
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2011, Article ID 683140, 17 pages
doi:10.1155/2011/683140

Research Article
α-Well-Posedness for Mixed Quasi Variational-Like
Inequality Problems

Jian-Wen Peng and Jing Tang

School of Mathematics, Chongqing Normal University, Chongqing 400047, China

Correspondence should be addressed to Jian-Wen Peng, jwpeng6@yahoo.com.cn

Received 15 January 2011; Revised 18 March 2011; Accepted 14 April 2011

Academic Editor: V. Zeidan

Copyright q 2011 J.-W. Peng and J. Tang. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

The concepts of α-well-posedness, α-well-posedness in the generalized sense, L-α-well-posedness
and L-α-well-posedness in the generalized sense for mixed quasi variational-like inequality
problems are investigated. We present some metric characterizations for these well-posednesses.

1. Introduction

Well-posedness plays a crucial role in the stability theory for optimization problems, which
guarantees that, for an approximating solution sequence, there exists a subsequence which
converges to a solution. The study of well-posedness for scalar minimization problems
started from Tykhonov [1] and Levitin and Polyak [2]. Since then, various notions of well-
posedness for scalar minimization problems have been defined and studied in [3–8] and the
references therein. It is worth noting that the recent study for various types of well-posedness
has been generalized to variational inequality problems [9–13], generalized variational
inequality problems [14, 15], quasi variational inequality problems [16], generalized quasi
variational inequality problems [17], generalized vector variational inequality problems [18],
vector quasi variational inequality problems [19], mixed quasi variational-like inequality
problems [20], and many other problems.

In this paper, we are interested in investigating four classes of well-posednesses
for a mixed quasi variational-like inequality problem. The paper is organized as follows.
In Section 2, we introduce the definitions of α-well-posedness, α-well-posedness in the
generalized sense, L-α-well-posedness and L-α-well-posedness in the generalized sense
for a mixed quasi variational-like inequality problem. In Section 3, some characterizations
of α-well-posedness, and L-α-well-posedness for a mixed quasi variational-like inequality
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problem are obtained. In Section 4, some characterizations of α-well-posedness in the
generalized sense and L-α-well-posedness in the generalized sense for a mixed quasi
variational-like inequality problem are presented.

2. Preliminaries

Throughout this paper, without other specification, let E be a real Banach space with the dual
E∗, let K be a nonempty closed convex subset of E, and let S : K → 2K be a set-valued map.
Let F : K → 2E

∗
be a set-valued map with nonempty values, let η : K ×K → E be a single-

valued map, and let f : K → R be a real-valued function. Ceng et al. [20] introduced the
following mixed quasi variational-like inequality problem, which is to find a point x0 ∈ K
such that, for some u0 ∈ F(x0),

(MQVLI) x0 ∈ S(x0),
〈
u0, η

(
x0, y

)〉
+ f(x0) − f

(
y
) ≤ 0, ∀y ∈ S(x0). (2.1)

Denote by Γ the solution set of (MQVLI). Let α > 0; we introduce the notions of several
classes of α-well-posednesses for (MQVLI).

Definition 2.1. A sequence (xn)n in K is an α-approximating sequence for (MQVLI) if

(i) there exists a sequence (un)n in E∗, with un ∈ F(xn), for all n ∈ N;

(ii) there exists a sequence (εn)n, εn > 0, εn → 0 such that

d(xn, S(xn)) ≤ εn, ∀n ∈ N,

〈
un, η

(
xn, y

)〉
+ f(xn) − f

(
y
) − α

2
∥∥xn − y

∥∥2 ≤ εn, ∀y ∈ S(xn), ∀n ∈ N.
(2.2)

Definition 2.2. (MQVLI) is said to be α-well-posed (resp., α-well-posed in the generalized
sense) if it has a unique solution x0 and every α-approximating sequence (xn)n strongly
converges to x0 (resp., if the solution set Γ of (MQVLI) is nonempty and for every α-
approximating sequence (xn)n has a subsequence which strongly converges to a point of
Γ).

Definition 2.3. A sequence (xn)n is an L-α-approximating sequence for (MQVLI) if there exists
a real number sequence (εn)n, εn > 0, εn → 0 such that

d(xn, S(xn)) ≤ εn, ∀n ∈ N,

〈
v, η

(
xn, y

)〉
+ f(xn) − f

(
y
) − α

2

∥
∥xn − y

∥
∥2 ≤ εn, ∀y ∈ S(xn), v ∈ F

(
y
)
, n ∈ N.

(2.3)

Definition 2.4. (MQVLI) is said to be L-α-well-posed (resp., L-α-well-posed in the generalized
sense) if it has a unique solution x0 and every L-α-approximating sequence (xn)n strongly
converges to x0 (resp., if the solution set Γ of (MQVLI) is nonempty and for every L-α-
approximating sequence (xn)n has a subsequence which strongly converges to a point of
Γ).
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It is worth noting that if α = 0, then the definitions of α-well-posedness, α-
well-posedness in the generalized sense, L-α-well-posedness, and L-α-well-posedness in
the generalized sense for (MQVLI), respectively, reduce to those of the well-posedness,
well-posedness in the generalized sense, L-well-posedness, and L-well-posedness in the
generalized sense for (MQVLI) in [20]. We also note that Definition 2.2 generalizes and
extends α-well-posedness and α-well-posedness in the generalized sense of variational
inequalities in [10] which are related to the continuously differentiable gap function of
variational inequalities introduced by Fukushima [21].

In order to investigate the α-well-posedness for (MQVLI), we need the following
definitions.

