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We give a generalization of g-frame in HilbertC∗-modules that was introduced by Khosravies then
investigated some properties of it by Xiao and Zeng. This generalization is a natural generalization
of continuous and discrete g-frames and frame in Hilbert space too. We characterize continuous
g-frame g-Riesz in Hilbert C∗-modules and give some equality and inequality of these frames.

1. Introduction

Frames for Hilbert spaces were first introduced in 1952 by Duffin and Schaeffer [1] for
study of nonharmonic Fourier series. They were reintroduced and development in 1986 by
Daubechies et al. [2] and popularized from then on. The theory of frames plays an important
role in signal processing because of their importance to quantization [3], importance to
additive noise [4], as well their numerical stability of reconstruction [4] and greater freedom
to capture signal characteristics [5, 6]. See also [7–9]. Frames have been used in sampling
theory [10, 11], to oversampled perfect reconstruction filter banks [12], system modelling
[13], neural networks [14] and quantum measurements [15]. New applications in image
processing [16], robust transmission over the Internet and wireless [17–19], coding and
communication [20, 21]were given. For basic results on frames, see [4, 12, 22, 23].

letH be a Hilbert space, and I a set which is finite or countable. A system {fi}i∈I ⊆ H
is called a frame forH if there exist the constants A,B > 0 such that

A
∥
∥f
∥
∥
2 ≤
∑

i∈I

∣
∣
〈

f, fi
〉∣
∣
2 ≤ B∥∥f∥∥2 (1.1)

for all f ∈ H. The constants A and B are called frame bounds. If A = B we call this frame a
tight frame and if A = B = 1 it is called a Parseval frame.
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In [24] Sun introduced a generalization of frames and showed that this includes more
other cases of generalizations of frame concept and proved that many basic properties can be
derived within this more general context.

Let U and V be two Hilbert spaces, and {Vj : j ∈ J} is a sequence of subspaces of V ,
where J is a subset of Z. L(U,Vj) is the collection of all bounded linear operators fromU into
Vj . We call a sequence {Λj ∈ L(U,Vj) : j ∈ J} a generalized frame, or simply a g-frame, for U
with respect to {Vj : j ∈ J} if there are two positive constants A and B such that

A
∥
∥f
∥
∥
2 ≤
∑

i∈J

∥
∥Λjf

∥
∥
2 ≤ B∥∥f∥∥2 (1.2)

for all f ∈ U. The constants A and B are called g-frame bounds. If A = B we call this g-frame
a tight g-frame, and if A = B = 1 it is called a Parseval g-frame.

On the other hand, the concept of frames especially the g-frames was introduced in
Hilbert C∗-modules, and some of their properties were investigated in [25–27]. Frank and
Larson [25] defined the standard frames in Hilbert C∗-modules in 1998 and got a series of
result for standard frames in finitely or countably generated Hilbert C∗-modules over unital
C∗-algebras. As for Hilbert C∗-module, it is a generalization of Hilbert spaces in that it allows
the inner product to take values in a C∗-algebra rather than the field of complex numbers.
There are many differences between Hilbert C∗-modules and Hilbert spaces. For example,
we know that any closed subspace in a Hilbert space has an orthogonal complement, but it is
not true for Hilbert C∗-module. And we cannot get the analogue of the Riesz representation
theorem of continuous functionals in HilbertC∗-modules generally. Thus it is more difficult to
make a discussion of the theory of Hilbert C∗-modules than that of Hilbert spaces in general.
We refer the readers to papers [28, 29] for more details on Hilbert C∗-modules. In [27, 30],
the authors made a discussion of some properties of g-frame in Hilbert C∗-module in some
aspects.

The concept of a generalization of frames to a family indexed by some locally compact
space endowed with a Radon measure was proposed by Kaiser [23] and independently by
Ali at al. [31]. These frames are known as continuous frames. Let H be a Hilbert space, and
let (M;S;μ) be a measure space. A continuous frame in H indexed by M is a family h =
{hm ∈ H : m ∈M} such that

(a) for any f ∈ H, the function f̃ :M → C defined by f̃(m) = 〈hm, f〉 is measurable;

(b) there is a pair of constants 0 < A,B such that, for any f ∈ H,

A
∥
∥f
∥
∥
2
H ≤

∥
∥
∥f̃
∥
∥
∥

2

L2(μ)
≤ B∥∥f∥∥2H. (1.3)

