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We consider a nonlinear equation F(ε, λ, u) = 0, where the parameter ε is a perturbation parameter,
F is a differentiable mapping fromR×R×X to Y, andX, Y are Banach spaces. We obtain an abstract
bifurcation theorem by using the generalized saddle-node bifurcation theorem.

1. Introduction

In [1, 2], Crandall and Rabinowitz proved two celebrated theorems which are now regarded
as foundation of the analytical bifurcation theory in infinite-dimensional spaces and both
results are based on the implicit function theorem. In [3], we obtained the generalized
saddle-node bifurcation theorem by the generalized inverse. In [4], we proved a perturbed
problem usingMorse Lemma. For amore general introduction to bifurcation theory and other
related methods in nonlinear analysis, see, for example, [5–7]. On the other hand, [8–11]
provide a more detailed introduction to mathematical models in some recent new results in
the application of bifurcation theory including chemical reactions, population ecology, and
nonautonomous differential equations.

In this paper, we continue the work of [3] and obtain an abstract bifurcation theorem
under the opposite condition in [4]. We consider the solution set of

F(ε, λ, u) = 0, (1.1)

where ε indicates the perturbation. Fix ε = ε0; let (λ0, u0) be a solution of F(ε0, ·, ·) = 0. From
the implicit function theorem, a necessary condition for bifurcation is that Fu(ε0, λ0, u0) is
not invertible; we call (ε0, λ0, u0) a degenerate solution. In [12], Shi shows the persistence and
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the bifurcation of degenerate solutions when ε varies near ε0 by the implicit function theorem
and the saddle-node bifurcation theorem. In this paper, we prove a new perturbed bifurcation
theorem by the generalized saddle-node bifurcation theorem.

In the paper, we use ‖ · ‖ as the norm of Banach space X and 〈·, ·〉 as the duality pair of
a Banach space X and its dual space X∗. For a nonlinear operator F, we use Fu as the partial
derivative of F with respect to argument u. For a linear operator L, we use N(L) as the null
space of L and R(L) as the range of L.

2. Preliminaries

Definition 2.1 (see [13]). Let X, Y be Banach spaces, and let A ∈ L(X,Y ) be a linear operator.
Then, A+ ∈ L(Y,X) is called the generalized inverse of A if it satisfies

(i) AA+A = A,

(ii) A+AA+ = A+.

Definition 2.2 (see [13]). Let X,Y , and A be the same as in Definition 2.1. If A ∈ L(X,Y ) has
the bounded linear generalized inverse A+, then A is called a generalized regular operator.

Lemma 2.3 (see [13]). Let A ∈ L(X,Y ), then A is a generalized regular operator if and only if
N(A), R(A) are topologically complemented in X,Y , respectively. In this case, I − A+A, AA+ are
bounded linear projectors from X, Y intoN(A), R(A), respectively.

We recall the generalized saddle-node bifurcation in [3] and give an alternate proof
here using the generalized Lyapunov-Schmidt reduction.

Theorem 2.4 (generalized saddle-node bifurcation). Let V ⊂ R × X be a neighborhood of
(λ0, u0), F ∈ C1(V, Y ). Suppose that

(i) F(λ0, u0) = 0;

(ii) Fu(λ0, u0) : X → Y is a generalized regular operator, and

dimN(Fu(λ0, u0)) ≥ codimR(Fu(λ0, u0)) = 1, (2.1)

(iii) Fλ(λ0, u0) /∈ R(Fu(λ0, u0)).

Let Z = R((Fu(λ0, u0))
+), then the subset {(λ, u)|F(λ, u) = 0} contains the curve

(λ(s), u(s)) = (λ(s), u0 + sw0 + z(s)) near (λ0, u0), where w0 ∈ N(Fu(λ0, u0)) \ {θ}, the mapping
z(s) is continuously differentiable near s = 0, and λ(0) = λ0, λ′(0) = 0, z′(0) = z(0) = θ.

Proof. SinceA = Fu(λ0, u0) is a generalized regular operator, there exist closed subspaces Z in
X, Y1 in Y satisfing X = Z ⊕N(A), Y = R(A) ⊕ Y1.