We recall the notion of Mosco convergence [22]. A sequence (Hn)n of subsets of E
Mosco converges to a set H if

H = lim inf
n

Hn = w − lim sup
n

Hn, (2.4)

where lim infnHn andw− lim supnHn are, respectively, the Painlevé-Kuratowski strong limit
inferior and weak limit superior of a sequence (Hn)n, that is,

lim inf
n

Hn =
{
y ∈ E : ∃yn ∈ Hn, n ∈ N, with yn → y

}
,

w − lim sup
n

Hn =
{
y ∈ E : ∃nk ↑ +∞, nk ∈ N, ∃ynk ∈ Hnk , k ∈ N, with ynk ⇀ y

}
,

(2.5)

where “⇀” means weak convergence, and “→ ” means strong convergence.
If H = lim infnHn, we call the sequence (Hn)n of subsets of E Lower Semi-Mosco

convergent to a set H .
It is easy to see that a sequence (Hn)n of subsets of E Mosco converges to a set H

implies that the sequence (Hn)n also Lower Semi-Mosco converges to the set H , but the
converse is not true in general.

We will use the usual abbreviations usc and lsc for “upper semicontinuous” and
“lower semicontinuous”, respectively. For any x, y ∈ E, [x, y] will denote the line segment
{tx + (1 − t)y : t ∈ [0, 1]}, while [x, y) and (x, y) are defined analogously. We will frequently
use s,w, and w∗ to denote, respectively, the norm topology on E, the weak topology on E,
and the weak∗ topology on E. Given a convex set K, a multivalued map F : K → 2E

∗
will

be called upper hemicontinuous, if its restriction on any line segment [x, y] ⊆ K is usc with
respect to the w∗ topology on E∗. F : K → 2E

∗
will be called η-monotone if, for any x, y ∈ K,

for all u ∈ F(x), v ∈ F(y), 〈u − v, η(x, y)〉 ≥ 0. We refer the reader to [23, 24] for basic facts
about multivalued maps.

Lemma 2.5 (see [25]). Let (Hn)n be a sequence of nonempty subsets of a Banach space E such that

(i) Hn is convex for every n ∈ N;

(ii) H0 ⊆ lim infnHn;

(iii) there existsm ∈ N such that int
⋂

n≥m Hn /= ∅.
Then, for every u0 ∈ intH0, there exists a positive real number δ such that

intB(u0, δ) ⊆ Hn, ∀n ≥ m, (2.6)
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where B(u0, δ) is a closed ball with a center u0 and radius δ. If E is a finite dimensional space, then
assumption (iii) can be replaced by

(iii)′ intH0 /= ∅.

The following lemmas play important role in this paper.

Lemma 2.6. Let E be a real separable Banach space with the dual E∗, let S0 be a nonempty convex
subset of E, and let F : S0 → 2E

∗
be a set-valued map with nonempty, weakly∗ compact convex

valued, η-monotone, and upper hemicontinuous. Let η : S0 × S0 → E be a single-valued map with
η(x, x) = 0, for all x ∈ S0, and let f : S0 → R be a convex lsc function. Assume that the map
y �→ 〈u, η(x, y)〉 is concave for each (u, x) ∈ F(S0) × S0 and usc. If S1 is a convex subset of S0 with
the property that, for each x ∈ S0 and each y ∈ S1, (x, y] ⊆ S1, then for each x0 ∈ S0, the following
conditions are equivalent:

(i) There exists u0 ∈ F(x0), such that for all y ∈ S0, 〈u0, η(x0, y)〉+f(x0)−f(y)−(α/2)‖x0−
y‖2 ≤ 0,

(ii) for all y ∈ S1, there exists v ∈ F(y), such that 〈v, η(x0, y)〉+f(x0)−f(y)− (α/2)‖x0 −
y‖2 ≤ 0.

Proof. According to the η-monotonicity of F, (i) ⇒ (ii) is obvious.
Next prove (ii) ⇒ (i). Suppose that (ii) holds. Given any y ∈ S1, let yn = (1/n)y + (1 −

(1/n))x0, for n ∈ N. By the assumptions of S1, yn ∈ S1 for each n ∈ N. It follows from the
condition (ii) that for each n ∈ N, there exists vn ∈ F(yn) such that

〈
vn, η

(
x0, yn

)〉
+ f(x0) − f

(
yn

) − α

2
∥
∥x0 − yn

∥
∥2 ≤ 0. (2.7)

Then

0 ≥ 〈
vn, η

(
x0, yn

)〉
+ f(x0) − f

(
yn

) − α

2
∥∥x0 − yn

∥∥2

=
〈
vn, η

(
x0,

1
n
y+

(
1− 1

n

)
x0

)〉
+f(x0)− f

(
1
n
y +

(
1− 1

n

)
x0

)
− α

2

∥∥∥
∥x0− 1

n
y−

(
1 − 1

n

)
x0

∥∥∥
∥

2

≥ 1
n

〈
vn, η

(
x0, y

)〉
+
(
1− 1

n

)〈
vn, η(x0, x0)

〉
+f(x0)− 1

n
f
(
y
)−

(
1− 1

n

)
f(x0)− α

2
1
n2

∥
∥x0 − y

∥
∥2

=
1
n

〈
vn, η

(
x0, y

)〉
+
1
n
f(x0) − 1

n
f
(
y
) − α

2n2

∥
∥x0 − y

∥
∥2

,

(2.8)

which implies that

〈
vn, η

(
x0, y

)〉
+ f(x0) − f

(
y
) − α

2n
∥
∥x0 − y

∥
∥2 ≤ 0, ∀n ∈ N. (2.9)

It follows that for each n ∈ N,

∃vn ∈ F
(
yn

)
,

〈
vn, η

(
x0, y

)〉
+ f(x0) − f

(
y
) − α

2
∥
∥x0 − y

∥
∥2 ≤ 0. (2.10)
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Since F is a weak∗ compact valued and (s,w∗)-usc on the line segment [x0, y], F is (s,w∗)-
closed, and (s,w∗)-subcontinuous on [x0, y], it follows from limnyn = x0 and vn ∈ F(yn)
that {vn} has a subsequence weak∗ converging to some v ∈ F(x0). By taking the limit of
subsequence in (2.10) we get

∀y ∈ S1, ∃v ∈ F(x0),
〈
v, η

(
x0, y

)〉
+ f(x0) − f

(
y
) − α

2
∥∥x0 − y

∥∥2 ≤ 0. (2.11)

