
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2011, Article ID 815285, 15 pages
doi:10.1155/2011/815285

Research Article
On the Difference Equation xn+1 = xnxn−2 − 1

Candace M. Kent,1 Witold Kosmala,2 and Stevo Stević3
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The long-term behavior of solutions of the following difference equation: xn+1 = xnxn−2 − 1, n ∈ �0 ,
where the initial values x−2, x−1, x0 are real numbers, is investigated in the paper.

1. Introduction

Recently there has been a huge interest in studying nonlinear difference equations which do
not stem from differential equations (see, e.g., [1–36] and the references therein). Usual prop-
erties which have been studied are the boundedness character [8, 13, 15, 28–30, 33, 35, 36],
the periodicity [8, 13], asymptotic periodicity [16–19, 21], local and global stability [1, 8, 13,
15, 16, 28–34], as well as the existence of specific solutions such as monotone or nontrivial
[2, 3, 5, 9, 10, 15, 18, 20, 22–27].

In this paper we will study solutions of the following difference equation:

xn+1 = xnxn−2 − 1, n ∈ �0 . (1.1)

The difference equation (1.1) belongs to the class of equations of the form

xn+1 = xn−kxn−l − 1, n ∈ �0 , (1.2)

with particular choices of k and l, where k, l ∈ �0 . Although (1.2) looks simple, it is fascinating
how its behavior changes for different choices of k and l. The cases k = 0 and l = 1, k = 1 and



2 Abstract and Applied Analysis

l = 2 have been correspondingly investigated in papers [11, 12]. This paper can be regarded
as a continuation of our systematic investigation of (1.2).

Note that (1.1) has two equilibria:

x1 =
1 − √

5
2

, x2 =
1 +

√
5

2
. (1.3)

2. Periodic Solutions

In this section we prove some results regarding periodicity of solutions of (1.1). The first
result concerns periodic solutions with prime period two which will play an important role
in studying the equation.

Theorem 2.1. Equation (1.1) has prime period-two solutions if and only if the initial conditions are
x−2 = 0, x−1 = −1, x0 = 0 or x−2 = −1, x−1 = 0, x0 = −1.

Proof. Let (xn)∞n=−2 be a prime period-two solution of (1.1). Then x2n−2 = a and x2n−1 = b, for
every n ∈ �0 and for some a, b ∈ � such that a/= b. We have x1 = x0x−2 − 1 = a2 − 1 = b and
x2 = x1x−1−1 = b2−1 = a. From these two equations we obtain (a2−1)2−1 = a or equivalently

a(a + 1)
(
a2 − a − 1

)
= 0. (2.1)

We have four cases to be considered.

Case 1. If a = 0, then b = −1, and we obtain the first prime period-two solution.

Case 2. If a = −1, then b = 0, and we obtain the second prime period-two solution.

Case 3. If a = x1, then b = a2 − 1 = x1, which is an equilibrium solution.

Case 4. If a = x2, then b = a2 − 1 = x2, which is the second equilibrium solution. Thus, the
result holds.

Theorem 2.2. Equation (1.1) has no prime period-three solutions.

Proof. Let (xn)∞n=−2 be a prime period-three solution of (1.1). Then x3n−2 = a, x3n−1 = b, x3n = c,
for every n ∈ �0 and some a, b, c ∈ � such that at least two of them are different. We have

x1 = x0x−2 − 1 = ac − 1 = a,

x2 = x1x−1 − 1 = ab − 1 = b,

x3 = x2x0 − 1 = bc − 1 = c.

(2.2)

From (2.2) we easily see that a/= 0, b /= 0, and c /= 0, so that

c = 1 +
1
a
, a = 1 +

1
b
, b = 1 +

1
c
. (2.3)
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From (2.3) we obtain

c = 1 +
b

b + 1
=

2b + 1
b + 1

=⇒ b = 1 +
b + 1
2b + 1

=
3b + 2
2b + 1

, (2.4)

which implies b2 − b − 1 = 0. Hence b = x1 or b = x2. From this and (2.3) it follows that
a = b = c = x1 or a = b = c = x2, from which the result follows.