IfM = N and μ is the counting measure, the continuous frame is a frame.
The paper is organized as follows. In Sections 2 and 3 we recall the basic definitions

and some notations about continuous g-frames in HilbertC∗-module; we also give some basic
properties of g-frames which we will use in the later sections. In Section 4, we give some
characterization for continuous g-frames in HilbertC∗-modules. In Section 5, we extend some
important equalities and inequalities of frame in Hilbert spaces to continuous frames and
continuous g-frames in Hilbert C∗-modules.
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2. Preliminaries

In the following we review some definitions and basic properties of Hilbert C∗-modules and
g-frames in Hilbert C∗-module; we first introduce the definition of Hilbert C∗-modules.

Definition 2.1. Let A be a C∗-algebra with involution ∗. An inner product A-module (or pre-
Hilbert A-module) is a complex linear space H which is a left A-module with map 〈·, ·〉 :
H ×H → A which satisfies the following properties:

(1) 〈αf + βg, h〉 = α〈f, h〉 + β〈g, h〉 for all f, g, h ∈ H and α, β ∈ C;

(2) 〈af, g〉 = a〈f, g〉 for all f, g ∈ H and a ∈ A;

(3) 〈f, g〉 = 〈g, f〉∗ for all f, g ∈ H;

(4) 〈f, f〉 ≥ 0 for all f ∈ H and 〈f, f〉 = 0 if and only if f = 0.

For f ∈ H, we define a norm onH by ‖f‖H = ‖〈f, f〉‖1/2A . LetH is complete with this norm,
it is called a Hilbert C∗-module over A or a Hilbert A-module.

An element a of a C∗-algebra A is positive if a∗ = a and spectrum of a is a subset of
positive real number. We write a ≥ 0 to mean that a is positive. It is easy to see that 〈f, f〉 ≥ 0
for every f ∈ H, hence we define |f | = 〈f, f〉1/2.

Frank and Larson [25] defined the standard frames in Hilbert C∗-modules. If H be a
Hilbert C∗-module, and I a set which is finite or countable. A system {fi}i∈I ⊆ H is called a
frame forH if there exist the constants A,B > 0 such that

A
〈

f, f
〉 ≤

∑

i∈I

〈

f, fi
〉〈

fi, f
〉 ≤ B〈f, f〉 (2.1)

for all f ∈ H. The constants A and B are called frame bounds.
A. Khosravi and B. Khosravi [27] defined g-frame in Hilbert C∗-module. Let U and

V be two Hilbert C∗-module, and {Vi : i ∈ I} is a sequence of subspaces of V , where I
is a subset of Z and End∗

A(U,Vi) is the collection of all adjointable A-linear maps from U
into Vi that is, 〈Tf, g〉 = 〈f, T ∗g〉 for all f, g ∈ H and T ∈ End∗

A(U,Vi). We call a sequence
{Λi ∈ End∗

A(U,Vi) : i ∈ I} a generalized frame, or simply a g-frame, for Hilbert C∗-moduleU
with respect to {Vi : i ∈ I} if there are two positive constants A and B such that

A
〈

f, f
〉 ≤

∑

i∈I

〈

Λif,Λif
〉 ≤ B〈f, f〉 (2.2)

for all f ∈ U. The constants A and B are called g-frame bounds. If A = B we call this g-frame
a tight g-frame, and if A = B = 1 it is called a Parseval g-frame.

Let (M;S;μ) be a measure space, let U and V be two Hilbert C∗-modules, {Vm : m ∈
M} is a sequence of subspaces of V , and End∗

A(U,Vm) is the collection of all adjointable A-
linear maps fromU into Vm.
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Definition 2.2. We call a net {Λm ∈ End∗
A(U,Vm) : m ∈M} a continuous generalized frame, or

simply a continuous g-frame, for Hilbert C∗-moduleU with respect to {Vm : m ∈M} if

(a) for any f ∈ U, the function f̃ :M → Vm defined by f̃(m) = Λmf is measurable;

(b) there is a pair of constants 0 < A,B such that, for any f ∈ U,

A
〈

f, f
〉 ≤

∫

M

〈

Λmf,Λmf
〉

dμ(m) ≤ B〈f, f〉. (2.3)

The constantsA and B are called continuous g-frame bounds. IfA = Bwe call this continuous
g-frame a continuous tight g-frame, and if A = B = 1 it is called a continuous Parseval
g-frame. If only the right-hand inequality of (2.3) is satisfied, we call {Λm : m ∈ M} the
continuous g-Bessel forU with respect to {Vm : m ∈M}with Bessel bound B.