Define the bifunction φ(v, y) on F(x0) × S0 by

φ
(
v, y

)
=
〈
v, η

(
x0, y

)〉
+ f(x0) − f

(
y
) − α

2
∥
∥x0 − y

∥
∥2
. (2.12)

For each y ∈ S0, φ(·, y) is weakly∗ lsc and quasiconvex on the weakly∗ compact convex set
F(x0) while for each v ∈ F(x0), φ(v, ·) is usc and quasiconcave on the convex set S1. Hence,
according to the Sion Minimax Theorem [26],

sup
y∈S1

min
v∈F(x0)

φ
(
v, y

)
= min

v∈F(x0)
sup
y∈S1

φ
(
v, y

)
. (2.13)

By (2.11), we have supy∈S1
minv∈F(x0)φ(v, y) ≤ 0; hence, minv∈F(x0)supy∈S1

φ(v, y) ≤ 0, which
implies that there exists v0 ∈ F(x0), such that

〈
v0, η

(
x0, y

)〉
+ f(x0) − f

(
y
) − α

2
∥∥x0 − y

∥∥2 ≤ 0, ∀y ∈ S1. (2.14)

Finally, for each y ∈ S0, choose z ∈ S1, and a sequence (yn)n in (y, z] ⊆ S1

converging to y. The function φ(v, ·) is usc and concave on S0; hence its restriction on any
line segment is continuous [27, Theorem 2.35]. Accordingly, (2.14) implies there exists v0 ∈
F(x0), for all y ∈ S0,

〈
v0, η

(
x0, y

)〉
+ f(x0) − f

(
y
) − α

2
∥
∥x0 − y

∥
∥2

= lim
n

[〈
v0, η

(
x0, yn

)〉
+ f(x0) − f

(
yn

) − α

2
∥∥x0 − yn

∥∥2
]
≤ 0.

(2.15)

Hence, (i) holds.

Lemma 2.7. Let E be a real Banach space with the dual E∗, let K be a nonempty convex subset of E,
and let S be a convex-valued set-valued map fromK to 2K. Let F : K → 2E

∗
be a set-valued map with

nonempty values, let η : K × K → E be a single-valued map with η(x, x) = 0, for all x ∈ K, and
let f : K → R be a convex function. Assume that the function y �→ 〈u, η(x, y)〉 is concave, for each
(u, x) ∈ F(K) ×K. Then x0 ∈ Γ if and only if the following condition holds:

∃u0 ∈ F(x0), x0 ∈ S(x0),
〈
u0, η

(
x0, y

)〉
+ f(x0) − f

(
y
) − α

2
∥
∥x0 − y

∥
∥2 ≤ 0, ∀y ∈ S(x0).

(2.16)
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Proof. The necessity is easy to get; next we start to prove the sufficiency. Let for all y ∈
S(x0), for all t ∈ (0, 1), yt = ty + (1 − t)x0. Since u0 ∈ F(x0), x0 ∈ S(x0), and S is convex-
valued, yt ∈ S(x0), it follows that

〈
u0, η

(
x0, yt

)〉
+ f(x0) − f

(
yt

) − α

2
∥
∥x0 − yt

∥
∥2 ≤ 0, ∀t ∈ (0, 1). (2.17)

Thus,

0 ≥ 〈
u0, η

(
x0, yt

)〉
+ f(x0) − f

(
yt

) − α

2
∥
∥x0 − yt

∥
∥2

≥ t
〈
u0, η

(
x0, y

)〉
+ (1 − t)

〈
u0, η(x0, x0)

〉
+ f(x0) − tf

(
y
) − (1 − t)f(x0) − α

2
t2
∥∥x0 − y

∥∥2

= t
[〈
u0, η

(
x0, y

)〉
+ f(x0) − f

(
y
) − α

2
t
∥∥x0 − y

∥∥2
]
,

(2.18)

which implies that

u0∈F(x0), x0 ∈ S(x0),
〈
u0, η

(
x0, y

)〉
+f(x0)−f

(
y
)− α

2
t
∥
∥x0 −y

∥
∥2≤ 0 ∀y∈S(x0), ∀t∈(0, 1).

(2.19)

The above inequality implies, for t converging to zero, that x0 is a solution of (MQVLI). This
completes the proof.

3. The Characterizations of Well-Posedness for (MQVLI)

In this section, we investigate some metric characterizations of α-well-posedness and L -α-
well-posedness for (MQVLI).

For any ε > 0, we consider the sets

Qε

=
{
x∈K : d(x, S(x))≤ ε, ∃u ∈ F(x) :

〈
u, η

(
x, y

)〉
+f(x) − f

(
y
) − α

2
∥
∥x − y

∥
∥2≤ε, ∀y ∈ S(x)

}
,

Lε

=
{
x∈K : d(x, S(x))≤ ε,

〈
v, η

(
x, y

)〉
+f(x)−f(y)− α

2
∥∥x − y

∥∥2≤ ε, ∀y ∈ S(x), ∀v ∈F(y)
}
.

(3.1)

Theorem 3.1. Let the same assumptions be as in Lemma 2.7. Then, one has the following.

(a) (MQVLI) is α-well-posed if and only if the solution set Γ of (MQVLI) is nonempty and
limε→ 0 diamQε = 0.

(b) Moreover, if F is η-monotone, then (MQVLI) is L-α-well-posed if and only if the solution
set Γ of (MQVLI) is nonempty and limε→ 0 diamLε = 0.



Abstract and Applied Analysis 7

Proof. We only prove (a). The proof of (b) is similar and is omitted here. Suppose that
(MQVLI) is α-well-posed; then Γ/= ∅. It follows from Lemma 2.7 that Qε /= ∅. Suppose by
contradiction that exists a real number β, such that limε→ 0 diamQε > β > 0; then there exists
εn > 0, with εn ↘ 0, and (wn)n, (zn)n ∈ Qεn , such that ‖wn − zn‖ > β, for all n ∈ N. Since
the sequences (wn)n, and (zn)n are both α-approximating sequences for (MQVLI), (wn)n and
(zn)n strongly converge to the unique solution u0, and this gives a contradiction. Therefore,
limε→ 0 diamQε = 0.