Taking an arbitrary w0 ∈N(A) \ {θ}, from Lemma 2.3, F(λ, u) = 0 is equivalent to

(I −AA+)F(λ, u0 + sw0 + z) = 0,

AA+F(λ, u0 + sw0 + z) = 0,
(2.2)

where s ∈ R, z ∈ Z.
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Define G : R × R × Z → R(A) as

G(s, λ, z) = AA+F(λ, u0 + sw0 + z),

G(λ,z)(0, λ0, 0)
[(
τ, ψ

)]
= AA+(τFλ(λ0, u0) + Fu(λ0, u0)

[
ψ
])
,

= AA+A
[
ψ
]
= A

[
ψ
]
,

(2.3)

because of (iii), then G(λ,z)(0, λ0, 0) : R × Z → R(A) is an isomorphism.
For the equation G(s, λ, z) = 0, by the implicit function theorem, there exist ε > 0 and

(λ(s), z(s)) ∈ C1(−ε, ε), with λ(0) = λ0, z(0) = 0 satisfying

G(s, λ(s), z(s)) = 0. (2.4)

From (2.2), we have

F(λ(s), u0 + sw0 + z(s)) = 0, s ∈ (−ε, ε). (2.5)

Differentiating (2.5)with respect to s, we have

Fλ(λ(s), u0 + sw0 + z(s))λ′(s) + Fu(λ(s), u0 + sw0 + z(s))
[
w0 + z′(s)

]
= 0. (2.6)

Setting s = 0,

Fλ(λ0, u0)λ′(0) + Fu(λ0, u0)
[
w0 + z′(0)

]
= 0. (2.7)

Thus, λ′(0) = 0 since (iii) and we have

Fu(λ0, u0)
[
z′(0)

]
= 0, (2.8)

that is, z′(0) ∈N(A) ∩ Z, we have z′(0) = 0.

Corollary 2.5. Assume the conditions in Theorem 2.4 are satisfied and

dimN(Fu(λ0, u0)) = n, N(Fu(λ0, u0)) = span{w1, w2, . . . , wn}, (2.9)

then the direction of the solution curves is determined by

λ′′i (0) = −〈l, Fuu(λ0, u0)[wi,wi]〉
〈l, Fλ(λ0, u0)〉 , (2.10)

where l ∈ R(Fu(λ0, u0))⊥, i = 1, 2, . . . , n. Furthermore, when

Fuu(λ0, u0)[wi,wi] /∈ R(Fu(λ0, u0)) (2.11)
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Figure 1: Bifurcation diagram of the equation λ − x2 − y2 = 0 in Example 2.6.

is satisfied, λ′′i (0)/= 0, and the solution curve {(λi(s), ui(s)) : |s| < δ} is a parabola-like curve which
reaches an extreme point at (λ0, u0).

We illustrate our result by a simple example.

Example 2.6. Define

F

(

λ,

(
x

y

))

= λ − x2 − y2 = 0, (2.12)

whereU =
( x
y
) ∈ R2, λ ∈ R. From simple calculations, we obtain

FU =
(−2x,−2y), Fλ = 1, FUU =

(−2 0

0 −2

)

. (2.13)

We analyze the bifurcation at (0,
(
0
0

)
) . It is easy to see that N(FU) = span{w1, w2}, where

w1 =
(
1
0

)
, w2 =

(
0
1

)
, R(FU) = {0}. So, obviously, dimN(FU) = 2, codimR(FU) = 1, and

Fλ /∈ R(FU). From the above calculation,

FUU[w1, w1] = −2, FUU[w2, w2] = −2. (2.14)

Obviously, FUU(0,
(
0
0

)
)[wi,wi] /∈ R(FU(0,

(
0
0

)
)) and λ′′i (0) = −2, i = 1, 2. Thus, we can apply

Corollary 2.5 to (2.12). In fact, all solution curves for all wi ∈ N(FU) form a surface (see
Figure 1).
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3. Main Theorems

Applying Theorem 2.4, we discuss the bifurcation of solutions of the perturbed problem. We
consider the solution set of

F(ε, λ, u) = 0, (3.1)

where the parameter ε indicates the perturbation, F ∈ C1(M,Y ),M ≡ R×R×X, and X, Y are
Banach spaces. Let

H(ε, λ, u,w) =

(
F(ε, λ, u)

Fu(ε, λ, u)[w]

)

. (3.2)

Suppose that (ε0, λ0, u0, w0) is a solution ofH(ε, λ, u,w) = 0. For (ε0, λ0, u0) ∈M and

w0 ∈ X1 ≡ {x ∈ X : ‖x‖ = 1}, (3.3)

by Hahn-Banach theorem, there exists a closed subspace X3 of X with codimension 1 such
that X = L(w0) ⊕ X3, where L(w0) = span{w0} and d(w0, X3) = inf{||w0 − x|| : x ∈ X3} > 0.
Let X2 = w0 +X3 = {w0 + x : x ∈ X3}. Then, X2 is a closed hyperplane of X with codimension
1. Since X3 is a closed subspace of X and X3 is also a Banach space in the subspace topology,
Hence we can regardM1 = M × X2 as a Banach space with product topology. Moreover, the
tangent space ofM1 is homeomorphic toM ×X3 (see [12] for more on the setting).

