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We give a partition of the critical strip, associated with each partial sum 1 + 2z + · · · + nz of the
Riemann zeta function for Re z < −1, formed by infinitely many rectangles for which a formula
allows us to count the number of its zeros inside each of them with an error, at most, of two zeros.
A generalization of this formula is also given to a large class of almost-periodic functions with
bounded spectrum.

1. Introduction

Some industrial processes can be modeled [1] by functional equations of the form f(x) +
f(2x) = 0 or f(x) + f(2x) + f(3x) = 0, x > 0. The generalization of these functional equations
to the complex plane is formally given by

f(z) + f(2z) + · · · + f(nz) = 0, n ≥ 2, (1.1)

which admits analytic solutions of the form zα on the open set Ω = � \ (−∞, 0] if and only if
α is a zero of

Gn(z) ≡ 1 + 2z + · · · + nz. (1.2)

For each integer n ≥ 2, each function Gn(z) represents the nth partial sum of the Riemann
zeta function ζ(z) on the half-plane Re z < −1, and it belongs to the class of the entire almost-
periodic functions of exponential type. In [2], we can see a complete introduction devoted
to the study of such class of functions. There, we can also find a theorem of Bohr [2, p. 270]
that identifies the functions of the above class having their zeros in a strip (the critical strip)
parallel to the real axis with those functions for which the upper and lower bounds of their
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spectra enter into the spectrum. That is, for instance, the case of the functions defined from
(1.2) by means of a rotation of angle π/2

Hn(z) ≡ Gn(iz) = 1 + 2iz + · · · + niz, (1.3)

whose spectra, for each integer n ≥ 2, are the finite sets

{i ln k : k = 1, . . . , n}. (1.4)

Furthermore, the functionsHn(z) have the property consisting on the existence of some value
of x = Re z, say x0, such that either Re Hn(x0, y)/= 0 or Im Hn(x0, y)/= 0 for all y ∈ � . Indeed,
x0 = 0 satisfies such property. Therefore, the Hn(z)’s belong to a very special class of almost-
periodic functions whose study will be our main objective to determine a nonasymptotic
formula that allows us to count the amount of zeros that they have inside the rectangles of a
certain partition of their critical strips.

One of the most important formulae [2, p. 277] on the number of roots of an almost-
periodic function, with closed and bounded spectrum, say f(z), inside a rectangle in the strip
where the zeros of f(z) are located, is given by

2π lim
x2−x1 →∞

N
(
x1, x2, y1, y2

)

x2 − x1
= ϕ′(y2

) − ϕ′(y1
)
, (1.5)

where N(x1, x2, y1, y2) denotes the number of zeros of f(z) in the rectangle

x1 < Re z < x2, y1 < Im z < y2, (1.6)

and ϕ(y) is the mean function associated with ln |f(x + iy)| defined as

ϕ
(
y
)
= lim

T →∞
1
2T

∫T+α

−T+α
ln
∣∣f
(
x + iy

)∣∣dx. (1.7)

The formula (1.5) is of asymptotic type, and it is based on the assumption of the
existence of derivative of ϕ(y). However, if the spectrum of f(z) is contained in the boundary
of a bounded convex polygon of the complex plane and all the vertices of the polygon
enter into the spectrum, there exists a formula [2, p. 298] much more explicit than (1.5). For
instance, if the polygon is reduced to a segment of the imaginary axis, the formula is, for
sufficiently large values of |y1| and |y2|,

N
(
x1, x2, y1, y2

)
=

d

2π
(x2 − x1) +O(1), (1.8)

where d is the length of the segment.
Formula (1.8) could be used, for instance, to estimate the number of zeros, of our

functions Hn(z), inside the rectangle defined by the intersection of its critical strip with
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the strip x1 ≤ Re z ≤ x2. Indeed, since the spectrum ofHn(z) is contained in the line segment
[0, i lnn] of the imaginary axis, a simple application of (1.8) leads to the formula

N
(
x1, x2, y1, y2

)
=
lnn

2π
(x2 − x1) +O(1). (1.9)

Nevertheless, it is well known that the term O(1) is an “obscure” function which we only
know to represent a bounded quantity. In general, the termO(1) that appears in formula (1.8)
depends on the function and the rectanglewherewe are counting the number of its zeros. Our
aim is to give much more precise information about the expression O(1) when the function
belongs to that special class of almost-periodic functions which contains, in particular, to our
functions Hn(z). In fact, on this subject, we find in [3] the following result.