Theorem 2.3. Equation (1.1) has no prime period-four solutions.

Proof. Let (xn)∞n=−2 be a prime period-four solution of (1.1) and x−2 = a, x−1 = b, x0 = c. Then
we have

x1 = x0x−2 − 1 = ac − 1, (2.5)

x2 = x1x−1 − 1 = (ac − 1)b − 1 = a, (2.6)

x3 = x2x0 − 1 = ac − 1 = b, (2.7)

x4 = x3x1 − 1 = b(ac − 1) − 1 = c. (2.8)

Thus, from (2.6) and (2.8), we have that a = c. This along with (2.7) gives

a2 − 1 = b, (2.9)

while from (2.8) we get b(a2 − 1) − 1 = a or equivalently

(a + 1)(b(a − 1) − 1) = 0. (2.10)

Case 1. Suppose a = −1. Then b = a2 − 1 = 0 and c = a = −1, which, by Theorem 2.1, yields a
period-two solution.

Suppose a/= − 1. If a = 1, then from (2.10)we get a contradiction. If a/= 1, then a2 − 1 =
b = 1/(a − 1), so that a(a2 − a − 1) = 0. Hence a = 0, a = x1, or a = x2.

Case 2. Suppose a = 0. Then b = a2 − 1 = −1 and c = a = 0 which results in a period-two
solution as proved in Theorem 2.1.

Case 3. Suppose a = x1. Then b = a2 − 1 = x1 and c = x1 which is an equilibrium solution.

Case 4. Suppose a = x2. Then b = a2 − 1 = x2 and c = x2 which is the second equilibrium
solution. Proof is complete.

3. Local Stability

Here we study the local stability at the equilibrium points x1 and x2.

Theorem 3.1. The negative equilibrium of (1.1), x1, is unstable. Moreover, it is a hyperbolic
equilibrium.
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Proof. The linearized equation associated with the equilibrium x1 = (1 − √
5)/2 ∈ (−1, 0) is

xn+1 − x1xn − x1xn−2 = 0. (3.1)

Its characteristic polynomial is

Px1(λ) = λ3 − x1λ
2 − x1. (3.2)

Hence

P ′
x1
(λ) = 3λ2 − 2x1λ = λ(3λ − 2x1). (3.3)

Since

Px1(−2) = −8 − 5x1 < 0, Px1(−1) = −1 − 2x1 =
√
5 − 2 > 0, (3.4)

there is a zero λ1 ∈ (−2,−1) of Px1 .
On the other hand, from Px1(0) = −x1 > 0 and (3.3), it follows that λ1 is a unique real

zero of Px1 . Hence, the other two roots λ2,3 are conjugate complex.
Since

λ1|λ2|2 = x1, (3.5)

we obtain |λ2| = |λ3| < 1. From this, the theorem follows.

Theorem 3.2. The positive equilibrium of (1.1), x2, is unstable. Moreover, it is also a hyperbolic
equilibrium.

Proof. The linearized equation associated with the equilibrium x2 = (1 +
√
5)/2 ∈ (1, 2) is

xn+1 − x2xn − x2xn−2 = 0. (3.6)

Its characteristic polynomial is

Px2(λ) = λ3 − x2λ
2 − x2. (3.7)

We have

P ′
x2
(λ) = 3λ2 − 2x2λ = λ(3λ − 2x2). (3.8)

Since

Px2(2) = 8 − 5x2 =

(
11 − 5

√
5
)

2
< 0, Px2(3) = 27 − 10x2 = 22 − 5

√
5 > 0, (3.9)

there is a zero λ1 ∈ (2, 3) of Px2 .
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From this and since Px2(0) = −x2 < 0, we have that λ1 is a unique real zero of Px2 . Thus,
the other two roots λ2,3 are conjugate complex.

Since

λ1|λ2|2 = x2, (3.10)

we obtain |λ2| = |λ3| < 1. From this, the theorem follows.