In the following, we will still use the conditions (Fi) on F defined in [12].

(F1) dimN(Fu(ε0, λ0, u0)) = codimR(Fu(ε0, λ0, u0)) = 1, and N(Fu(ε0, λ0, u0)) =
span{w0};

(F2) Fλ(ε0, λ0, u0) /∈ R(Fu(ε0, λ0, u0));

(F3) Fλu(ε0, λ0, u0)[w0] /∈ R(Fu(ε0, λ0, u0));

(F4) Fuu(ε0, λ0, u0)[w0, w0] /∈ R(Fu(ε0, λ0, u0));

(F5) Fε(ε0, λ0, u0) /∈ R(Fu(ε0, λ0, u0)).

We use the convention that (Fi′)means that the condition defined in (Fi) does not hold.

Theorem 3.1. Let F ∈ C2(M,Y ), T0 = (ε0, λ0, u0, w0) ∈ M1 such that H(T0) = (0, 0). Suppose
that the operator F satisfies (F1), (F2′), (F3), (F4′), and (F5) at T0. One also assumes that

Fuu(ε0, λ0, u0)[v1, w0] + Fλu(ε0, λ0, u0)[w0] ∈ R(Fu(ε0, λ0, u0)), (3.4)

where v1 ∈ X3 \ {0} is the unique solution of

Fλ(ε0, λ0, u0) + Fu(ε0, λ0, u0)[v] = 0. (3.5)
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Then, there exists δ > 0 such that all the solutions of H(ε, λ, u,w) = (0, 0) near T0 form two C2

curves:

{T1(s) = (ε1(s), λ1(s), u1(s), w1(s)), s ∈ I = (−δ, δ)},
{T2(s) = (ε2(s), λ2(s), u2(s), w2(s)), s ∈ I = (−δ, δ)},

(3.6)

where εi(s) = ε0 + τi(s), s ∈ I; τi(·) ∈ C2(I,R); τi(0) = τ ′i(0) = 0, and

λ1(s) = λ0 + z11(s), λ2(s) = λ0 + s + z21(s), s ∈ I,
u1(s) = u0 + sw0 + z12(s), u2(s) = u0 + sv1 + z22(s), s ∈ I,
w1(s) = w0 + sψ0 + z13(s), w2(s) = w0 + sψ1 + z23(s), s ∈ I,

(3.7)

where zij(·) ∈ C2(I, Z), zij(0) = z′ij(0) = 0 (i = 1, 2, j = 1, 2, 3), ψ0 ∈ X3, ψ1 ∈ X3 are the unique
solution of

Fuu(ε0, λ0, u0)[w0, w0] + Fu(ε0, λ0, u0)
[
ψ
]
= 0, (3.8)

Fuu(ε0, λ0, u0)[v1, w0] + Fλu(ε0, λ0, u0)[w0] + Fu(ε0, λ0, u0)
[
ψ
]
= 0, (3.9)

respectively.

Remark 3.2. Theorem 2.4 complements Theorem 3.2 in [4], where the opposite condition (3.4)
is imposed.

Proof. We apply Theorem 2.4 to the operator H, so we need to verify all the conditions. We
define a differential operator K : R ×X ×X3 → Y × Y ,

K
[
τ, v, ψ

]
= H(λ,u,w)(ε0, λ0, u0, w0)

[
τ, v, ψ

]

=

(
τFλ(ε0, λ0, u0) + Fu(ε0, λ0, u0)[v]

τFλu(ε0, λ0, u0)[w0] + Fuu(ε0, λ0, u0)[v,w0] + Fu(ε0, λ0, u0)
[
ψ
]

)

.
(3.10)

(1) dimN(K) = 2. Suppose that (τ, v, ψ) ∈ N(K) and (τ, v, ψ)/= 0. If τ = 0, from
Fu(ε0, λ0, u0)[v] = 0 and (F1), then we have v = kw0 and

kFuu(ε0, λ0, u0)[w0, w0] + Fu(ε0, λ0, u0)
[
ψ
]
= 0. (3.11)

From (F4′), we can define ψ0 ∈ X3 is the unique solution of (3.8). Thus, (0, w0, ψ0) ∈ N(K)
and (τ, v, ψ) = k(0, w0, ψ0).

