principle part Δ(Φp(Δu)).

5. The Single Point Attractor

In this section, we consider the attracting by a single point. In order to derive our anticipating
result, we assume thatC3 > 0 in (1.6). This leads to the following fact that for every fixed t ∈ R

and w ∈ Ω, the solution u(t,w; s, u(s)) to (1.1) is a Cauchy sequence in H for the initial time
s with initial value u(s) belonging to the bounded subset of H. Then we obtain a compact
attractor consisting of a single point which is the limit of u(0, w; s, u(s)) as s → −∞.

Lemma 5.1. Assume that g satisfies (1.4)–(1.6) and f is given in V ′, C3 > 0. Then for s1 ≤ s2 ≤ t
and u01, u02 ∈ H with u(s1) = u01 and u(s2) = u02, there exists a positive constant k < C3 such that

‖u(t,w; s1, u01) − u(t,w; s2, u02)‖22

≤ 2e−C3t

(

4e(C3−k)s2
(

‖u01‖22 + ‖z(s1)‖22 +
∫0

−∞
p2(τ,w)ekτdτ

)

+ 2eks2‖z(s2)‖22 + eks2‖u02‖22
)

.

(5.1)

In particular, for each fixed t ∈ R and w ∈ Ω there exists a single point ξt(w) inH such that

lim
s→−∞

S(t, s;w)u0 = ξt(w), (5.2)

where u0 = u(s) and S(t, s;w) is the stochastic flow defined as in (3.28) which is a version of solution
to (1.1). Furthermore, the limit in the above is independent of u0 for all u0 belonging to a bounded
subset of H.

Proof. For s1 ≤ s2 ≤ t and u01, u02 ∈ H with u(s1) = u01 and u(s2) = u02, we can deduce from
(3.9) and (3.8) that

d

dt
(u(t,w; s1, u01) − u(t,w; s2, u02)) + Ψ(u(t,w; s1, u01)) −Ψ(u(t,w; s2, u02)) = 0, (5.3)

where u(t) = v(t)+z(t) is the solution to problem (1.1). On the other hand, by (3.8) and (3.16),
we immediately deduce that

(
Ψ(u1) −Ψ(u2), u1 − u2

)
≥ C3‖u1 − u2‖22. (5.4)

Then, multiplying (5.3) by u(t,w; s1, u01)−u(t,w; s2, u02), integrating overD, and using (5.4),
we find that

d

dt
‖u(t,w; s1, u01) − u(t,w; s2, u02)‖22 + C3‖u(t,w; s1, u01) − u(t,w; s2, u02)‖22 ≤ 0. (5.5)
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Now, applying Gronwall’s lemma to (5.5) from s2 to t, it yields that

‖u(t,w; s1, u01) − u(t,w; s2, u02)‖22 ≤ ‖u(s2, w; s1, u01) − u02‖22e−C3(t−s2)

≤ 2
(
‖u(s2, w; s1, u01)‖22 + ‖u02‖22

)
e−C3(t−s2).

(5.6)

We then estimate ‖u(s2, w; s1, u01)‖22. To this end, we rewrite (3.21) as

(Ψ(v), v) ≥ C1

2
‖u‖qq − p1(t,w). (5.7)

Since q ≥ 2, by Hölder’s inequality and inverse Young’s inequality we can choose constant
0 < k < C3 such that

C1

2
‖u‖qq ≥

k

2
‖v‖22 − c1‖z‖qq − c2. (5.8)

Then, by (5.7)-(5.8) it follows from (4.2) that

d

dt
‖v‖22 + k‖v‖22 ≤ 2p5(t,w), (5.9)

where p5(t,w) = p1(t,w) + c1‖z‖qq + c2 and v(t) = v(t,w; s1, u01 − z(s1)). Using Gronwall’s
lemma to (5.9) from s1 to s2 with s1 ≤ s2 ≤ 0, we get that

‖v(s2, w; s1, u01 − z(s1))‖22 ≤ ‖u01 − z(s1)‖22e−k(s2−s1) +
∫s2

s1

2p5(τ,w)e−k(s2−τ)dτ

≤ 2e−ks2
(

‖u01‖22 + ‖z(s1)‖22 +
∫0

−∞
p5(τ,w)ekτdτ

)

.

(5.10)

Similar to the argument of (4.4), we know that the integral in the above is convergent.
Therefore, we have

‖u(s2, w; s1, u01)‖22 ≤ 2‖v(s2, w; s1, u01)‖22 + 2‖z(s2)‖22

≤ 4e−ks2
(

‖u01‖22 + ‖z(s1)‖22 +
∫0

−∞
p5(τ,w)ekτdτ

)

+ 2‖z(s2)‖22,
(5.11)
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from which and (5.6) it follows for every fixed t ∈ R that

‖u(t,w; s1, u01) − u(t,w; s2, u02)‖22

≤ 2e−C3t

[

4e(C3−k)s2
(

‖u01‖22 + ‖z(s1)‖22 +
∫0

−∞
p5(τ,w)ekτdτ

)

+ 2eks2‖z(s2)‖22 + eks2‖u02‖22
]