IfM = N and μ is the counting measure, the continuous g-frame forU with respect to
{Vm : m ∈M} is a g-frame forU with respect to {Vm : m ∈M}.

LetX be a Banach space, (Ω, μ) ameasure space, and function f : Ω → X ameasurable
function. Integral of the Banach-valued function f has defined Bochner and others. Most
properties of this integral are similar to those of the integral of real-valued functions for
example triangle inequality. The reader is referred to [32, 33] for more details. Because every
C∗-algebra and Hilbert C∗-module is a Banach space thus we can use this integral and its
properties.

Example 2.3. LetU be a Hilbert C∗-module on C∗-algebra A, and let {fm : m ∈M} be a frame
forU. Let Λm be the functional induced by

Λmf =
〈

f, fm
〉

, ∀f ∈ U. (2.4)

Then {Λm : m ∈M} is a g-frame for Hilbert C∗-moduleU with respect to V = Vm = A.

Example 2.4. If ψ ∈ L2(R) is admissible, that is,

Cψ :=
∫∞

−∞

∣
∣ψ̂
(

γ
)∣
∣
2

∣
∣γ
∣
∣

dγ <∞. (2.5)

and, for a, b ∈ R and a/= 0

ψa,b(x) = TbDaψ(x) =
1
√

|a|
ψ

(
x − b
a

)

, ∀x ∈ R, (2.6)

then {ψa,b}a/= 0, b∈R is a continuous frame for L2(R) with respect to R \ {0} × R equipped with
the measure dadb/a2 and, for all f ∈ L2(R),

f(x) =
1
Cψ

∫∫∞

−∞
Wψ

(

f
)

(a, b)ψa,b(x)
dadb

a2
, (2.7)
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whereWψ is the continuous wavelet transform defined by

Wψ

(

f
)

(a, b) =
〈

f, ψa,b
〉

=
∫∞

−∞
f(x)

1
√

|a|
ψ

(
x − b
a

)

dx. (2.8)

For details, see [12, Proposition 11.1.1 and Corollary 11.1.2].

3. Continuous g-Frame Operator and Dual Continuous g-Frame on
Hilbert C∗-Algebra

Let {Λm : m ∈ M} be a continuous g-frame for U with respect to {Vm : m ∈ M}. Define the
continuous g-frame operator S onU by

Sf =
∫

M

Λ∗
mΛmfdμ(m). (3.1)

Lemma 3.1 (see [33]). Let (Ω, μ) be a measure space, X and Y are two Banach spaces, λ : X → Y
be a bounded linear operator and f : Ω → X measurable function; then

λ

(∫

Ω
fdμ

)

=
∫

Ω

(

λf
)

dμ. (3.2)

Proposition 3.2. The frame operator S is a bounded, positive, selfadjoint, and invertible.

Proof. First we show, S is a selfadjoint operator. By Lemma 3.1 and property (3) of Definition
2.1 for any f, g ∈ U we have

〈

Sf, g
〉

=
〈∫

M

Λ∗
mΛmfdμ(m), g

〉

=
∫

M

〈

Λ∗
mΛmf, g

〉

dμ(m)

=
∫

M

〈

f,Λ∗
mΛmg

〉

dμ(m) =
〈

f,

∫

M

Λ∗
mΛmgdμ(m)

〉

=
〈

f, Sg
〉

.

(3.3)

It is clear that we have

〈

Sf, f
〉

=
∫

M

〈

Λmf,Λmf
〉

dμ(m). (3.4)

Now we show that S is a bounded operator

‖S‖ = sup
‖f‖≤1

∥
∥
〈

Sf, f
〉∥
∥ = sup

‖f‖≤1

∥
∥
∥
∥

∫

M

〈

Λmf,Λmf
〉

dμ(m)
∥
∥
∥
∥
≤ B. (3.5)
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Inequality (2.3) and equality (3.4) mean that

A
〈

f, f
〉 ≤ 〈Sf, f〉 ≤ B〈f, f〉 (3.6)

or in the notation from operator theory AI ≤ S ≤ BI; thus S is a positive operator.
Furthermore, 0 ≤ A−1S − I ≤ ((B − A)/A)I, and consequently ‖A−1S − I‖ ≤ 1; this shows
that S is invertible.