“There exist infinitely many rectangles x1 < Re z < x2, y1 < Im z < y2 in the critical strip of
the functionHn(z) for which the number of zeros of Hn(z) is given by the formula

N
(
x1, x2, y1, y2

)
=

lnn
2π

(x2 − x1) + Ωn, (1.10)

where Ωn is a real number with |Ωn| < 1.”
Now, by following the ideas exhibited in [3], our aim is to demonstrate that for the

functions of that special class of almost-periodic functions, there exists a formula similar to
that of (1.10) to determine the number of its zeros inside infinitely many rectangles in their
critical strips with an error, at most, of two zeros.

In particular, our main result will also prove that the bound n− 1 which appears in the
formula that determines the number of the zeros of an exponential polynomial of degree n
inside certain rectangles of its critical strip can be substituted by a universal bound, namely,
2. In fact, to illustrate the scope of our result, we will start recalling an old theorem of Polya
[4]:

“if z = x + iy

μ1 < μ2 < · · · < μl, (1.11)

and Pν(z) is for ν = 1, 2, . . . , l a polynomial of degree ≤ mν − 1 with

m1 +m2 + · · · +ml = n,

P1(z)Pl(z)/= 0,
(1.12)

then the number N(gl, a, a + b) of the zeros (according to multiplicity) of the function

gl(z) =
l∑

ν=1

Pν(z)eiμνz (1.13)

in the infinite vertical strip

a ≤ x ≤ a + b (1.14)
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satisfies the inequality

∣
∣∣∣N
(
gl, a, a + b

) − b

2π
(
μl − μ1

)
∣
∣∣∣ ≤ n − 1.′′ (1.15)

Then, under the same hypotheses of the above theorem, our result could be stated as
follows.

Under the hypotheses of theorem of Polya with frequencies μ1 < μ2 < · · · < μl linearly
independent and m1 = m2 = · · · = ml = 1, there exist infinitely many values for a, b such that,
independently of l, the inequality

∣∣
∣∣N
(
gl, a, a + b

) − b

2π
(
μl − μ1

)
∣∣
∣∣ ≤ 2 (1.16)

holds.
This result will be an immediate consequence of Lemma 2.6 and Theorem 3.1 of the

present paper.

2. Preliminaries

To prove our main theorem, we will use some elementary concepts and results such as the
following.

Definition 2.1. A set {a1, a2, . . . , ak} of real numbers is said to be linearly independent if and
only if any linear combination

k∑

j=1

njaj = 0, (2.1)

with integers nj , implies that nj = 0 for all j = 1, . . . , k.

For example, the set

{
ln p1, ln p2, . . . , ln pk

}
, (2.2)

where p1, p2, . . . , pk are different prime numbers, is linearly independent. Nevertheless, for
a given set of real numbers {x1, x2, . . . xl}, we can always suppose the existence of a basis
{a1, a2, . . . , ak}. That is, on the one hand, {a1, a2, . . . , ak} is linearly independent and, on the
other hand, for eachm = 1, . . . , l, we can write

xm =
k∑

j=1

nmjaj , (2.3)

where the nmj are integers.
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An important result on linearly independent sets of real numbers is the famous
theorem of Kronecker [5, p. 382]which will be used in the following form.

Theorem 2.2 (Kronecker). Let {a1, a2, . . . , ak} be a linearly independent set of nonnull real
numbers. For arbitrary numbers b1, b2, . . . , bk and T , ε > 0, there exists a real number t > T and
integers n1, n2, . . . , nk such that

∣
∣taj − nj − bj

∣
∣ < ε, ∀j = 1, . . . , k. (2.4)

Given an entire almost-periodic function f with closed and bounded spectrum, a
rectangle in its critical strip will be defined as the intersection of the rectangle x < Re z < x+T ,
y1 < Im z < y2, for some T > 0 and sufficiently large values of |y1| and |y2|, with the strip
where the zeros of f are situated, of course, by assuming that the critical strip is parallel to
the real axis. Then, the number of zeros of f(z) in a rectangle in its critical strip will merely be
denoted by N(f(z);x, x + T). Similarly, N(f(z);y, y + T) will denote the number of zeros of
f(z) in a rectangle in its critical strip, provided that the critical strip of f(z) to be parallel to
the imaginary axis. Nevertheless, noticing the change z by −iz transforms the zeros of a strip
parallel to the real axis onto the zeros of a strip parallel to the imaginary axis and conversely,
from now on, we will do our study on those functions by assuming that their critical strips
are parallel to the imaginary axis.