−→ 0, as, s1, s2 −→ −∞,

(5.12)

where the convergence is uniform with respect to u01, u02 belonging to every bounded subset
of H. Then (5.12) implies that for fixed t ∈ R, u(t,w; s, u(s)) is a Cauchy sequence in H for
s ∈ R. Thus, by the completeness of H, for every fixed t ∈ R and w ∈ Ω, u(t,w; s, u(s)) has a
limit inH denoted by ξt(w), that is,

lim
s→−∞

u(t,w; s, u(s)) = ξt(w). (5.13)

Theorem 5.2. Assume that g satisfies (1.4)–(1.6) and f is given in V ′, C3 > 0. Then the RDS
ϕ(t,w) generated by the solution to (1.1) possesses a single point attractorA(w), that is, there exists
a single point ξ0(w) inH such that

A(w) = {ξ0(w)}. (5.14)

Proof. By Lemma 5.1 we define

ξ0(w) = lim
s→−∞

S(0, s;w)u0, (5.15)

where S(0, s;w) = u(0, w; s, u(s)) by (3.28). Then we need prove that A(w) = {ξ0(w)} is a
compact attractor. It is obvious that {ξ0(w)} is a compact random set. Hence by Definition 2.1
it suffices to prove the invariance and attracting property for {ξ0(w)}. Since by the continuity
of ϕ(t,w), and relations (3.29)–(3.32), we have

ϕ(t,w)ξ0(w) = ϕ(t,w) lim
s→−∞

S(0, s;w)u0 = lim
s→−∞

ϕ(t,w)S(0, s;w)u0

= lim
s→−∞

S(t, 0;w)S(0, s;w)u0 = lim
s→−∞

S(t, s;w)u0

= lim
s→−∞

S(t − s, 0; θsw)u0 = lim
s→−∞

S(0, s − t; θtw)u0 = ξ(θtw)

(5.16)
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then it follows that ϕ(t,w)A(w) = A(θtw). On the other hand, by Lemma 5.1, the conver-
gence is uniform with respect to u0 belonging to a bounded subset. Then for every bounded
subset B ⊂ H, by relations (3.32) and (3.28), it follows that

dist
(
ϕ(t, θ−tw)B,A(w)

)
= sup

u0∈B

∥
∥ϕ(t, θ−tw)u0 − ξ0(w)

∥
∥
2

= sup
u0∈B

‖S(0,−t,w)u0 − ξ0(w)‖2

= sup
u0∈B

‖u(0, w;−t, u0) − ξ0(w)‖2 −→ 0

(5.17)

as t → +∞. That is to sayA(w) is a attracting set which attracts every deterministic bounded
set of H, and therefore we complete the proof.

Acknowledgments

The authors would like to express their sincere thanks to the anonymous referee for his/her
valuable comments and suggestions to improve the paper. This work was supported by
China Natural Science Fund 11071199.

References

[1] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, vol. 68 of Applied
Mathematical Sciences, Springer, New York, NY, USA, 2nd edition, 1997.

[2] M. Yang, C. Sun, and C. Zhong, “Existence of a global attractor for a p-Laplacian equation in R
n,”

Nonlinear Analysis, vol. 66, no. 1, pp. 1–13, 2007.
[3] M. Yang, C. Sun, and C. Zhong, “Global attractors for p-Laplacian equation,” Journal of Mathematical

Analysis and Applications, vol. 327, no. 2, pp. 1130–1142, 2007.
[4] G. Chen and C. Zhong, “Uniform attractors for non-autonomous p-Laplacian equations,” Nonlinear

Analysis: Theory, Methods and Applications, vol. 68, no. 11, pp. 3349–3363, 2008.
[5] H. Crauel and F. Flandoli, “Attractors for random dynamical systems,” Probability Theory and Related

Fields, vol. 100, no. 3, pp. 365–393, 1994.
[6] H. Crauel, A. Debussche, and F. Flandoli, “Random attractors,” Journal of Dynamics and Differential

Equations, vol. 9, no. 2, pp. 307–341, 1997.
[7] Y. Li and B. Guo, “Random attractors for quasi-continuous random dynamical systems and

applications to stochastic reaction-diffusion equations,” Journal of Differential Equations, vol. 245, no.
7, pp. 1775–1800, 2008.

[8] P. W. Bates, K. Lu, and B. Wang, “Random attractors for stochastic reaction-diffusion equations on
unbounded domains,” Journal of Differential Equations, vol. 246, no. 2, pp. 845–869, 2009.

[9] G. Wang, B. Guo, and Y. Li, “The asymptotic behavior of the stochastic Ginzburg-Landau equation
with additive noise,” Applied Mathematics and Computation, vol. 198, no. 2, pp. 849–857, 2008.

[10] Q. Zhang, “Random attractors for a Ginzburg-Landau equation with additive noise,” Chaos, Solitons
and Fractals, vol. 39, no. 1, pp. 463–472, 2009.

[11] B. Wang, “Random attractors for the stochastic FitzHugh-Nagumo system on unbounded domains,”
Nonlinear Analysis: Theory, Methods and Applications, vol. 71, no. 7-8, pp. 2811–2828, 2009.

[12] C. Zhao and J. Duan, “Random attractor for the Ladyzhenskaya model with additive noise,” Journal
of Mathematical Analysis and Applications, vol. 362, no. 1, pp. 241–251, 2010.
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