4. Case x−2, x−1, x0 ∈ (−1, 0)
This section considers the solutions of (1.1) with x−2, x−1, x0 ∈ (−1, 0). Before we formulate
the main result in this section we need some auxiliary results.

Lemma 4.1. Suppose that x−2, x−1, x0 ∈ (−1, 0). Then the solution (xn)
∞
n=−2 of (1.1) is such that

xn ∈ (−1, 0) for n ≥ −2.

Proof. We have x−2, x0 ∈ (−1, 0) which implies x1 = x0x−2 − 1 ∈ (−1, 0). Assume that we have
proved xn ∈ (−1, 0) for −2 ≤ n ≤ k, for some k ≥ 2. Then we have xk+1 = xkxk−2 − 1 ∈ (−1, 0),
finishing an inductive proof of the lemma.

Remark 4.2. We would like to say here that a similar argument gives the following extension
of Lemma 4.1.

Suppose ki ∈ �, 1 ≤ i ≤ 2m, x−s, . . . , x−1, x0 ∈ (−1, 0), where s = max{k1, . . . , k2m}. Then
the solution (xn)∞n=−s of the difference equation

xn+1 =
2m∏
i=1

xn−ki − 1, n ∈ �0 , (4.1)

is such that xn ∈ (−1, 0) for n ≥ −s.

We now find an equation which is satisfied for the even terms of a solution of (1.1) as
well as for the odd terms of the solution.

From (1.1) we have

x2n+3 = x2n+2x2n − 1, x2n+2 = x2n+1x2n−1 − 1, n ∈ �0 . (4.2)

Then we have the following:

x2n+3 = (x2n+1x2n−1 − 1)(x2n−1x2n−3 − 1) − 1

= x2n−1(x2n+1x2n−1x2n−3 − x2n+1 − x2n−3), n ∈ �,
(4.3)

and similarly

x2n+4 = x2n(x2n+2x2nx2n−2 − x2n+2 − x2n−2), n ∈ �. (4.4)
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Hence, the subsequences yn = x2n+1 and zn = x2n+2 satisfy the difference equation

un+1 = un−1(unun−1un−2 − un − un−2), n ∈ �, (4.5)

and un ∈ (−1, 0).
For convenience, we make another change of variable vn = −un. Then (4.5) becomes

vn+1 = vn−1(vn + vn−2 − vnvn−1vn−2), n ∈ �. (4.6)

Note also that vn ∈ (0, 1).
It is easy to see that (4.6) has the following four equilibria:

v0 = −1 +
√
5

2
, v1 = 0, v2 =

√
5 − 1
2

, v3 = 1. (4.7)

If we let

f(u, v,w) = v(u +w − uvw), (4.8)

where u, v,w ∈ (0, 1), then we find the following:

(1) fu = v − v2w = v(1 − vw) > 0,

(2) fv = u +w − 2vuw = u(1 − vw) +w(1 − vu) > 0,

(3) fw = v − v2u = v(1 − vu) > 0.

Thus, the function f(u, v,w) is strictly increasing in each argument.

Lemma 4.3. Let (xn)∞n=−2 be a solution of (1.1) which is not equal to the equilibrium solution

x1 =
1 −√

5
2

(4.9)

of the equation. Suppose that

x−2, x−1, x0 ∈ (−1, 0) (4.10)

and that one of the following conditions holds:

(H1) x−2 ≤ x1, x−1 ≥ x1, x0 ≤ x1 with at least one of the inequalities strict,

(H2) x−2 ≥ x1, x−1 ≤ x1, x0 ≥ x1 with at least one of the inequalities strict.
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Then xn ∈ (−1, 0), for every n ≥ −2 and

(a) if (H1) holds, then there is an N ∈ �0 such that

x2n+1 > x1, x2n+2 < x1, n ≥ N, (4.11)

(b) if (H2) holds, then there is an N ∈ �0 such that

x2n+1 < x1, x2n+2 > x1, n ≥ N. (4.12)