Conversely, let (xn)n ⊂ K be an α-approximating sequence for (MQVLI). Then there
exists a sequence (un)n in E∗ with un ∈ F(xn) and a sequence (εn)n in R+ with εn → 0, such
that

d(xn, S(xn)) ≤ εn,
〈
un, η

(
xn, y

)〉
+ f(xn) − f

(
y
) − α

2

∥
∥xn − y

∥
∥2 ≤ εn, ∀y ∈ S(xn), ∀n ∈ N.

(3.2)

That is, xn ∈ Qεn, for all n ∈ N. It is easy to see limε→ 0 diamQε = 0 and Γ/= ∅ imply that
Γ is a singleton point set. Indeed, if there exist two different solutions z1, z2, then from
Lemma 2.7, we know that z1, z2 ∈ Qε, for all ε > 0. Thus, limε→ 0 diamQε ≥ ‖z1 − z2‖/= 0,
a contradiction. Let x0 be the unique solution of (MQVLI). It follows from Lemma 2.7 that
x0 ∈ Qεn . Thus, limn→∞‖xn − x0‖ ≤ limn→∞ diamQεn = 0. So (xn)n strongly converges to x0.
Therefore, (MQVLI) is α-well-posed.

Theorem 3.2. Let E be a real separable Banach space with the dual E∗, let K be a nonempty closed
convex subset of E, and let η : K ×K → E be a single-valued map with η(x, x) = 0, for all x ∈ K,
which is (s,w)-continuous in each of its variables separately. And let f : K → R be a convex lsc
function; let S : K → 2K and F : K → 2E

∗
be two set-valued maps. Assume the following conditions

hold:

(i) S is nonempty convex-valued and, for each sequence (xn)n in K converging to x0, the
sequence (S(xn))n Lower Semi-Mosco converging to S(x0);

(ii) for every converging sequence (wn)n, there existsm ∈ N, such that int
⋂

n≥m S(wn)/= ∅;

(iii) F : K → 2E
∗
is nonempty, weak∗ compact convex valued, η-monotone, and upper

hemicontinuous;

(iv) the map y �→ 〈u, η(x, y)〉 is concave for each (u, x) ∈ F(K) ×K.

Then, (MQVLI) is α-well-posed if and only if

Qε /= ∅, ∀ε ≥ 0, lim
ε→ 0

diamQε = 0. (3.3)

The proof of the above theorem relies on the following lemma.

Lemma 3.3. Let the same assumptions be made as in Theorem 3.2. Let (xn)n in K be an α-
approximating sequence. If (xn)n converges to some x0 ∈ K, then x0 is a solution of (MQVLI).
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Proof. Since (xn)n is an α-approximating sequence for (MQVLI), there exists a sequence (un)n
in E∗ with un ∈ F(xn) and a sequence (εn)n in R+ with εn → 0, such that

d(xn, S(xn)) ≤ εn,
〈
un, η

(
xn, y

)〉
+ f(xn) − f

(
y
) − α

2
∥
∥xn − y

∥
∥2 ≤ εn, ∀y ∈ S(xn), ∀n ∈ N.

(3.4)

For each n ∈ N, choose x′
n ∈ S(xn), such that ‖xn − x′

n‖ < d(xn, S(xn)) + εn ≤ 2εn. It
follows from xn → x0 and εn → 0 that x′

n → x0. It follows from the assumption (i) that
lim infnS(xn) = S(x0). Thus, x0 ∈ S(x0).

Assumption (ii) applied to the constant sequence wn = x0, for all n ∈ N, implies that
intS(x0)/= ∅. For every y ∈ intS(x0), it follows from assumptions (i) and (ii) and Lemma 2.5
that there exist m ∈ N and δ > 0 such that intB(y, δ) ⊆ S(xn), for all n > m. Therefore, for
n sufficiently large, we have y ∈ S(xn). Notice that η(·, y) is (s,w)-continuous, f is lsc, F is
η-monotone, and (xn)n is an approximating sequence; we have, for every v ∈ F(y)

〈
v, η

(
x0, y

)〉
+ f(x0) − f

(
y
) ≤ lim inf

n

{〈
v, η

(
xn, y

)〉
+ f(xn) − f

(
y
)}

≤ lim inf
n

{〈
un, η

(
xn, y

)〉
+ f(xn) − f

(
y
)}

≤ lim inf
n

[
εn +

α

2
∥∥xn − y

∥∥2
]

=
α

2
∥∥x0 − y

∥∥2
.

(3.5)

Thus, for every y ∈ intS(x0) and every v ∈ F(y), we get 〈v, η(x0, y)〉+f(x0)−f(y)−(α/2)‖x0−
y‖2 ≤ 0. Let S0 = S(x0) and S1 = intS(x0); it follows from Lemma 2.6 that there exists
u0 ∈ F(x0) such that for all y ∈ S(x0), 〈u0, η(x0, y)〉 + f(x0) − f(y) − (α/2)‖x0 − y‖2 ≤ 0.
According to Lemma 2.7, x0 is a solution of (MQVLI).

Proof of Theorem 3.2. The necessity follows from Theorem 3.1 and Lemma 2.7. Now we prove
the sufficiency. Suppose that (3.3) holds. Let us show that there exists at most one solution of
(MQVLI). Indeed, if there exist two different solutions z1, z2, then from Lemma 2.7, we know
that z1, z2 ∈ Qε, for all ε > 0. Thus, limε→ 0 diamQε ≥ ‖z1−z2‖/= 0, a contradiction. Note also
that there exist α-approximate sequences for (MQVLI); indeed, for any sequence (εn)n in R+

with εn → 0, and any choice of xn ∈ Qεn (which is nonempty by assumption), (xn)n is an
α-approximate sequence.

