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We study the existence of solutions for deviated-advanced nonlocal and integral condition
problems for the differential inclusion x1(t) ∈ F(t, x(t)).

1. Introduction

Problems with nonlocal conditions have been extensively studied by several authors in
the last two decades. The reader is referred to [1–12] and references therein. Consider the
deviated-advanced nonlocal problem

dx(t)
dt

∈ F(t, x(t)), a.e. t ∈ (0, 1), (1.1)

m∑

k=1

akx
(
φ(τk)

)
= α

n∑

j=1

bjx
(
ψ
(
ηj
))
, ak, bj > 0, (1.2)

where τk, ηj ∈ (0, 1), α > 0 is a parameter, and ψ and φ are, respectively, deviated and
advanced given functions.

Our aim here is to study the existence of at least one absolutely continuous solution
x ∈ AC[0, 1] for the problem (1.1)-(1.2) when the set-valued function F : R → P(R) is
L1-Carathéodory.
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As an application, we deduce the existence of a solution for the nonlocal problem of
the differential inclusion (1.1) with the deviated-advanced integral condition

∫1

0
x
(
φ(s)

)
ds = α

∫1

0
x
(
ψ(s)

)
ds. (1.3)

It must be noticed that the following nonlocal and integral conditions are special cases
of our nonlocal and integral conditions

x
(
φ(τ)

)
= αx

(
ψ
(
η
))
, τ, η ∈ (0, 1),

m∑

k=1

akx
(
φ(τk)

)
= αx

(
ψ
(
η
))
, τk, η ∈ (0, 1),

m∑

k=1

akx
(
φ(τk)

)
= 0, τk ∈ (0, 1),

∫1

0
x
(
φ(s)

)
ds = αx

(
ψ
(
η
))
, η ∈ (0, 1),

α

∫1

0
x
(
ψ(s)

)
ds = x

(
φ(τ)

)
, τ ∈ (0, 1),

∫1

0
x
(
φ(s)

)
ds = 0,

∫1

0
x
(
ψ(s)

)
ds = 0.

(1.4)

As an example of the deviated function φ : (0, 1) → (0, 1), we have φ(t) = βt, β ∈ (0, 1). As an
example of the advanced function ψ : (0, 1) → (0, 1), we have ψ(t) = tβ, β ∈ (0, 1).

2. Preliminaries

The following preliminaries are needed.

Definition 2.1. A set-valued function F : [0, 1] × R → P(R) is called L1-Carathéodory if

(a) t → F(t, x) is measurable for each x ∈ R,
(b) x → F(t, x) is upper semicontinuous for almost all t ∈ [0, 1],

(c) there existsm ∈ L1([0, 1], D), D ⊂ R such that

|F(t, x)| = sup{|v| : v ∈ F(t, x)} ≤ m(t), for almost all t ∈ [0, 1]. (2.1)

Definition 2.2. A single-valued function f : [0, 1] × R → R is called L1-Carathéodory if

(i) t → f(t, x) is measurable for each x ∈ R,
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(ii) x → f(t, x) is continuous for almost all t ∈ [0, 1],

(iii) there existsm ∈ L1([0, 1], D), D ⊂ R such that |f | ≤ m.

Definition 2.3. The set

S1
F(·,x(t)) =

{
f ∈ ([0, 1], R) : f(t, x) ∈ F(t, x(t)) for a.e. t ∈ [0, 1]

}
(2.2)

is called the set of selections of the set-valued function F.

Theorem 2.4. For any L1-Carathéodory set-valued function F, the set S1
F(·,x(t)) is nonempty [1, 13].

Theorem 2.5 (Carathéodory, [14]). Let f : [0, 1] × R → R be L1-Carathéodory. Then the problem

dx(t)
dt

= f(t, x(t)), for a.e. t > 0, x(0) = x0, (2.3)

has at least one solution x ∈ AC[0, T].

3. Existence of Solution

Consider the following assumptions.