Next, we consider τ /= 0. Without loss of generality, we assume that τ = 1. Notice that
Fλ(ε0, λ0, u0) ∈ R(Fu(ε0, λ0, u0)) from (F2′), we can define that v1 ∈ X3 \{0} is unique solution
of (3.5). Substituting τ = 1, v = v1 into (3.10), we have

Fλu(ε0, λ0, u0)[w0] + Fuu(ε0, λ0, u0)[v1, w0] + Fu(ε0, λ0, u0)
[
ψ
]
= 0. (3.12)
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From (3.4), there exists a unique ψ1 ∈ X3 satisfies (3.9). Then,

N(K) = span
{(

0, w0, ψ0
)
,
(
1, v1, ψ1

)}
, (3.13)

that is, dimN(K) = 2.
(2) codimR(K) = 1. We only claim that

R(K) = R(Fu(ε0, λ0, u0)) × Y. (3.14)

Let (h, g) ∈ R(K) and (τ, v, ψ) ∈ R ×X ×X3 satisfy

τFλ(ε0, λ0, u0) + Fu(ε0, λ0, u0)[v] = h, (3.15)

τFλu(ε0, λ0, u0)[w0] + Fuu(ε0, λ0, u0)[v,w0] + Fu(ε0, λ0, u0)
[
ψ
]
= g. (3.16)

Using (3.15) and (F2′), then (h, g) ∈ R(Fu(ε0, λ0, u0)) × Y and R(K) ⊂ R(Fu(ε0, λ0, u0)) × Y .
Conversely, for any (h, g) ∈ R(Fu(ε0, λ0, u0)) × Y , from (F3), set

τ1 =

〈
l, g

〉

〈l, Fλu(ε0, λ0, u0)[w0]〉 , (3.17)

where l ∈ R(Fu(ε0, λ0, u0))⊥ ⊂ Y ∗. From (F2′), we have

h − τ1Fλ(ε0, λ0, u0) ∈ R(Fu(ε0, λ0, u0)). (3.18)

Set v2 = [Fu|X3]
−1[h − τ1Fλ(ε0, λ0, u0)] ∈ X3, we obtain that

τ1Fλ(ε0, λ0, u0) + Fu(ε0, λ0, u0)[v2] = h. (3.19)

Substituting τ = τ1, v = v2 into (3.16), we have

τ1Fλu(ε0, λ0, u0)[w0] + Fuu(ε0, λ0, u0)[v2, w0] + Fu(ε0, λ0, u0)
[
ψ
]
= g. (3.20)

Using (F1), (F3), then there exists v3 ∈ X3, τ2 ∈ R satisfies

Fuu(ε0, λ0, u0)[v2, w0] = τ2Fλu(ε0, λ0, u0)[w0] + Fu(ε0, λ0, u0)[v3]. (3.21)

Substituting (3.21) into (3.20), we have

(τ1 + τ2)Fλu(ε0, λ0, u0)[w0] + Fu(ε0, λ0, u0)
[
ψ + v3

]
= g. (3.22)

Applying l to (3.22), we have τ2 = 0 because of the definition of τ1 and

g − τ1Fλu(ε0, λ0, u0)[w0] ∈ R(Fu(ε0, λ0, u0)). (3.23)
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Thus we can define

ψ2 =
[
Fu|X3

]−1{
g − τ1Fλu(ε0, λ0, u0)[w0]

} − v3 ∈ X3. (3.24)

Therefore, K(τ1, v2, ψ2) = (h, g), that is, R(Fu(ε0, λ0, u0)) × Y ⊂ R(K). Hence, R(K) =
R(Fu(ε0, λ0, u0)) × Y . That is, codimR(K) = 1.

(3)Hε(ε0, λ0, u0, w0) /∈ R(K). Since R(K) = R(Fu(ε0, λ0, u0))×Y , we need only to show
that Fε(ε0, λ0, u0) /∈ R(Fu(ε0, λ0, u0)) but that is exactly assumed in (F5). So, the statement of
the theorem follows from Theorem 2.4.