Proof. By Lemma 4.1 we have that xn ∈ (−1, 0), for n ≥ −2. We will prove only (a). The proof
of (b) is dual and is omitted. Since −1 < x0, x−2 ≤ x1, we have

x1 = x0x−2 − 1 ≥ x2
1 − 1 = x1. (4.13)

From this and since x1 ≤ x−1 < 0, we have

x2 = x1x−1 − 1 ≤ x2
1 − 1 = x1. (4.14)

If x−2 < x1 or x0 < x1, then inequality (4.13) is strict and, consequently, inequality (4.14) is
strict too. If x−2 = x0 = x1, then x−1 > x1, from which it follows that inequality (4.14) is strict.
In this case we have

x3 = x2x0 − 1 > x2
1 − 1 = x1, (4.15)

which is a strict inequality. Hence N = 0 and N = 1 are the obvious candidates, depending
on which of the two cases, just described, holds.

Assume that we have proved (4.11) for N ≤ n ≤ k and that N = 0. The case N = 1 is
proved similarly and so is omitted. Then we have

x2k+3 = x2k+2x2k − 1 > x2
1 − 1 = x1. (4.16)

From this and since x1 < x2k+1 < 0, we have

x2k+4 = x2k+3x2k+1 − 1 < x2
1 − 1 = x1. (4.17)

Hence by induction the lemma follows.

Theorem 4.4. Let (xn)∞n=−2 be a solution of (1.1) which is not equal to the equilibrium solution

x1 =
1 −√

5
2

(4.18)
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of the equation. Suppose that

x−2, x−1, x0 ∈ (−1, 0) (4.19)

and that one of the conditions, (H1) or (H2), holds.
Then xn ∈ (−1, 0), for every n ≥ −2, and (xn)∞n=−2 converges to a two-cycle {−1, 0}.

Proof. First of all xn ∈ (−1, 0), for n ≥ −2, by Lemma 4.1. We next show that (xn)∞n=−2
converges to a two-cycle {−1, 0}. To this end we show that one of the subsequences, (x2n)∞n=−1
or (x2n+1)

∞
n=−1, converges to 0 and the other one to −1. Showing this, in turn, is equivalent to

showing the following:

(a) the corresponding solution (vn)∞n=−1 of (4.6) converges to v3 if for some N ≥ −1,
vn > v2, for n ≥ N, where vn ∈ (0, 1) = (v1, v3) for n ≥ −1,

(b) the corresponding solution (vn)∞n=−1 of (4.6) converges to v1 if for someN ≥ −1, vn <
v2, for n ≥ N, where vn ∈ (0, 1) = (v1, v3) for n ≥ −1.

We prove (a). The proof of (b) is similar and will be omitted. We have

vn ∈ (v2, v3), n ≥ N. (4.20)

Let

I = lim inf
n→∞

vn, S = lim sup
n→∞

vn. (4.21)

Then we have

v2 ≤ I ≤ S ≤ v3. (4.22)

First assume I = v2. From (4.20) it follows that there is an ε > 0 such that I + ε <
vN, vN+1, vN+2 < v3. By the monotonicity of f and since

f(x, x, x) > x for x ∈ (v2, v3), (4.23)

we have

vN+3 = f(vN+2, vN+1, vN) > f(I + ε, I + ε, I + ε) > I + ε. (4.24)

From this and by induction we obtain vn > I + ε, n ≥ N, which implies lim infn→∞vn ≥ I + ε,
which is a contradiction.

Now assume I ∈ (v2, v3). Let (vnk )k∈� be a subsequence of (vn)
∞
n=−1 such that

limk→∞vnk = I. Then there is a subsequence of (vnk )k∈�, which we may denote the same,
such that there are the following limits: limk→∞vnk−1, limk→∞vnk−2, and limk→∞vnk−3, which
we denote, respectively, by K−i, i = 1, 2, 3. From this and by (4.23) we have that

f(K−1, K−2, K−3) = I < f(I, I, I). (4.25)
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Hence there is an i0 ∈ {1, 2, 3} such that K−i0 < I. Otherwise, K−i ≥ I for i = 1, 2, 3 and by the
monotonicity of f we would get

f(I, I, I) ≤ f(K−1, K−2, K−3) = I < f(I, I, I), (4.26)

which is a contradiction. On the other hand, K−i0 < I contradicts the choice of I. Hence I
cannot be in the interval (v2, v3).