(i) F : [0, 1] × R → P(R+) is L1-Carathéodory.

(ii)

α
n∑

j=1

bj /=
m∑

k=1

ak. (3.1)

(iii) φ : (0, 1) → (0, 1), φ(t) ≤ t is a deviated continuous function.

(iv) ψ : (0, 1) → (0, 1), ψ(t) ≥ t is an advanced continuous function.

Now we have the following lemma.

Lemma 3.1. Let assumptions (i)-(ii) be satisfied. The solution of the nonlocal problem (1.1)-(1.2) can
be expressed by the integral equation

x(t) = A

⎛

⎝
m∑

k=1

ak

∫φ(τk)

0
f(s, x(s))ds − α

n∑

j=1

bj

∫ψ(ηj )

0
f(s, x(s))ds

⎞

⎠ +
∫ t

0
f(s, x(s))ds, (3.2)

where f(t, x) ∈ F(t, x), for all x ∈ R, and A = (α
∑n

j=1 bj −
∑m

k=1 ak)
−1.
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Proof. From the assumption that the set-valued function F : [0, 1] × R → P(R+) is L1-
Carathéodory, then (Theorem 2.4) there exists a single-valued selection f : [0, 1] × R → R+

such that

d

dt
x(t) = f(t, x) ∈ F(t, x), ∀x ∈ R. (3.3)

This selection f(t, x) is L1-Carathéodory.
Integrating (3.3), we get

x(t) = x(0) +
∫ t

0
f(s, x(s))ds. (3.4)

Let t = φ(τk). Then

m∑

k=1

akx
(
φ(τk)

)
=

m∑

k=1

akx(0) +
m∑

k=1

ak

∫φ(τk)

0
f(s, x(s))ds. (3.5)

Let t = ψ(ηj). Then

α
n∑

j=1

bjx
(
ψ
(
ηj
))

= α
n∑

j=1

bjx(0) + α
n∑

j=1

bj

∫ψ(ηj )

0
f(s, x(s))ds. (3.6)

From (3.5) and (3.6), we obtain

x(0) = A

⎛

⎝
m∑

k=1

ak

∫φ(τk)

0
f(s, x(s))ds − α

n∑

j=1

bj

∫ψ(ηj )

0
f(s, x(s))ds

⎞

⎠, (3.7)

where A = (α
∑n

j=1 bj −
∑m

k=1 ak)
−1, α

∑n
j=1 bj /=

∑m
k=1 ak.

Substituting (3.7) into (3.4), we obtain

x(t) = A

⎛

⎝
m∑

k=1

ak

∫φ(τk)

0
f(s, x(s))ds − α

n∑

j=1

bj

∫ψ(ηj )

0
f(s, x(s))ds

⎞

⎠ +
∫ t

0
f(s, x(s))ds. (3.8)

This proves that the solution of the nonlocal problem (1.1)-(1.2) can be expressed by the
integral equation (3.2).

For the existence of the solution, we have the following theorem.

Theorem 3.2. Assume that (i)–(iv) are satisfied. Then the integral equation (3.2) has at least one
continuous solution x ∈ C[0, 1].
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Proof. Define a subset Qr ⊂ C[0, 1] by

Qr =

⎧
⎨

⎩x ∈ C[0, 1] : |x(t)| ≤ r, r = AM
⎛

⎝1 +
m∑

k=1

ak + α
n∑

j=1

bj

⎞

⎠

⎫
⎬

⎭. (3.9)

Clearly, the set Qr is nonempty, closed, and convex.
LetH be an operator defined by

(Hx)(t) = A

⎛

⎝
m∑

k=1

ak

∫φ(τk)

0
f(s, x(s))ds − α

n∑

j=1

bj

∫ψ(ηj )

0
f(s, x(s))ds

⎞

⎠ +
∫ t

0
f(s, x(s))ds.