4. Calculations of Bifurcation Directions

In Theorem 3.1, we have ε1(0) = ε2(0) = ε0, ε′1(0) = ε′2(0) = 0, λ1(0) = λ2(0) = λ0, u1(0) =
u2(0) = u0, w1(0) = w2(0) = w0, λ′1(0) = 0, u′1(0) = w0, w′

1(0) = ψ0, λ′2(0) = 1, u′2(0) = v1,
w′

2(0) = ψ1.
To completely determine the turning direction of curve of degenerate solutions, we

need some calculations.
Let {Ti(s) = (εi(s), λi(s), ui(s), wi(s)) : s ∈ (−δ, δ)} be a curve of degenerate solutions

which we obtain in Theorem 3.1. Differentiating H(εi(s), λi(s), ui(s), wi(s)) = 0 with respect
to s, we obtain

Fεε
′
i(s) + Fλλ

′
i(s) + Fu

[
u′i(s)

]
= 0,

Fεu[wi(s)]ε′i(s) + Fλu[wi(s)]λ′i(s) + Fuu
[
wi(s), u′i(s)

]
+ Fu

[
w′
i(s)

]
= 0.

(4.1)

Setting s = 0 in (4.1), we get exactly Fu[w0] = 0, (3.5), (3.8), and (3.9). We differentiate (4.1)
again, and we have (omit the subscript i in the equation)

Fεε
[
ε′(s)

]2 + Fεε′′(s) + Fλλ
[
λ′(s)

]2 + Fλλ′′(s) + Fuu
[
u′(s), u′(s)

]

+ Fu
[
u′′(s)

]
+ 2Fελε′(s)λ′(s) + 2Fεu

[
u′(s)

]
ε′(s) + 2Fλu

[
u′(s)

]
λ′(s) = 0,

(4.2)

Fεεu[w(s)]
[
ε′(s)

]2 + Fελu[w(s)]ε′(s)λ′(s) + Fεuu
[
u′(s), w(s)

]
ε′(s)

+ Fεu
[
w′(s)

]
ε′(s) + Fεu[w(s)]ε′′(s) + Fελu[w(s)]ε′(s)λ′(s)

+ Fλλu[w(s)]
[
λ′(s)

]2 + Fλuu
[
u′(s), w(s)

]
λ′(s) + Fλu

[
w′(s)

]
λ′(s)

+ Fλu[w(s)]λ′′(s)+Fεuu
[
u′(s), w(s)

]
ε′(s) + Fλuu

[
u′(s), w(s)

]
λ′(s)

+ Fuuu
[
u′(s), u′(s), w(s)

]
+ Fuu

[
w′(s), u′(s)

]

+ Fuu
[
w(s), u′′(s)

]
+ Fεu

[
w′(s)

]
ε′(s) + Fλu

[
w′(s)

]
λ′(s)

+ Fuu
[
w′(s), u′(s)

]
+ Fu

[
w′′(s)

]
= 0,

(4.3)
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Fεεu[w(s)]
[
ε′(s)

]2 + Fεu[w(s)]ε′′(s) + Fλu[w(s)]λ′′(s)

+ Fλλu[w(s)]
[
λ′(s)

]2 + Fuuu
[
u′(s), u′(s), w(s)

]
+ Fuu

[
w(s), u′′(s)

]

+ Fu
[
w′′(s)

]
+ 2Fελu[w(s)]ε′(s)λ′(s) + 2Fεuu

[
u′(s), w(s)

]
ε′(s)

+ 2Fλuu
[
u′(s), w(s)

]
λ′(s) + 2Fεu

[
w′(s)

]
ε′(s) + 2Fλu

[
w′(s)

]
λ′(s)

+ 2Fuu
[
w′(s), u′(s)

]
= 0.