From all of the above we have that v3 = I ≤ S ≤ v3. Therefore, limn→∞vn = v3, as
desired.

Theorem 4.5. Assume that for a solution (xn)
∞
n=−2 of (1.1) there is an N ≥ −1 such that

−1 < xN < xN+2 < 0, 0 > xN−1 > xN+1 > xN+3 > −1. (4.27)

Then the solution converges to a two-cycle {−1, 0} or to the equilibrium x1.

Proof. First note that by Lemma 4.1 we have xn ∈ (−1, 0), n ≥ N. From (1.1) we obtain the
identity

xn+4 − xn+2 = xn+1(xn+3 − xn−1). (4.28)

Applying (4.28) for n = N and using the fact xN+1 ∈ (−1, 0), we get 0 > xN+4 > xN+2. Hence

xN < xN+2 < xN+4 < 0, xN−1 > xN+1 > xN+3 > −1. (4.29)

Using induction along with identity (4.28) it is shown that

xN < xN+2 < · · · < xN+2k < 0, xN−1 > xN+1 > · · · > xN+2k+1 > −1, (4.30)

for every k ∈ �. Hence, there are finite limits limk→∞xN+2k and limk→∞xN+2k+1, say l1 and l2.
Letting k → ∞ in the relations

xN+2k+2 = xN+2k+1xN+2k−1 − 1, xN+2k+3 = xN+2k+2xN+2k − 1, (4.31)

we get l1 = l22 − 1 and l2 = l21 − 1. Hence

(l1 − l2)(l1 + l2 + 1) = 0. (4.32)

From this we have l1 = l2 = x1, or if l1 /= l2, then l1 + l2 = −1 so that l1 = 0 and l2 = −1.
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Remark 4.6. Let x−2 = a, x−1 = b and x0 = c with a, b, c ∈ (−1, 0). For N = −1, (4.27) will be

x−2 > x0 ⇐⇒ a > c,

x1 − x−1 = x0x−2 − 1 − x−1 = ac − 1 − b > 0,

x2 − x0 = x1x−1 − 1 − x0 = x0x−1x−2 − x−1 − x0 − 1 = abc − b − c − 1 < 0.

(4.33)

Hence, under the conditions

a > c, ac > b + 1, abc < b + c + 1, (4.34)

we have that (4.27) is satisfied forN = −1. It is easy to show that there are some a, b, c ∈ (−1, 0)
such that the set in (4.34) is nonempty.

Note also that in the proof of Theorem 4.5 the relation (4.28) plays an important role.
Relations of this type have been successfully used also in [17, 21].

It is a natural question if there are nontrivial solutions of (1.1) converging to the
negative equilibrium x1. The next theorem, which is a product of an E-mail communication
between Stević and Professor Berg [6], gives a positive answer to the question. In the proof
of the result we use an asymptotic method from Proposition 3.3 in [3]. Some asymptotic
methods for solving similar problems have been also used, for example, in the following
papers: [2–5, 20, 22–27]. For related results, see also [9, 10, 15, 18] and the references therein.

Theorem 4.7. There are nontrivial solutions of (1.1) converging to the negative equilibrium x1.