Because our aim is to study the number of zeros of almost-periodic functions, and
noticing these functions, from Bochner’s theorem [2, p. 266], are characterized as uniform
limits of exponential polynomials, we will start by demonstrating a formula of the type (1.10)
assuming that they adopt the normalized form

P(z) = 1 +
n∑

j=1

wje
μjz, (2.5)

where the coefficients wj are nonnull complex numbers and the frequencies μj are positive
real numbers so that

μ1 < μ2 < · · · < μn. (2.6)

Then, a normalized exponential polynomial of the form (2.5), not affecting the zeros, will
be considered as a prototype of an almost-periodic function whose definition [6, p. 101] we
recall.

Definition 2.3. An entire function f is said to be almost periodic if and only if for every ε > 0
there exists a length l = l(ε) such that every interval b < y < b + l of length l on the imaginary
axis contains at least one translation number τ associated with ε satisfying the inequality

∣∣f(z + iτ) − f(z)
∣∣ ≤ ε, ∀z ∈ � . (2.7)

From (2.7), we derive the notion of interval of almost periodicity.

Definition 2.4. Let f be an almost-periodic entire function on � and ε > 0. Then, any interval
of length l, l = l(ε, f), will be called an ε-interval of almost periodicity of f .
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In each interval of almost periodicity of an exponential polynomial P(z), the solutions
of the equations Re P(z) = 0, Im P(z) = 0 have a very special form, as we will prove in the
following result.

Lemma 2.5. Let

P(z) = 1 +
n∑

j=1

wje
μjz, wj ∈ � \ {0} (2.8)

be an exponential polynomial with increasing positive frequencies μ1 < · · · < μn. Then, there exist two
real numbers x1, x2 such that all the zeros of P(z) are in the strip

SP(z) = {z : x1 < Re z < x2}. (2.9)

Furthermore, for n = 1, 2, there exists a value for y, say y0, such that either

{z : Re P(z) = 0} ∩ {z : Im z = y0
}
= ∅ (2.10)

or

{z : Im P(z) = 0} ∩ {z : Im z = y0
}
= ∅. (2.11)

Proof. Since

lim
x→−∞

P
(
x + iy

)
= 1,

lim
x→+∞

P
(
x + iy

)

wneμn(x+iy)
= 1,

(2.12)

for any value of y, there exist x1 < 0 < x2 such that

|P(z) − 1| < 1, ∀z with Re z ≤ x1,

∣∣
∣∣
P(z)
wneμnz

− 1
∣∣
∣∣ < 1, ∀z with Re z ≥ x2.

(2.13)

Hence, P(z) has no zero neither in the half-plane Re z ≤ x1 nor in the half-plane Re z ≥ x2.
Consequently, all the zeros of P(z) are situated in the strip

x1 < Re z < x2. (2.14)
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To prove the second part of the lemma, we will only consider the case Im P(z) = 0 (the
case Re P(z) = 0 is completely similar). In this case, for any positive integer n, the equation
Im P(z) = 0 can be explicitly written as

n∑

j=1

eμjx
(
αj sin

(
μjy
)
+ βj cos

(
μjy
))

= 0, (2.15)

where αj = Re wj and βj = Im wj . By defining

Aj

(
y
) ≡ αj sin

(
μjy
)
+ βj cos

(
μjy
)
, for each j = 1, . . . , n, (2.16)

equation (2.15) becomes

n∑

j=1

eμjxAj

(
y
)
= 0. (2.17)

On the other hand, it is plain that the set of the zeros of each function Aj(y), denoted by Bj ,
is given by

Bj =

{
1
μj

(

πkj − arctan
βj

αj

)

: kj ∈ �
}

, (2.18)

where arctan(βj/αj) is taken as π/2 when αj = 0. Since eμ1x > 0 for all real x, the case n = 1
easily follows by taking y = y0, for arbitrary y0 /∈ B1.