Let (xn)n be an α-approximating sequence for (MQVLI); then xn ∈ Qεn , for all n ∈ N.
In light of (3.3), (xn)n is a Cauchy sequence and strongly converging to a point x0 ∈ K.
Applying Lemma 3.3, we get that x0 is a solution of (MQVLI) and so (MQVLI) is α-well-
posed.

Now, we present a result in which assumption (ii) and the monotonicity of F are
dropped, while the continuity requirements are strengthened.

Theorem 3.4. Let E be a real separable Banach space with the dual E∗, let K be a nonempty closed
convex subset of E, and let η : K ×K → E be a single-valued map with η(x, x) = 0, for all x ∈ K,
which is (s, s)-continuous. And let f : K → R be a convex and continuous function, let S : K → 2K

and F : K → 2E
∗
be two set-valued maps. Assume the following assumptions hold:



Abstract and Applied Analysis 9

(i) the multifunction S is nonempty convex-valued and for each sequence (xn)n in K
converging to x0, the sequence (S(xn))n Lower Semi-Mosco converging to S(x0);

(ii) F : K → 2E
∗
is nonempty, weak∗ compact, and convex valued, (s,w∗)-usc;

(iii) the map y �→ 〈u, η(x, y)〉 is concave for each (u, x) ∈ F(K) ×K.

Then, (MQVLI) is α-well-posed if and only if (3.3) holds.

The proof of the above theorem relies on the following lemma.

Lemma 3.5. Let the assumptions be as in Theorem 3.4. Let (xn)n in K be an α-approximating
sequence. If (xn)n converges to some x0 ∈ K, then x0 is a solution of (MQVLI).

Proof. Since (xn)n is an α-approximating sequence for (MQVLI), there exist a sequence (un)n
in E∗ with un ∈ F(xn) and a sequence (εn)n in R+, εn → 0, such that

d(xn, S(xn)) ≤ εn,
〈
un, η

(
xn, y

)〉
+ f(xn) − f

(
y
) − α

2
∥∥xn − y

∥∥2 ≤ εn, ∀y ∈ S(xn), ∀n ∈ N.

(3.6)

As in Lemma 3.3, we infer x0 ∈ S(x0). Since S(xn) Lower Semi-Mosco converges to
S(x0), for every y ∈ S(x0), there exists a sequence yn ∈ S(xn), for all n ∈ N, such that
limnyn = y in the strongly topology. Since η is (s, s)-continuous, the sequence (η(xn, yn))n
converges strongly to η(x0, y). It follows from (ii) and Proposition 2.19 in [24] that there
exists a subsequence (unj )j of (un)n weak∗ converging to some u0 ∈ E∗. It follows from (ii)
and Proposition 2.17 in [24] that F is (s,w∗)-closed, and so u0 ∈ F(x0). Thus, we have

∣
∣∣
〈
unj , η

(
xnj , ynj

)〉
− 〈

u0, η
(
x0, y

)〉∣∣∣

≤
∣∣∣
〈
unj , η

(
xnj , ynj

)
− η

(
x0, y

)〉∣∣∣ +
∣∣∣
〈
u0 − unj , η

(
x0, y

)〉∣∣∣

≤
∥∥∥unj

∥∥∥
∥∥∥η

(
xnj , ynj

)
− η

(
x0, y

)∥∥∥ −
∣∣∣
〈
u0 − unj , η

(
x0, y

)〉∣∣∣

−→ 0.

(3.7)

Hence, 〈unj , η(xnj , ynj )〉 → 〈u0, η(x0, y)〉 and so

〈
u0, η

(
x0, y

)〉
+ f(x0) − f

(
y
) − α

2
∥∥x0 − y

∥∥2

= lim
j

[〈
unj , η

(
xnj , ynj

)〉
+ f

(
xnj

)
− f

(
ynj

)
− α

2

∥∥∥xnj − ynj

∥∥∥
2
]

≤ lim
j

εnj = 0.

(3.8)

Applying Lemma 2.7, x0 is a solution of (MQVLI).

Proof of Theorem 3.4. The necessity follows from Theorem 3.1 and Lemma 2.7. Now we prove
the sufficiency. Suppose that (3.3) holds. It follows from the proof of Theorem 3.2 that
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there exists at most one solution of (MQVLI) and there exist α-approximate sequences for
(MQVLI). Let (xn)n be an α-approximating sequence for (MQVLI); then xn ∈ Qεn , for all n ∈
N. In light of (3.3), (xn)n is a Cauchy sequence and strongly converging to a point x0 ∈ K.
Applying Lemma 3.5, we get that x0 is a solution of (MQVLI) and so (MQVLI) is α-well-
posed.

We have analogous results for L-α-well-posedness.

Theorem 3.6. Let E be a real separable Banach space with the dual E∗, let K be a nonempty closed
convex subset of E, and let η : K ×K → E be a single-valued map with η(x, x) = 0, for all x ∈ K,
which is (s,w)-continuous in each of its variables separately. And let f : K → R be a convex
lsc function; let S : K → 2K and F : K → 2E

∗
be two set-valued maps. Assume the following

assumptions hold:

(i) the multifunction S is nonempty convex-valued and for each sequence (xn)n in K
converging to x0, the sequence (S(xn))n Lower Semi-Mosco converging to S(x0);

(ii) for every converging sequence (wn)n, there existsm ∈ N, such that int
⋂

n≥m S(wn)/= ∅;
(iii) F : K → 2E

∗
is a set-valued map with nonempty, weak∗ compact convex valued, η-

monotone and upper hemicontinuous;

(iv) the map y �→ 〈u, η(x, y)〉 is concave for each (u, x) ∈ F(K) ×K.

Then (MQVLI) is L-α-well-posed if and only if

Lε /= ∅, ∀ε ≥ 0, lim
ε→ 0

diamLε = 0. (3.9)

Lemma 3.7. Let the same assumptions be as in Theorem 3.6. Let (xn)n inK be an L-α-approximating
sequence. If (xn)n converges to some x0 ∈ K, then x0 is a solution of (MQVLI).