(4.4)

Setting s = 0 in (4.2), we obtain

Fεε
′′
1(0) + Fλλ

′′
1(0) + Fuu[w0, w0] + Fu

[
u′′1(0)

]
= 0, (4.5)

Fεε
′′
2(0) + Fλλ + Fλλ

′′
2(0) + Fuu[v1, v1] + Fu

[
u′′2(0)

]
+ 2Fλu[v1] = 0. (4.6)

And applying l to it, we have

ε′′1(0) = 0, (4.7)

ε′′2(0) = −〈l, Fλλ + Fuu[v1, v1] + 2Fλu[v1]〉
〈l, Fε〉 , (4.8)

Using (F2′), (F4′), (F5). From (4.7), (4.5) implies u′′1(0) = λ′′1(0)v1 + ψ0 + kw0. Setting s = 0 in
(4.4),

Fλu[w0]λ′′1(0) + Fuuu[w0, w0, w0] + Fuu
[
w0, u

′′
1(0)

]
+ Fu

[
w′′

1(0)
]
+ 2Fuu

[
ψ0, w0

]
= 0, (4.9)

Fεu[w0]ε′′2(0) + Fλu[w0]λ′′2(0) + Fλλu[w0] + Fuuu[v1, v1, w0] + Fuu
[
w0, u

′′
2(0)

]

+ Fu
[
w′′

2(0)
]
+ 2Fλuu[v1, w0] + 2Fλu

[
ψ1

]
+ 2Fuu

[
ψ1, v1

]
= 0.

(4.10)

Substituting the expression of u′′1(0) into (4.9), we have

λ′′1(0)(Fλu[w0] + Fuu[v1, w0]) + 3Fuu
[
ψ0, w0

]
+ Fuuu[w0, w0, w0]

+ kFuu[w0, w0] + Fu
[
w′′

1(0)
]
= 0.

(4.11)

And applying l to it, we obtain 〈l, Fuuu[w0, w0, w0] + 3Fuu[ψ0, w0]〉 = 0, that is,

Fuuu[w0, w0, w0] + 3Fuu
[
ψ0, w0

] ∈ R(Fu(ε0, λ0, u0)). (4.12)
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Assume Fεu[w0] ∈ R(Fu(ε0, λ0, u0)) and applying l to (4.10),

λ′′2(0)

= −
〈
l, Fλλu[w0]+Fuuu[v1, v1, w0]+Fuu

[
w0, u

′′
2(0)

]
+2Fλuu[v1, w0]+2Fλu

[
ψ1

]
+2Fuu

[
ψ1, v1

]〉

〈l, Fλu[w0]〉 .

(4.13)

We differentiate (4.2) again:

Fεεε
[
ε′(s)

]3 + Fεε′′′(s) + Fλλλ
[
λ′(s)

]3 + Fλλ′′′(s) + Fuuu
[
u′(s), u′(s), u′(s)

]

+ Fu
[
u′′′(s)

]
+ 3Fεεε′(s)ε′′(s) + 3Fλλλ′(s)λ′′(s) + 3Fuu

[
u′′(s), u′(s)

]

+ 3Fελε′′(s)λ′(s) + 3Fελε′(s)λ′′(s) + 3Fεu
[
u′(s)

]
ε′′(s) + 3Fεu

[
u′′(s)

]
ε′(s)

+ 3Fλu
[
u′′(s)

]
λ′(s) + 3Fλu

[
u′(s)

]
λ′′(s) + 3Fελλε′(s)

(
λ′(s)

)2

+ 3Fεελ
(
ε′(s)

)2
λ′(s) + 3Fεεu

[
u′(s)

](
ε′(s)

)2 + 3Fεuu
[
u′(s), u′(s)

]
ε′(s)

+ 3Fλλu
[
u′(s)

](
λ′(s)

)2 + 3Fλuu
[
u′(s), u′(s)

]
λ′(s) + 6Fελu

[
u′(s)

]
ε′(s)λ′(s) = 0.

(4.14)

Setting s = 0 in (4.14), we obtain

Fεε
′′′
1 (0) + Fλλ

′′′
1 (0) + Fuuu[w0, w0, w0] + Fu

[
u′′′1 (0)

]

+ 3Fuu
[
u′′1(0), w0

]
+ 3Fλu[w0]λ′′1(0) = 0,

(4.15)

Fλλ
′′′
2 (0) + Fεε

′′′
2 (0) + 3λ′′2(0)(Fλλ + Fλu[v1]) + 3ε′′2(0)(Fελ + Fεu[v1])

+ Fλλλ + Fuuu[v1, v1, v1] + Fu
[
u′′′2 (0)

]
+ 3Fuu

[
u′′2(0), v1

]
+ 3Fλu

[
u′′2(0)

]

+ 3Fλλu[v1] + 3Fλuu[v1, v1] = 0.

(4.16)

Substituting the expression of u′′1(0) into (4.15) and applying l to it, we have ε′′′1 (0) = 0 using
(3.4), (4.12), and (F5).
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