Proposition 3.3. Let {Λm : m ∈ M} be a continuous g-frame for U with respect to {Vm : m ∈ M}
with continuous g-frame operator S with bounds A and B. Then {Λ̃m : m ∈ M} defined by Λ̃m =
ΛmS

−1 is a continuous g-frame forU with respect to {Vm : m ∈M}with continuous g-frame operator
S−1 with bounds 1/B and 1/A. That is called continuous canonical dual g-frame of {Λm : m ∈M}.

Proof. Let S̃ be the continuous g-frame operator associated with {Λ̃m : m ∈ M} that is S̃f =
∫

M Λ̃m
∗
Λ̃mfdμ(m). Then for f ∈ U,

SS̃f =
∫

M

SΛ̃m
∗
Λ̃mfdμ(m) =

∫

M

SS−1Λ∗
mΛmS

−1fdμ(m)

=
∫

M

Λ∗
mΛmS

−1fdμ(m) = SS−1f = f.

(3.7)

Hence S̃ = S−1.
Since {Λm : m ∈ M} is a continuous g-frame forH, then AI ≤ S ≤ BI. On other hand

since I and S are selfadjoint and S−1 commutative with I and S, AIS−1 ≤ SS−1 ≤ BIS−1, and
hence B−1I ≤ S−1 ≤ A−1I.

Remark 3.4. We have Λ̃mS̃
−1 = ΛmS

−1S = Λm. In other words {Λm :m∈M} and {Λ̃m :m∈M}
are dual continuous g-frame with respect to each other.

4. Some Characterizations of Continuous g-Frames in
Hilbert C∗-Module

In this section, we will characterize the equivalencies of continuous g-frame in Hilbert C∗-
module from several aspects. As for Theorem 4.2, we show that the continuous g-frame is
equivalent to which the middle of (2.3) is norm bounded. As for Theorems 4.3 and 4.6, the
characterization of g-frame is equivalent to the characterization of bounded operator T .

Lemma 4.1 (see [34]). Let A be a C∗-algebra, U and V two Hilbert A-modules, and T ∈
End∗

A(U,V ). Then the following statements are equivalent:

(1) T is surjective;

(2) T ∗ is bounded below with respect to norm, that is, there is m > 0 such that ‖T ∗f‖ ≥ m‖f‖
for all f ∈ U;

(3) T ∗ is bounded below with respect to the inner product, that is, there is m′ > 0 such that
〈T ∗f, T ∗f〉 ≥ m′〈f, f〉.

Theorem 4.2. Let Λm ∈ End∗
A(U,Vm) for any m ∈ M. Then {Λm : m ∈ M} be a continuous

g-frame for U with respect to {Vm : m ∈ M} if and only if there exist constants A,B > 0 such that
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for any f ∈ U

A
∥
∥f
∥
∥
2 ≤
∥
∥
∥
∥

∫

M

〈

Λmf,Λmf
〉

dμ(m)
∥
∥
∥
∥
≤ B∥∥f∥∥2. (4.1)

Proof. Let {Λm : m ∈ M} is a continuous g-frame for U with respect to {Vm : m ∈ M}. Then
inequality (4.1) is an immediate result of C∗-algebra theory.

If inequality (4.1) holds, then by Proposition 3.2, 〈S1/2f, S1/2f〉 = 〈Sf, f〉 =
∫

M〈Λmf,

Λmf〉dμ(m), hence
√
A‖f‖ ≤ ‖S1/2f‖ ≤

√
B‖f‖ for any f ∈ U. Now by use of Lemma 4.1,

there are constants C,D > 0 such that

C
〈

f, f
〉 ≤

∫

M

〈

Λmf,Λmf
〉

dμ(m) ≤ D〈f, f〉, (4.2)

which implies that {Λm : m ∈ M} is a continuous g-frame for U with respect to {Vm : m ∈
M}.