Now, assume that n = 2. If the sets B1 and B2 are distinct, suppose that there exists
some y0 ∈ B1 such that y0 /∈ B2. Then, the right-line of equation y = y0 does not meet
Im P(z) = 0. Indeed, if for some real x the point (x, y0) satisfies the equation Im P(z) = 0,
then, from (2.17) and taking into account that y0 ∈ B1, it necessarily would have A2(y0) = 0
and, therefore, y0 ∈ B2, which is a contradiction. Consequently, the lemma follows for the
value y0. Finally, we analyse the case B1 = B2. This case means that for each integer k1 there
exists another integer k2 such that

1
μ1

(
πk1 − arctan

β1
α1

)
=

1
μ2

(
πk2 − arctan

β2
α2

)
, (2.19)

and reciprocally. By defining the numbers

μ ≡ μ1

μ2
,

b ≡ arctan
(
β1/α1

) − μ arctan
(
β2/α2

)

π
,

(2.20)
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equality (2.19) can be written as

k1 − μk2 = b, (2.21)

which represents an equation with infinitely many solutions for integers k1 and k2. Let k1, k2
and k′

1, k
′
2 be integers verifying (2.21). Then, by subtracting in (2.21), one has

(
k1 − k′

1

) − μ
(
k2 − k′

2
)
= 0, (2.22)

which implies that μ must be necessarily a rational number (observe that it means, in
particular, that the frequencies μ1, μ2 are linearly dependent) and, because of 0 < μ1 < μ2,
the number μ is a positive rational less than 1. On the other hand, since

∣
∣∣∣arctan

β1

α1

∣
∣∣∣,
∣
∣∣∣arctan

β2

α2

∣
∣∣∣ ≤

π

2
, (2.23)

b is a rational number verifying

|b| < 1. (2.24)

Now, suppose the value k2 = 0 is given. Then, there exists an integer k1 satisfying (2.19) and,
according to (2.21), it follows that k1 = b. Hence, b is an integer and then, noticing (2.24),
b = 0. Consequently, k1 = 0. Since B1 = B2, let y1 be the point of B1 = B2 corresponding to the
values k1 = k2 = 0. Then, from (2.18), one has

y1 = − 1
μ1

arctan
β1
α1

= − 1
μ2

arctan
β2
α2

. (2.25)

Now, assume that, for any real number y, there exists a value of x such that

{
z = x + iy : Im P

(
x, y
)
= 0
} ∩ {z : Im z = y

}
/= ∅. (2.26)

Thus, in particular, given y1, there exists a1 such that Im P(a1, y1) = 0. On the other hand, as
the set B1 = B2 is discrete, there exists an open interval (v, y1) such that one has y /∈ B1 = B2

for any y ∈ (v, y1) and, therefore,Aj(y)/= 0 for j = 1, 2. Then, by assuming (2.26), if we divide
(2.17) by eμ1xA1(y) one has the following property.

For each y ∈ (v, y1), there exists x such that the relation

1 +
A2
(
y
)

A1
(
y
)e(μ2−μ1)x = 0, (2.27)

holds.
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Now, by taking the limit in (2.27), when y → y1, it follows that the point (a1, y1)
satisfies

1 + lim
y→y1

A2
(
y
)

A1
(
y
)e(μ2−μ1)a1 = 0. (2.28)

However, since

lim
y→y1

A2
(
y
)

A1
(
y
) =

μ2|w2|
μ1|w1| (2.29)

is positive, by substituting in (2.28), we are led to a contradiction. Consequently, the case
B1 = B2 follows, and the proof of the lemma is now completed.

When the frequencies are linearly independent, the preceding lemma is valid for
arbitrary n.

Lemma 2.6. Let n be an arbitrary positive integer and

P(z) = 1 +
n∑

j=1

wje
μjz, wj ∈ � \ {0} (2.30)

an exponential polynomial with increasing positive frequencies μ1 < · · · < μn forming a linearly
independent set. Then, there exists a value for y, say y0, such that either

{z : Re P(z) = 0} ∩ {z : Im z = y0
}
= ∅ (2.31)

or

{z : Im P(z) = 0} ∩ {z : Im z = y0
}
= ∅. (2.32)

Proof. For the sake of brevity, we will prove the lemma in the case Im P(z) = 0 (the case
Re P(z) = 0 is completely similar). Consider the coefficientswj of the exponential polynomial
P(z), since all them are nonnull, the set J = {1, 2, . . . , n} can be partitioned in the following
four disjoint sets (some of them could be eventually empty)

J1 =
{
j ∈ J : αj ≥ 0, βj > 0

}
,

J2 =
{
j ∈ J : αj > 0, βj ≤ 0

}
,

J3 =
{
j ∈ J : αj ≤ 0, βj < 0

}
,

J4 =
{
j ∈ J : αj < 0, βj ≥ 0

}
.