(3.10)

Let x ∈ Qr . Let {xn(t)} be a sequence in Qr converging to x(t), xn(t) → x(t), for all t ∈ I.
Then

lim
n→∞

(Hxn)(t) = A

⎛

⎝
m∑

k=1

ak lim
n→∞

∫φ(τk)

0
f(s, xn(s))ds − α

n∑

j=1

bj lim
n→∞

∫ψ(ηj )

0
f(s, xn(s))ds

⎞

⎠

+ lim
n→∞

∫ t

0
f(s, xn(s))ds,

(3.11)

By assumptions (i)-(ii) and the Lebesgue dominated convergence theorem, we deduce that

lim
n→∞

(Hxn)(t) = (Hx)(t). (3.12)

ThenH is continuous.
Now, letting x ∈ Qr , (then φ(t) ≤ t and ψ(t) ≥ t), we obtain

(Hx)(t) ≤ A
⎛

⎝
m∑

k=1

ak

∫ τk

0
f(s, x(s))ds − α

n∑

j=1

bj

∫ηj

0
f(s, x(s))ds

⎞

⎠

+
∫ t

0
f(s, x(s))ds,

|(Hx)(t)| ≤ A
⎛

⎝
m∑

k=1

ak

∫ τk

0

∣∣f(s, x(s))
∣∣ds + α

n∑

j=1

bj

∫ηj

0

∣∣f(s, x(s))
∣∣ds

⎞

⎠

+
∫ t

0

∣∣f(s, x(s))
∣∣ds

≤ A
⎛

⎝
m∑

k=1

ak

∫ τk

0
m(s)ds + α

n∑

j=1

bj

∫ηj

0
m(s)ds

⎞

⎠ +
∫ t

0
m(s)ds
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≤ A
⎛

⎝
m∑

k=1

akM + α
n∑

j=1

bjM

⎞

⎠ +M

≤ AM
⎛

⎝1 +
m∑

k=1

ak + α
n∑

j=1

bj

⎞

⎠ ≤ r.

(3.13)

Then {Hx(t)} is uniformly bounded in Qr .
Also for t1, t2 ∈ (0, 1), t1 < t2 such that |t2 − t1| < δ, we have

(Hx)(t2) − (Hx)(t1) =
∫ t2

0
f(s, x(s))ds −

∫ t1

0
f(s, x(s))ds,

|(Hx)(t2) − (Hx)(t1)| ≤
∫ t2

t1

∣∣f(s, x(s))
∣∣ds

≤
∫ t2

t1

m(s)ds,

|(Hx)(t2) − (Hx)(t1)| ≤ ε.

(3.14)

Hence the class of functions {Hx(t)} is equicontinuous. By Arzela-Ascoli’s theorem, {Hx(t)}
is relatively compact. Since all conditions of Schauder’s theorem hold, then H has a fixed
point in Qr .

Therefore the integral equation (3.2) has at least one continuous solution x ∈ C(0, 1).
Now,

lim
t→ 0

x(t) = A lim
t→ 0

⎛

⎝
m∑

k=1

ak

∫φ(τk)

0
f(s, x(s))ds − α

n∑

j=1

bj

∫ψ(ηj )

0
f(s, x(s))ds

⎞

⎠

+ lim
t→ 0

∫ t

0
f(s, x(s))ds

= A

⎛

⎝
m∑

k=1

ak

∫φ(τk)

0
f(s, x(s))ds − α

n∑

j=1

bj

∫ψ(ηj )

0
f(s, x(s))ds

⎞

⎠ = x(0).

(3.15)

Also

x(1) = lim
t→ 1

x(t) = A

⎛

⎝
m∑

k=1

ak

∫φ(τk)

0
f(s, x(s))ds − α

n∑

j=1

bj

∫φ(ηj )

0
f(s, x(s))ds

⎞

⎠

+
∫1

0
f(s, x(s))ds.

(3.16)

Then the integral equation (3.2) has at least one continuous solution x ∈ C[0, 1].
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The following theorem proves the existence of at least one solution for the nonlocal
problem(1.1)-(1.2).