We define

⊕

m∈M
Vm =

{

g =
{

gm
}

: gm ∈ Vm,
∥
∥
∥
∥

∫

M

∣
∣gm
∣
∣
2
dμ(m)

∥
∥
∥
∥
<∞

}

. (4.3)

For any f = {fm : m ∈ M} and g = {gm : m ∈ M}, if the A-valued inner product
is defined by 〈f, g〉 =

∫

M〈fm, gm〉dμ(m), the norm is defined by ‖f‖ = ‖〈f, f〉‖1/2, then
⊕

m∈MVm is a Hilbert A-module (see [28]).
Let {Λm ∈ End∗

A(U,Vm) : m ∈ M} be a continuous g-frame forU with respect to {Vm :
m ∈ M}, we define synthesis operator T :

⊕

m∈MVm → U by; T(g) =
∫

MΛ∗
mgmdμ(m) for all

g = {gm : m ∈ M} ∈ ⊕m∈MVm. So analysis operator is defined for map F : U → ⊕

m∈MVm
by F(f) = {Λm : m ∈M} for any f ∈ U.

Theorem 4.3. A net {Λm ∈ End∗
A(U,Vm) : m ∈ M} is a continuous g-frame for U with respect to

{Vm : m ∈M} if and only if synthesis operator T is well defined and surjective.

Proof. Let {Λm : m ∈ M} be a continuous g-frame for U with respect to {Vm : m ∈ M}; then
operator T is well defined and ‖T‖ ≤

√
B because

∥
∥Tg

∥
∥
2 =
∥
∥
∥
∥

∫

M

Λ∗
mgmdμ(m)

∥
∥
∥
∥

2

= supf∈U, ‖f‖=1

∥
∥
∥
∥

〈∫

M

Λ∗
mgmdμ(m), f

〉∥
∥
∥
∥

= sup
f∈U,
‖f‖=1

∥
∥
∥
∥

∫

M

〈

gm,Λmf
〉

dμ(m)
∥
∥
∥
∥

≤ sup
f∈U,
‖f‖=1

∥
∥
∥
∥

∫

M

〈

gm, gm
〉

dμ(m)
∥
∥
∥
∥

∥
∥
∥
∥

∫

M

〈

Λmf,Λmf
〉

dμ(m)
∥
∥
∥
∥

≤ B
∥
∥
∥
∥

∫

M

〈

gm, gm
〉

dμ(m)
∥
∥
∥
∥
.

(4.4)
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For any f ∈ U, by that S is invertible, there exist g ∈ U such that f = Sg =
∫

M λ∗mλmgdμ(m). Since {Λm : m ∈ M} is a continuous g-frame for U with respect to
{Vm : m ∈ M}, so {λmg : m ∈ M} ∈ ⊕m∈MVm and T({λmg}m ∈ M) =

∫

M λ∗mλmgdμ(m) = f ,
which implies that T is surjective.

Now let T be a well-defined operator. Then for any f ∈ U we have

∥
∥
∥
∥

∫

M

〈

Λmf,Λmf
〉

dμ(m)
∥
∥
∥
∥
=
∥
∥
∥
∥

∫

M

〈

f,Λ∗
mΛmf

〉

dμ(m)
∥
∥
∥
∥
=
∥
∥
∥
∥

〈

f,

∫

M

Λ∗
mΛmfdμ(m)

〉∥
∥
∥
∥

≤ ∥∥f∥∥
∥
∥
∥
∥

∫

M

Λ∗
mΛmfdμ(m)

∥
∥
∥
∥

=
∥
∥f
∥
∥
∥
∥T
({

Λmf
}

m∈M
)∥
∥ ≤ ∥∥f∥∥‖T‖∥∥{Λmf}m∈M

∥
∥

≤ ∥∥f∥∥‖T‖
∥
∥
∥
∥

∫

M

〈

Λmf,Λmf
〉

dμ(m)
∥
∥
∥
∥

1/2

.

(4.5)

It follow that ‖ ∫M〈Λmf,Λmf〉dμ(m)‖ ≤ ‖f‖2‖T‖2.
On the other hand, since T is surjective, by Lemma 4.1, T ∗ is bounded below, so T ∗|R(T∗)

is invertible. Then for any f ∈ U, we have (T ∗|R(T∗))
−1T ∗f = f , so ‖f‖2 ≤ ‖T ∗f‖2‖(T ∗|R(T∗))

−1‖2.
It is easy to check that

T ∗ : U −→
⊕

m∈M
Vm, T ∗(f

)

= {Λm : m ∈M}

∥
∥T ∗f

∥
∥
2 = ‖{Λm}m∈M‖2 =

∥
∥
∥
∥

∫

M

〈

Λmf,Λmf
〉

dμ(m)
∥
∥
∥
∥
.