(2.33)
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Now, define the numbers

aj ≡
μj

2π
, ∀j ∈ J,

bj ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
8
, if j ∈ J1,

3
8
, if j ∈ J2,

5
8
, if j ∈ J3,

7
8
, if j ∈ J4.

(2.34)

Let us pick an arbitrary real number T and a positive ε such that ε < 1/4π . Then, by applying
Theorem 2.2, there exists t > T and integers nj such that

∣
∣taj − nj − bj

∣
∣ < ε, ∀j ∈ J. (2.35)

Hence, by substituting the values of aj and bj in the preceding inequality and multiplying by
2π , one has

tμj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π

4
+ ηj + 2πnj, if j ∈ J1,

3π
4

+ ηj + 2πnj, if j ∈ J2,

5π
4

+ ηj + 2πnj, if j ∈ J3,

7π
4

+ ηj + 2πnj, if j ∈ J4.

(2.36)

where the ηj ’s are real numbers such that |ηj | < 1/2. Then, according to the definition of the
Jk’s, it is clear that

αj sin
(
tμj

)
+ βj cos

(
tμj

)
> 0, ∀j ∈ J. (2.37)

Consequently,

Im P(x, t) =
n∑

j=1

eμjx
(
αj sin

(
μjt
)
+ βj cos

(
μjt
))

> 0, ∀x ∈ � , (2.38)

and then the lemma follows by taking y0 = t.

Corollary 2.7. Let

P(z) = 1 +
n∑

j=1

wje
μjz, wj ∈ � \ {0} (2.39)
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be an exponential polynomial with increasing positive frequencies μ1 < · · · < μn forming a linearly
independent set. Then, there exist infinitely many rectangles {Rk} in the critical strip of P(z) such
that either Re P(z) or Im P(z) is always positive at every point of the sides of eachRk that are parallel
to the real axis.

Proof. By applying Lemma 2.5, determine the right lines of equations x = x1, x = x2 that
define the strip x1 < Re z < x2 where all the zeros of P(z) are comprised. Letm be an arbitrary
integer, by taking T1 = m and by applying Theorem 2.2, just as we have done in Lemma 2.6,
we determine a value tm > T1 such that Im P(x, tm) > 0 for all x ∈ � . Now, again from
Theorem 2.2, for T2 = tm there exists a value tm+1 > T2 such that Im P(x, tm+1) > 0. Then, the
four right lines of equations x = x1, y = tm, x = x2, y = tm+1 define a rectangle, say Rm, such
that Im P(z) is positive when z lies on any of the sides of Rm that are parallel to the real axis.
By reiterating this process, we will obtain the infinitely many rectangles {Rk : k ≥ m} desired.
A completely analogous result wewould have obtained if we had considered Re P(z) instead
of Im P(z). Our corollary is then proved.

3. A Class of Almost-Periodic Functions with Bounded Spectrum
Containing the Partial Sums of the Riemann Zeta Function

In this section, we are going to generalize the preceding results to the class of almost-periodic
functions f(z)with bounded spectrum having the property of the existence of some value of
y = Im z, say y0, such that either Re f(x, y0)/= 0 or Im f(x, y0)/= 0 for all x ∈ � . By denoting
this class byAS, it follows thatAS is nonvoid. Indeed, from lemmas 2.5 and 2.6,AS contains
all exponential polynomials of degree n = 1, 2 with increasing positive frequencies and all
exponential polynomials of arbitrary degree with linearly independent positive frequencies.
Then, in particular, G2(z) ≡ 1 + 2z belongs to AS, and, since the frequencies log 2 < log 3 are
linearly independent, the functionG3(z) ≡ 1+2z+3z is also in the classAS. However, although
for any n ≥ 4, the frequencies log 2 < log 3 < · · · < log n are always linearly dependent, all
the approximants

Gn(z) ≡ 1 + 2z + · · · + nz (3.1)

of the Riemann zeta function ζ(z), in the half-plane Re z < −1, belong to the class AS.
Likewise, all the derivatives of Gn(z) are in the class AS. To see that it is enough to check
that for the value y0 = 0, Re G

(k)
n (x, 0) > 0, for all x ∈ � and every k = 0, 1, 2, . . .. Then, we are

going to obtain our formula to count the zeros of the functions Gn(z) as a consequence of a
general result on the functions of the classAS.