Proof. In order to find a solution tending to x1, we make the substitution xn = yn+x1, yielding
the equation

yn+3 − x1
(
yn+2 + yn

)
= yn+2yn, n ≥ −2, (4.35)

and for n ∈ �0 we make the ansatz

yn =
∞∑
k=0

∞∑
l=0

aklp
nkqnl, (4.36)

with a00 = 0, where p and q are the conjugate complex zeros of the characteristic polynomial

P(λ) = λ3 − x1

(
λ2 + 1

)
. (4.37)

Note that |p| = |q| = r ≈ 0.74448.
Replacing (4.36) into (4.35) and comparing the coefficients, we find

dklakl =
k∑
i=0

l∑
j=0, j+i /= 0

aijp
2iq2jak−i,l−j , (4.38)
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with

dkl = p3kq3l − x1

(
p2kq2l + 1

)
. (4.39)

Equation (4.38) is satisfied for k + l ≤ 1, where a10 and a01 are arbitrary, so that it
suffices to consider (4.38) for k and l such that k + l > 1. If a10 and a01 are chosen to be
conjugate complex numbers, then according to (4.38) all akl are conjugate complex numbers
to alk and consequently series (4.36) is real. We look for a solution (4.36) with a10 = a01,
|a10| = 1, and determine a positive constant λ such that

|akl| ≤ λk+l−1. (4.40)

Since the inequality is valid for k + l ≤ 1, by induction, we get from (4.38)

|akl| ≤ λk+l−2 1
|dkl|

k∑
i=0

l∑
j=0, j+i /= 0

r2(i+j). (4.41)

Note that

k∑
i=0

l∑
j=0, j+i /= 0

r2(i+j) <
1

(1 − r2)2
− 1 =

2r2 − r4

(1 − r2)2
. (4.42)

It is not difficult to check that

D := sup
k+l≥2

1
|dkl| =

1
|d21| ≈ 2.095. (4.43)

Hence (4.40) holds with

λ = D
2r2 − r4

(1 − r2)2
. (4.44)

For such chosen λ the series in (4.36) converges if λrn < 1, which implies n >
ln λ/ ln(1/r). We have λ ≈ 8.450, so that lnλ/ ln(1/r) ≈ 7.233, and therefore we have the
convergence of the series for n > 7. In this way for n > 7, we obtain a solution of (4.35)
converging to a real solution of (4.35) as n → ∞, that is, a solution of (1.1) converging to x1,
as desired.

Remark 4.8. For a10 = a01 = 1, the first coefficients in (4.38) are

a20 =
p2

d20
, a11 =

p2 + q2

d11
, a02 =

q2

d02
,

a30 =
p2
(
p2 + 1

)
a20

d30
, a21 =

(
p4 + q2

)
a20 + p2

(
q2 + 1

)
a11

d21
.

(4.45)
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Remark 4.9. If we replace n by n + c in (4.35) with an arbitrary c ∈ �, then we can choose c in
such a way that we get arbitrary first coefficients (not only of modulus 1).

5. Unbounded Solutions of (1.1)

In this section we find sets of initial values of (1.1) for which unbounded solutions exist. For
related results, see, for example, [8, 13, 15, 28–30, 33, 35, 36] and the references therein.

The next theorem shows the existence of unbounded solutions of (1.1).

Theorem 5.1. Assume that

min {|x−2|, |x−1|, |x0|} > x2 =
1 +

√
5

2
. (5.1)

Then

x2 < |x0| < |x1| < |x2| < · · · < |xn| < · · · . (5.2)

Proof. From the hypothesis we have that |x−2|−1 > x2−1, and so |x0|(|x−2|−1) > x2(x2−1) = 1.
Therefore, |x0||x−2| − |x0| > 1, and so |x0||x−2| − 1 > |x0|. On the other hand, we have

|x1| = |x0x−2 − 1| > |x0||x−2| − 1. (5.3)

Combining the last two inequalities, we have that |x1| > |x0| > x2. Assume that we have
proved

x2 < |x0| < |x1| < |x2| < · · · < |xk|, (5.4)

for some k ∈ �. We have |xk−2| − 1 > x2 − 1, which implies |xk|(|xk−2| − 1) > x2(x2 − 1) = 1, or
equivalently |xk||xk−2| − 1 > |xk|. From this and (1.1), we get

|xk+1| = |xkxk−2 − 1| > |xk ||xk−2| − 1 > |xk| > x2, (5.5)

finishing the inductive proof of the theorem.