(4.6)

Hence ‖f‖2 ≤ ‖ ∫M〈Λmf,Λmf〉dμ(m)‖‖(T ∗|R(T∗))
−1‖2.

Corollary 4.4. A net {Λm ∈ End∗
A(U,Vm) : m ∈M} is a continuous g-Bessel net forU with respect

to {Vm : m ∈M} if and only if synthesis operator T is well defined and ‖T‖ ≤
√
D.

Definition 4.5. A continuous g-frame {Λm ∈ End∗
A(U,Vm) : m ∈ M} in Hilbert C∗-module U

with respect to {Vm : m ∈M} is said to be a continuous g-Riesz basis if it satisfies that

(1) λm /= 0 for anym ∈M;

(2) if
∫

K Λ∗
mgmdμ(m) = 0, then every summandΛ∗

mgm is equal to zero, where {gm}m∈K ∈
⊕

m∈KVm and K is a measurable subset ofM.

Theorem 4.6. A net {Λm ∈ End∗
A(U,Vm) : m ∈ M} is a continuous g-Riesz for U with respect to

{Vm : m ∈M} if and only if synthesis operator T is homeomorphism.

Proof. We firstly suppose that {Λm ∈ End∗
A(U,Vm) : m ∈ M} is a continuous g-Bessel net for

U with respect to {Vm : m ∈ M}. By Theorem 4.3 and that it is g-frame, T is surjective. If
Tf =

∫

MΛ∗
mfmdμ(m) = 0 for some f = {fm : m ∈ M} ∈⊕m∈MVm, according to the definition

of continuous g-Riesz basis we have Λ∗
mfm = 0 for any m ∈ M, and Λm /= 0, so fm = 0 for any

m ∈M, namely f = 0. Hence T is injective.
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Now we let the synthesis operator T be homeomorphism. By Theorem 4.3 {Λm ∈
End∗

A(U,Vm) : m ∈ M} is a continuous g-frame for U with respect to {Vm : m ∈ M}. It is
obviouse that Λm /= 0 for any m ∈ M. Since T is injective, so if Tf =

∫

MΛ∗
mfmdμ(m) = 0, then

f = {fm : m ∈ M} = 0, so Λ∗
mfm = 0. Therefore {Λm ∈ End∗

A(U,Vm) : m ∈ M} is a continuous
g-Riesz forU with respect to {Vm : m ∈M}.

Theorem 4.7. Let {Λm ∈ End∗
A(U,Vm) : m ∈ M} be a continuous g-frame for U with respect to

{Vm : m ∈ M}, with g-frame bounds A1, B1 ≥ 0. Let Γm ∈ End∗
A(U,Vm) for any m ∈ M. Then the

following are equivalent:

(1) {Γm ∈ End∗
A(U,Vm) : m ∈ M} is a continuous g-frame for U with respect to {Vm : m ∈

M};
(2) there exists a constantN > 0, such that for any f ∈ U, one has

∥
∥
∥
∥

∫

M

〈

(Λm − Γm)f, (Λm − Γm)f
〉

dμ(m)
∥
∥
∥
∥

≤Nmin
(∥
∥
∥
∥

∫

M

〈

Λmf,Λmf
〉

dμ(m)
∥
∥
∥
∥
,

∥
∥
∥
∥

∫

M

〈

Γmf,Γmf
〉

dμ(m)
∥
∥
∥
∥

)

.

(4.7)

Proof. First we let {Γm ∈ End∗
A(U,Vm) : m ∈ M} be a continuous g-frame for U with respect