Theorem 3.1. Let f(z) be a function of the class AS. Then, there exist infinitely many rectangles
{Rk} in the critical strip of f(z) such that the number of zeros inside each rectangle Rk,N(f(z);Rk),
satisfies

∣∣
∣∣N
(
f(z);Rk

) − μhk

2π

∣∣
∣∣ < 2, (3.2)

where μ denotes the difference between the upper and the lower bounds of the spectrum of f(z) and hk

is the height of Rk.
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Proof. As f(z) is an entire function of exponential type with bounded spectrum, from the
Bohr theorem [2, p. 270], its zeros are all in a critical strip which we can suppose parallel to
the imaginary axis (otherwise, we would consider the function g(z) ≡ f(iz)). Hence, without
loss of generality, we can assume the existence of two real numbers x1, x2 such that all the
zeros of f(z) are located in the strip

{z : x1 < Re z < x2}. (3.3)

On the other hand, since f(z) is an almost-periodic function, let
∑∞

j=1 Aje
μjz be the

Dirichlet series [7, p. 77] associated with f(z), denoted by

f(z) ∼
∞∑

j=1

Aje
μjz. (3.4)

Then, the set of the Fourier exponents of the above series, also called Dirichlet exponents,

{
μj : j ∈ �

}
, (3.5)

forms the spectrum of f(z), say Sf(z). Now, because the lower and the upper bounds of the
spectrum of f(z) enter in the spectrum, let us define

μ1 ≡ min
{
μj : j ∈ �

}
,

μ∞ ≡ max
{
μj : j ∈ �

}
,

μ ≡ μ∞ − μ1,

(3.6)

with μ1, μ∞ ∈ Sf . Then, by considering the two almost-periodic functions

f(z )
A1eμ1z

− 1,
f(z)

A∞eμ∞z
− 1, (3.7)

from (3.4), it follows that these functions have associated Dirichlet series

∞∑

j=1

Aj+1

A1
e(μj+1−μ1)z,

∞∑

j=1

Aj+1

A∞
e(μj+1−μ∞)z, (3.8)

respectively. Now, as the Dirichlet exponents of the above series, μj+1 − μ1 and μj+1 − μ∞ are
strictly positive and negative, respectively, because of [7, Theorem 3.21], the functions

f(z)
A1eμ1z

− 1,
f(z)

A∞eμ∞z
− 1 (3.9)
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tend to zero as Re z → −∞ and Re z → +∞ uniformly with respect to y, respectively.
Therefore, there exist two reals a, b with a ≤ x1 < x2 ≤ b such that

∣∣
∣∣
f(z)
A1eμ1z

− 1
∣∣
∣∣ < 1, for Re z ≤ a,

∣∣
∣∣

f(z)
A∞eμ∞z

− 1
∣∣
∣∣ < 1, for Re z ≥ b.

(3.10)

On the other hand, as f is of class AS, let y0 be a value of y = Im z such that, for instance,

Im f
(
x + iy0

)
> 0, ∀x ∈ � . (3.11)

Then, from continuity, given the intervalK ≡ [a, b] there exists δ > 0 such that

Im f
(
x + iy0

) ≥ δ, ∀x ∈ K. (3.12)

Now, from Definition 2.4, by taking ε1 = δ/2, let (0, l1) be the ε1-interval of almost periodicity
of f(z), with l1 > 0. Then, Definition 2.3 involves the existence of a translation number τ1 ∈
(0, l1) such that

∣
∣f(z + iτ1) − f(z)

∣
∣ ≤ ε1, ∀z = x + iy0, with x ∈ K. (3.13)

According to (3.12), inequality (3.13) implies

Im f
(
x + i

(
y0 + τ1

)) ≥ ε1, ∀x ∈ K. (3.14)

Then, the four right lines of equations x = a, y = y0, x = b, y = y0 + τ1 define a rectangle
S1 such that, from (3.12) and (3.14), Im f(z) is positive when z lies on any of the sides of S1

parallel to the real axis. Furthermore, from (3.10), one has f(z)/= 0 on the sides of S1 parallel
to the imaginary axis.