Corollary 5.2. Assume that the initial values of a solution (xn)∞n=−2 of (1.1) satisfy the condition

min {x−2, x−1, x0} > x2 =
1 +

√
5

2
. (5.6)

Then the solution tends to +∞.

Proof. Assume to the contrary that the sequence does not tend to plus infinity. Since the
sequence is increasing and bounded, then it must converge. But (1.1) has only two equilibria,
and they are both less than x0. We have a contradiction. The proof is complete.
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For our next result, we need to introduce the following definition.

Definition 5.3. Let (xn)∞n=−2 be a solution of (1.1), and let i ∈ {1, 2}. Then we say that the
solution has the eventual semicycle pattern k+, l− (or k−, l+) if there exists N ∈ � such that,
for n ∈ �0 , xN+n(k+l)+1, . . . , xN+n(k+l)+k ≥ xi and xN+n(k+l)+k+1, . . . , xN+n(k+l)+k+l < xi (or, resp.,
xN+n(k+l)+1, . . . , xN+n(k+l)+k < xi and xN+n(k+l)+k+1, . . . , xN+n(k+l)+k+l ≥ xi).

Remark 5.4. Note that the eventual semicycle pattern can be extended to k±
1 , k

∓
2 , k

±
3 , . . . , k

∓
M for

M > 2.

Theorem 5.5. Assume that (xn)
∞
n=−2 is a solution of (1.1) such that

min {|x−2|, |x−1|, |x0|} > x2 =
1 +

√
5

2
(5.7)

and that at least one of x−2, x−1, x0 is negative. Then

|xn| ≥ x2, n ≥ −2, (5.8)

and the solution is separated into seven unbounded eventually increasing subsequences such that the
solution has the eventual semicycle pattern

1+, 1−, 2+, 3−. (5.9)

Proof. Assume that x−2, x−1, x0 < −x2. Then we have

x1 = x0x−2 − 1 > x2
2 − 1 = x2,

x2 = x1x−1 − 1 < −x2
2 − 1 = −x2 − 2 < −x2,

x3 = x2x0 − 1 > x2
2 − 1 = x2,

x4 = x3x1 − 1 > x2
2 − 1 = x2,

x5 = x4x2 − 1 < −x2
2 − 1 = −x2 − 2 < −x2,

x6 = x5x3 − 1 < −x2
2 − 1 = −x2 − 2 < −x2,

x7 = x6x4 − 1 < −x2
2 − 1 = −x2 − 2 < −x2.

(5.10)

Hence |xi| > x2, for −2 ≤ i ≤ 7 and x5, x6, x7 < −x2 − 2 < −x2 < 0. An inductive argument
shows that

x7k+1 = x7kx7k−2 − 1 > x2
2 − 1 = x2,

x7k+2 = x7k+1x7k−1 − 1 < −x2
2 − 1 = −x2 − 2 < −x2,

x7k+3 = x7k+2x7k − 1 > x2
2 − 1 = x2,
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x7k+4 = x7k+3x7k+1 − 1 > x2
2 − 1 = x2,

x7k+5 = x7k+4x7k+2 − 1 < −x2
2 − 1 = −x2 − 2 < −x2,

x7k+6 = x7k+5x7k+3 − 1 < −x2
2 − 1 = −x2 − 2 < −x2,

x7k+7 = x7k+6x7k+4 − 1 < −x2
2 − 1 = −x2 − 2 < −x2,

(5.11)

for each k ∈ �0 , from which the first part of the result follows in this case. The other six cases
follow from the above case by shifting indices for 1, 2, 3, 4, 5, or 6 places forward.

From this and Theorem 5.1, we see that the sequences (x7k+i)∞k=0 monotonically tend to
−∞ or +∞ with the aforementioned eventual semicycle pattern.
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[25] S. Stević, “Asymptotics of some classes of higher-order difference equations,” Discrete Dynamics in
Nature and Society, vol. 2007, Article ID 56813, 20 pages, 2007.
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