Proof. Since (xn)n is an L-α-approximating sequence for (MQVLI), there exists a sequence
(εn)n in R+, εn → 0, such that d(xn, S(xn)) ≤ εn, and

〈
v, η

(
xn, y

)〉
+ f(xn) − f

(
y
) − α

2
∥
∥xn − y

∥
∥2 ≤ εn, ∀y ∈ S(xn), v ∈ F

(
y
)
, n ∈ N. (3.10)

From the proof of Lemma 3.3, (i) and (ii), we can obtain x0 ∈ S(x0), intS(x0)/= ∅, and for each
y ∈ intS(x0), one has y ∈ S(xn) for n sufficiently large. It follows from (iii) that for every
y ∈ intS(x0) and every v ∈ F(y), we have

〈
v, η

(
x0, y

)〉
+ f(x0) − f

(
y
) − α

2
∥∥x0 − y

∥∥2

≤ lim inf
n

[〈
v, η

(
xn, y

)〉
+ f(xn) − f

(
y
) − α

2
∥∥xn − y

∥∥2
]

≤ lim inf
n

εn = 0.

(3.11)

Let S0 = S(x0) and S1 = intS(x0); it follows from Lemma 2.6 that there exists u0 ∈
F(x0) such that for all y ∈ S(x0), 〈u0, η(x0, y)〉 + f(x0) − f(y) − (α/2)‖x0 − y‖2 ≤ 0. According
to Lemma 2.7, x0 is a solution of (MQVLI).
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Proof of Theorem 3.6. Assume that (3.9) holds. Let (xn)n in K be an L-α-approximating
sequence for (MQVLI); then there exists a sequence (εn)n in R+, such that xn ∈ Lεn . It is
easy to see that limε→ 0 diamLε = 0 and Γ/= ∅ imply that Γ is a singleton point set. Indeed, if
there exist two different solutions z1, z2, then from Lemma 2.7 and the η-monotonicity of F,
we know that z1, z2 ∈ Lε, for all ε > 0. Thus, limε→ 0 diamLε ≥ ‖z1 − z2‖/= 0, a contradiction.
Let x0 be the unique solution of (MQVLI). It follows from Lemma 2.7 and the η-monotonicity
of F that x0 ∈ Lεn . Thus, limn→∞‖xn − x0‖ ≤ limn→∞ diamLεn = 0. So (xn)n strongly converge
to x0. It follows from Lemma 3.7 that x0 ∈ Γ. Therefore, (MQVLI) is L-α-well-posed.

Conversely, assume that the problem is L-α-well-posed, It follows from the η-
monotonicity of F that ∅/=Γ ⊂ Lε, ∀ε > 0. Suppose by contradiction that a real number
β exists, such that limε→ 0 diamLε > β > 0; then there exists εn > 0, with εn → 0, and
(wn)n, (zn)n ∈ Lεn , such that ‖wn − zn‖ > β, ∀n ∈ N. Since the sequences (wn)n and (zn)n
are both L-α-approximating sequences for (MQVLI), (wn)n and (zn)n strongly converge to
the unique solution u0, and this gives a contradiction. Therefore, limε→ 0 diamLε = 0.

Theorem 3.8. Let E be a real separable Banach space, let K be a nonempty closed convex subset of
E, and let η : K × K → E be a single-valued map with η(x, x) = 0, for all x ∈ K, which is (s, s)-
continuous. And let f : K → R be a convex continuous function; S be a set-valued map from K to
2K. Assume the following assumptions hold:

(i) the multifunction S is nonempty convex-valued and for each sequence (xn)n in K
converging to x0, the sequence (S(xn))n Lower Semi-Mosco converging to S(x0);

(ii) F : K → 2E
∗
is a set-valued map with nonempty, weak∗ compact convex-valued, (s,w∗)-

usc, and η-monotone;

(iii) the map y �→ 〈u, η(x, y)〉 is concave for each (u, x) ∈ F(K) ×K.

Then (MQVLI) is L-α-well-posed if and only if (3.9) holds.

Lemma 3.9. Let the same assumptions be as in Theorem 3.8. Let (xn)n inK be an L-α-approximating
sequence. If (xn)n converges to some x0 ∈ K, then x0 is a solution of (MQVLI).

Proof. Since (xn)n is an L-α-approximating sequence for (MQVLI), there exists a sequence
(εn)n in R+, εn → 0, such that d(xn, S(xn)) ≤ εn, and

〈
v, η

(
xn, y

)〉
+ f(xn) − f

(
y
) − α

2
∥∥xn − y

∥∥2 ≤ εn, ∀y ∈ S(xn), ∀v ∈ F
(
y
)
, n ∈ N. (3.12)

It follows from the Lower Semi-Mosco convergence of S and the proof of Lemma 3.3
that x0 ∈ S(x0). Since S(xn) Lower Semi-Mosco converges to S(x0), for every y ∈ S(x0), there
exists a sequence yn ∈ S(xn), for all n ∈ N, strongly converging to y. For each n ∈ N select
vn ∈ F(yn). It follows from (ii) and Proposition 2.19 in [24] that there exists a subsequence
(vnj )j of (vn)n weak∗ converging to some v ∈ E∗. It follows from (ii) and Proposition 2.17 in
[24] that F is (s,w∗)-closed, and so v ∈ F(y). By the continuity of η and similar argument
with the proof of Lemma 3.5, we know that

〈
vnj , η

(
xnj , ynj

)〉
−→ 〈

v, η
(
x0, y

)〉
. (3.13)
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It follows from (3.12) that

〈
vnj , η

(
xnj , ynj

)〉
+ f

(
xnj

)
− f

(
ynj

)
− α

2

∥∥
∥xnj − ynj

∥∥
∥
2
≤ εnj . (3.14)

We deduce from the above inequality that

∀y ∈ S(x0), ∃v ∈ F
(
y
)
,

〈
v, η

(
x0, y

)〉
+ f(x0) − f

(
y
) − α

2
∥
∥x0 − y

∥
∥2 ≤ 0. (3.15)

Let S0 = S1 = S(x0); by Lemma 2.6 we know that there exists u0 ∈ F(x0), such that

∀y ∈ S(x0),
〈
u0, η

(
x0, y

)〉
+ f(x0) − f

(
y
) − α

2
∥∥x0 − y

∥∥2 ≤ 0. (3.16)

Then using Lemma 2.7, x0 is a solution of (MQVLI).