As above, by now taking ε2 = δ/22, in the ε2-interval of almost periodicity of f , (0, l2),
with l2 > 0, there exists a translation number τ2 ∈ (0, l2) such that

∣
∣f(z + iτ2) − f(z)

∣
∣ ≤ ε2, ∀z = x + i

(
y0 + τ1

)
, with x ∈ K. (3.15)

Then, inequalities (3.14) and (3.15) imply

Im f
(
x + i

(
y0 + τ1 + τ2

)) ≥ ε2, ∀x ∈ K. (3.16)

Therefore, the four right lines of equations x = x1, y = y0 + τ1, x = x2, y = y0 + τ1 + τ2 define
a rectangle S2 such that Im f(z) is positive on the sides of S2 that are parallel to the real axis,
and f(z)/= 0 on the sides of S2 that are parallel to the imaginary one. Then, continuing in this
way, we obtain a family of rectangles

{Sk : k ∈ �}, (3.17)
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with the property consisting of Im f(z) > 0 on the sides that are parallel to the real axis and
f(z)/= 0 on the sides that are parallel to the imaginary one, for each rectangle Sk. Now, the
intersection of each Sk with the critical strip of f , defined by (3.3), is a new rectangle, say Rk.
Then, we claim that the set

{Rk : k ∈ �} (3.18)

is the desired family of rectangles. Indeed, firstly, we observe that the number of zeros of f(z)
inside each rectangleRk is equal to the number of zeros inside each rectangle Sk. Secondly, Rk

and Sk have the same height hk. Then, the variation of the argument of f(z) on each rectangle
Sk is held to the following considerations:

(1) since Im f(z) > 0 on the sides of Sk that are parallel to the real axis, the variation of
the argument of f(z) on these sides is less than π ;

(2) from (3.10), the variation of the argument of f(z) on each side of Sk defined by the
lines x = a and x = b is

μ1hk + Θa, with |Θa| < π,

μ∞hk + Θb, with |Θb| < π,

(3.19)

respectively. Therefore, noticing the previous considerations, the total variation of
the argument of f(z) on each rectangle Sk is

(
μ∞ − μ1

)
hk + Φf(z),k, with

∣
∣Φf(z),k

∣
∣ < 4π. (3.20)

Consequently, the number of zeros of f(z) inside eachAS satisfies the inequality

∣
∣∣∣N
(
f(z);Rk

) − μhk

2π

∣
∣∣∣ < 2. (3.21)

Therefore, the Rk’s are the desired rectangles, as we claimed. Now, the proof of the
theorem is completed.

Corollary 3.2. The critical strip associated with each partial sum of the Riemann zeta function on the
half-plane Re z < −1,Gn(z) ≡ 1+2z+ · · ·+nz, n ≥ 2, can be partitioned in infinitely many rectangles
{Rk : k ∈ �} such that the number of its zeros inside each rectangle Rk, N(Gn(z);Rk), satisfies

∣∣∣
∣N(Gn(z);Rk) − hk lnn

2π

∣∣∣
∣ < 2, (3.22)

where hk is the height of Rk .
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Proof. Firstly, from Lemma 2.5, for each integer n ≥ 2, there exist two real numbers an, bn such
that the critical strip of the zeros of Gn(z) is defined by

SGn(z) = {z : an < Re z < bn}. (3.23)

Now, starting from y0 = 0 and taking into account that Gn(z) ∈ AS, determine the family of
rectangles {Rk : k = 0, 1, 2, . . .} whose existence is guaranteed from the preceding theorem. It
is plain that this family of rectangles forms a partition of the upper critical strip

{
z ∈ SGn(z) : 0 ≤ Im z

}
. (3.24)

Now, defining the rectangle R−k as the conjugate of Rk−1 for k = 1, 2, . . ., the desired partition
of SGn(z) is formed by the rectangles of the family {Rk : k ∈ �}. Finally, noticing Gn(z) = 0 if
and only if Gn(z) = 0, one has

N(Gn(z);R−k) = N(Gn(z);Rk−1), k = 1, 2, . . . , (3.25)

and, since the set {lnk : 1 ≤ k ≤ n} is the spectrum of each Gn(z), inequality (3.22) follows.
The corollary is then proved.
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