Theorem 3.3. Let (i)–(iv) be satisfied. Then the nonlocal problem (1.1)-(1.2) has at least one solution
x ∈ AC[0, 1].

Proof. From Theorem 3.2 and the integral equation (3.2), we deduce that there exists at least
one solution, x ∈ AC[0, 1], of the integral equation (3.2).

To complete the proof, we prove that the integral equation (3.2) satisfies nonlocal
problem (1.1)-(1.2).

Differentiating (3.2), we get

dx

dt
= f(t, x(t)) ∈ F(t, x(t)), a.e. t ∈ (0, 1). (3.17)

Letting t = φ(τk) in (3.2), we obtain

m∑

k=1

akx
(
φ(τk)

)
=

m∑

k=1

ak

(
A

m∑

k=1

ak + 1

)∫φ(τk)

0
f(s, x(s))ds − αA

m∑

k=1

ak
n∑

j=1

bj

∫ψ(ηj )

0
f(s, x(s))ds.

(3.18)

Also, letting t = ψ(ηj) in (3.2), we obtain

α
n∑

j=1

bjx
(
ψ
(
ηj
))

= αA
n∑

j=1

bj
m∑

k=1

ak

∫φ(τk)

0
f(s, x(s))ds

+ α
n∑

j=1

bj

⎛

⎝1 − αA
n∑

j=1

bj

⎞

⎠
∫ψ(ηj )

0
f(s, x(s))ds.

(3.19)

And from (3.19) from (3.18), we obtain

m∑

k=1

akx
(
φ(τk)

)
= α

n∑

j=1

bjx
(
ψ
(
ηj
))
. (3.20)

This complete the proof of the equivalence between the nonlocal problem (1.1)-(1.2) and the
integral equation (3.2).

This implies that there exists at least one absolutely continuous solution x ∈ AC[0, 1]
of the nonlocal problem (1.1)-(1.2).



8 Abstract and Applied Analysis

4. Nonlocal Integral Condition

Let x ∈ [0, 1] be a solution of the nonlocal problem (1.1)-(1.2). Let ak = tk − tk−1, τk ∈
(tk−1, tk) ⊂ (0, 1). Also, let bj = tj − tj−1, ηj ∈ (tj−1, tj) ⊂ (0, 1). Then the nonlocal condition
(1.2) will be

m∑

k=1

(tk − tk−1)x
(
φ(τk)

)
= α

n∑

j=1

(
tj − tj−1

)
x
(
ψ
(
ηj
))
. (4.1)

From the continuity of the solution x of the nonlocal condition (1.2) we obtain

lim
m→∞

m∑

k=1

(tk − tk−1)x
(
φ(τk)

)
= lim

n→∞
α

n∑

j=1

(
tj − tj−1

)
x
(
ψ
(
ηj
))
. (4.2)

That is, the nonlocal condition (1.2) is transformed to the integral condition

∫1

0
x
(
φ(s)

)
ds = α

∫1

0
x
(
ψ(s)

)
ds, (4.3)

and the solution of the integral equation (3.2)will be

x(t) = A∗
(∫1

0

∫φ(s)

0
f(θ, x(θ))dθds − α

∫1

0

∫ψ(s)

0
f(θ, x(θ))dθds

)

+
∫ t

0
f(s, x(s))ds, A∗ = (α − 1)−1.

(4.4)

Now, we have the following theorem.

Theorem 4.1. Let assumptions (i)–(iv) of Theorem 3.2 be satisfied. Then the nonlocal problem with
the integral condition

dx(t)
dt

= f(t, x(t)) ∈ F(t, x(t)), for a.e. t ∈ (0, 1),

∫1

0
x
(
φ(s)

)
ds = α

∫1

0
x
(
ψ(s)

)
ds

(4.5)

has at least one solution x ∈ AC[0, 1] represented by (4.4).
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