Proof of Theorem 3.8. Assume that (3.9) holds. If (xn)n inK is an L-α-approximating sequence,
then from the proof of Theorem 3.6, we know that (xn)n converges to some x0 ∈ K. By
Lemma 3.9, x0 is a solution of (MQVLI) and so (MQVLI) is L-α-well-posed. The converse
is exactly same as that in the proof of Theorem 3.6.

4. The Characterizations of α-Well-Posed in the Generalized
Sense for (MQVLI)

In this section, we investigate some metric characterizations of α-well-posedness in the
generalized sense for (MQVLI).

Definition 4.1 (see [8]). Let A be a nonempty subset of X. The measure of noncompactness μ
of the set A is defined by

μ(A) = inf

{

ε > 0 : A ⊆
n⋃

i=1

Ai, diamAi < ε, i = 1, 2, . . . , n

}

. (4.1)

Definition 4.2 (see [8]). Let (X, d) be a metric space and let A and B be nonempty subsets of
X. The Hausdorff distance H(·, ·) betweenA and B is defined by

H(A,B) = max{e(A,B), e(B,A)}, (4.2)

where e(A,B) = supa∈Ad(a, B) with d(a, B) = infb∈B‖a − b‖.

Theorem 4.3. Let the same assumptions be as in Lemma 2.7. Then, one has the following.

(a) (MQVLI) is α-well-posed in the generalized sense if and only if the solution set Γ of
(MQVLI) is nonempty compact and e(Qε, Γ) → 0, as ε → 0.

(b) Moreover, if F is η-monotone, then (MQVLI) is L-α-well-posed in the generalized sense if
and only if the solution set Γ of (MQVLI) is nonempty compact and e(Lε, Γ) → 0, as ε →
0.
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Proof. We only prove (a). The proof of (b) is similar and is omitted here. Assume that
(MQVLI) is α-well-posed in the generalized sense; then Γ is nonempty and compact. It
follows from Lemma 2.7 that Qε /= ∅. Now we show that e(Qε, Γ) → 0, as ε → 0. Suppose by
contradiction that there exists β > 0, εn → 0 and wn ∈ Qεn , such that d(wn, Γ) > β. It follows
from wn ∈ Qεn that (wn)n is an α-approximating sequence for (MQVLI). Since (MQVLI) is α-
well-posedness in the generalized sense, there exists a subsequence (wnk )k of (wn)n strongly
converging to a point of Γ. This contradicts d(wn, Γ) > β. Thus e(Qε, Γ) → 0, as ε → 0.

For the converse, let (xn)n be an α-approximating sequence for (MQVLI); then xn ∈
Qεn . It follows from e(Qεn , Γ) → 0 that there exists a sequence zn ⊂ Γ, such that d(xn, zn) → 0.
Since Γ is compact, there exists a subsequence (znk )k of (zn)n strongly converging to x0 ∈ Γ.
Thus the corresponding subsequence (xnk )k of (xn)n is strongly converging to x0. Therefore,
(MQVLI) is α-well-posed in the generalized sense.

Theorem 4.4. Let the same assumptions be as in Theorem 3.4. Then (MQVLI) is α-well-posed in the
generalized sense if and only if

Qε /= ∅, ∀ε > 0, lim
ε→∞

μ(Qε) = 0. (4.3)

Proof. Assume that (MQVLI) is α-well-posed in the generalized sense; soQε /= ∅, for all ε > 0.
By Theorem 4.3(a), Γ is nonempty compact and limε→ 0e(Qε, Γ) → 0. For any ε > 0, we have

H(Qε, Γ) = max{e(Qε, Γ), e(Γ, Qε)} = e(Qε, Γ), (4.4)

since Γ is compact, μ(Γ) = 0. For every ε > 0, the following relation holds (see, e.g., [13])

μ(Qε) ≤ 2H(Qε, Γ) + μ(Γ) = 2H(Qε, Γ) = 2e(Qε, Γ). (4.5)

It follows from limε→ 0e(Qε, Γ) → 0 that limε→ 0μ(Qε) = 0.
Conversely, assume that (4.3) holds. Then, for any ε > 0, cl(Qε) is nonempty closed

and increasing with ε > 0. By (4.3), limε→ 0μ(cl(Qε)) = limε→ 0μ(Qε) = 0, where cl(Qε) is the
closure of Qε. By the generalized Cantor theorem [23, page 412], we know that

lim
ε→ 0

H(cl(Qε),Δ) = 0, as ε −→ 0, (4.6)

where Δ =
⋂

ε>0 cl(Qε) is nonempty compact.
Now we show that

Γ = Δ. (4.7)

It follows from Lemma 2.7 that Γ ⊆ Δ. So we need to prove that Δ ⊆ Γ. Indeed, let x0 ∈ Δ.
Then d(x0, Qε) = 0 for every ε > 0. Given εn > 0, εn → 0, for every n there exists xn ∈ Qεn

such that d(x0, xn) < εn. Hence, xn → x0 and

d(xn, S(xn)) ≤ εn, (4.8)
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∃un ∈ F(xn),
〈
un, η

(
xn, y

)〉
+ f(xn) − f

(
y
) ≤ εn +

α

2
∥
∥xn − y

∥
∥2
, ∀y ∈ S(xn). (4.9)

It follows from (4.8), xn → x0, and the proof of Lemma 3.3 that x0 ∈ S(x0).
Since S(xn) Lower Semi-Mosco converges to S(x0), for every y ∈ S(x0), there exists a

sequence yn ∈ S(xn), for all n ∈ N, such that limnyn = y in the strong topology.
Since η is (s, s)-continuous, the sequence (η(xn, yn))n converges strongly to η(x0, y). It

follows from (ii) and Proposition 2.19 in [24] that there exists a subsequence (unj )j of (un)n
weak∗ converging to some u0 ∈ E∗. It follows from (ii) and Proposition 2.17 in [24] that F is
(s,w∗)-closed, and so u0 ∈ F(x0). It follows from the proof of Lemma 3.5 that

〈
unj , η

(
xnj , ynj

)〉
−→ 〈

u0, η
(
x0, y

)〉
. (4.10)

Hence,

〈
u0, η

(
x0, y

)〉
+ f(x0) − f

(
y
) − α

2
∥∥x0 − y

∥∥2

= lim
j

[〈
unj , η

(
xnj , ynj

)〉
+ f

(
xnj

)
− f

(
ynj

)
− α

2

∥∥
∥xnj − ynj

∥∥
∥
2
]

≤ lim
j

εnj = 0,

(4.11)

that is,

∃u0 ∈ F(x0),
〈
u0, η

(
x0, y

)〉
+ f(x0) − f

(
y
) − α

2
∥
∥x0 − y

∥
∥2 ≤ 0, ∀y ∈ S(x0). (4.12)

By Lemma 2.7, we know that x0 ∈ Γ. Thus, Δ ⊆ Γ. It follows from (4.6) and (4.7) that
limε→ 0e(Qε, Γ) = 0. It follows from the compactness of Γ and Theorem 4.3(a) that (MQVLI)
is α-well-posed in the generalized sense. The proof is completed.

Theorem 4.5. Let the same assumptions be as in Theorem 3.8. Then (MQVLI) is L-α-well-posed in
the generalized sense if and only if

Lε /= ∅, ∀ε > 0, lim
ε→ 0

μ(Lε) = 0. (4.13)

Proof. Assume that (MQVLI) is L-α-well-posed in the generalized sense. It follows from
Lemma 2.7 and the η-monotonicity of F that Γ ⊂ Lε, for all ε > 0. And so Lε /= ∅, for each
ε > 0. By similar argument with that in the proof of Theorem 4.3(a), we can get e(Lε, Γ) → 0
as ε → 0. From the proof of Theorem 4.4, we also obtain

μ(Lε) ≤ 2H(Lε, Γ) + μ(Γ) = 2H(Lε, Γ) = 2e(Lε, Γ). (4.14)

Thus, limε→ 0μ(Lε) = 0.
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Conversely, assume that (4.13) holds. Then, for any ε > 0, cl(Lε) is nonempty closed
and increasing with ε > 0. By (4.13), limε→ 0μ(cl(Lε)) = limε→ 0μ(Lε) = 0, where cl(Lε) is the
closure of Lε. By the generalized Cantor theorem [23, Page 412], we know that

lim
ε→ 0

H(cl(Lε),Δ) = 0, as ε −→ 0, (4.15)

where Δ =
⋂

ε>0 cl(Lε) is nonempty compact.
Now we show that

Γ = Δ. (4.16)

It follows from Lemma 2.7 and the monotonicity of F that Γ ⊆ Δ. So we need to prove that
Δ ⊆ Γ. Indeed, let x0 ∈ Δ. Then d(x0, Lε) = 0 for every ε > 0. Given εn > 0, εn → 0, for every
n there exists xn ∈ Lεn such that d(x0, xn) < εn. Hence, xn → x0 and

d(xn, S(xn)) ≤ εn, (4.17)

〈
v, η

(
xn, y

)〉
+ f(xn) − f

(
y
) ≤ εn +

α

2
∥∥xn − y

∥∥2
, ∀y ∈ S(xn), ∀v ∈ F

(
y
)
. (4.18)

It follows from (4.17), xn → x0, and the proof of Lemma 3.3 that x0 ∈ S(x0).
Since S(xn) Lower Semi-Mosco converges to S(x0), for every y ∈ S(x0), there exists a

sequence yn ∈ S(xn), for all n ∈ N, such that limnyn = y in the strong topology.
For each n ∈ N select vn ∈ F(yn). Since F is (s,w∗)-usc with weak∗ compact convex

values, we can find a subsequence (vnj )j of (vn)n weak∗ converging to some v ∈ F(y). By the
continuity of η and similar argument with the proof of Lemma 3.5, we know that

〈
vnj , η

(
xnj , ynj

)〉
−→ 〈

v, η
(
x0, y

)〉
. (4.19)

Hence,

〈
vnj , η

(
xnj , ynj

)〉
+ f

(
xnj

)
− f

(
ynj

)
− α

2

∥
∥∥xnj − ynj

∥
∥∥
2 ≤ εnj . (4.20)

We deduce from the above inequality that

∀y ∈ S(x0), ∃v ∈ F
(
y
)
,

〈
v, η

(
x0, y

)〉
+ f(x0) − f

(
y
) − α

2
∥∥x0 − y

∥∥2 ≤ 0. (4.21)

By Lemma 2.6 we know that there exist u0 ∈ F(x0), such that

∀y ∈ S(x0),
〈
u0, η

(
x0, y

)〉
+ f(x0) − f

(
y
) − α

2
∥
∥x0 − y

∥
∥2 ≤ 0. (4.22)

It follows from Lemma 2.7 that x0 ∈ Γ. Thus, Δ ⊆ Γ. It follows from (4.15) and (4.16) that
limε→ 0e(Lε, Γ) = 0. It follows from the compactness of Γ and Theorem 4.3(b) that (MQVLI) is
L-α-well-posed in the generalized sense. The problem is completed.
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Remark 4.6. (i) It is easy to see that if α = 0, then by the main results in our paper, we can
recover the corresponding results in [20]with the weaker condition S(xn) Lower Semi-Mosco
converging to S(x0) instead of the condition S(xn) Mosco converging to S(x0).

(ii) The proofmethods of Theorems 4.4 and 4.5 are different from those ofTheorems 4.1
and 4.2 in [20].
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