to {Vm : m ∈M}with bounds A2, B2 > 0. Then for any f ∈ U, we have

∥
∥
∥
∥

∫

M

〈

(Λm − Γm)f, (Λm − Γm)f
〉

dμ(m)
∥
∥
∥
∥

=
∥
∥
{

(Λm − Γm)f
}

m∈M
∥
∥
2

≤ ∥∥{Λmf
}

m∈M
∥
∥
2 +
∥
∥
{

Γmf
}

m∈M
∥
∥
2

=
∥
∥
∥
∥

∫

M

〈

Λmf,Λmf
〉

dμ(m)
∥
∥
∥
∥
+
∥
∥
∥
∥

∫

M

〈

Γmf,Γmf
〉

dμ(m)
∥
∥
∥
∥

≤
∥
∥
∥
∥

∫

M

〈

Λmf,Λmf
〉

dμ(m)
∥
∥
∥
∥
+ B2

∥
∥f
∥
∥
2

≤
∥
∥
∥
∥

∫

M

〈

Λmf,Λmf
〉

dμ(m)
∥
∥
∥
∥
+
B2

A1

∥
∥
∥
∥

∫

M

〈

Λmf,Λmf
〉

dμ(m)
∥
∥
∥
∥

=
(

1 +
B2

A1

)∥
∥
∥
∥

∫

M

〈

Λmf,Λmf
〉

dμ(m)
∥
∥
∥
∥
.

(4.8)

Similarly we can obtain

∥
∥
∥
∥

∫

M

〈

(Λm − Γm)f, (Λm − Γm)f
〉

dμ(m)
∥
∥
∥
∥
≤
(

1 +
B1

A2

)∥
∥
∥
∥

∫

M

〈

Λmf,Λmf
〉

dμ(m)
∥
∥
∥
∥
. (4.9)

LetN = min{1 + B2/A1, 1 + B1/A2}; then inequality (4.7) holds.
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Next we suppose that inequality (4.7) holds. For any f ∈ U, we have

A1
∥
∥f
∥
∥
2 ≤
∥
∥
∥
∥

∫

M

〈

Λmf,Λmf
〉

dμ(m)
∥
∥
∥
∥
=
∥
∥{Λmf}m∈M

∥
∥
2

≤ ∥∥{(Λm − Γm)f
}

m∈M
∥
∥
2 +
∥
∥
{

Γmf
}

m∈M
∥
∥
2

=
∥
∥
∥
∥

∫

M

〈

(Λm − Γm)f, (Λm − Γm)f
〉

dμ(m)
∥
∥
∥
∥
+
∥
∥
∥
∥

∫

M

〈

Γmf,Γmf
〉

dμ(m)
∥
∥
∥
∥

≤N
∥
∥
∥
∥

∫

M

〈

Γmf,Γmf
〉

dμ(m)
∥
∥
∥
∥
+
∥
∥
∥
∥

∫

M

〈

Γmf,Γmf
〉

dμ(m)
∥
∥
∥
∥

= (N + 1)
∥
∥
∥
∥

∫

M

〈

Γmf,Γmf
〉

dμ(m)
∥
∥
∥
∥
.

(4.10)

Also we can obtain

∥
∥
∥
∥

∫

M

〈

Γmf,Γmf
〉

dμ(m)
∥
∥
∥
∥
≤ ∥∥{Λmf

}

m∈M
∥
∥
2 +
∥
∥
{

(Λm − Γm)f
}

m∈M
∥
∥
2

=
∥
∥
∥
∥

∫

M

〈

Λmf,Λmf
〉

dμ(m)
∥
∥
∥
∥
+
∥
∥
∥
∥

∫

M

〈

(Λm − Γm)f, (Λm − Γm)f
〉

dμ(m)
∥
∥
∥
∥

≤N
∥
∥
∥
∥

∫

M

〈

Λmf,Λmf
〉

dμ(m)
∥
∥
∥
∥
+
∥
∥
∥
∥

∫

M

〈

Λmf,Λmf
〉

dμ(m)
∥
∥
∥
∥

= (N + 1)
∥
∥
∥
∥

∫

M

〈

Λmf,Λmf
〉

dμ(m)
∥
∥
∥
∥
≤ B1(N + 1)

∥
∥f
∥
∥
2
.

(4.11)

Next we will introduce a bounded operator L about two g-Bessel sequences in
Hilbert C∗-module. The idea is derived from the operator SVW which was considered for
fusion frames by Găvruţa in [35]. In this paper, we will use the operator L to characterize
the g-frames of Hilbert C∗-module further. Let {Λm ∈ End∗

A(U,Vm) : m ∈ M} and
{Γm ∈ End∗

A(U,Vm) : m ∈ M} be two g-Bessel sequences for U with respect to {Vm :
m ∈ M}, with Bessel bounds B1, B2 > 0, respectively. Then there exists a well-defined
operator

L : U −→ U, Lf =
∫

M

Γ∗mΛmfdμ(m) ∀f ∈ U. (4.12)
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As a matter of fact, for any f ∈ U, we have

∥
∥
∥
∥

∫

M

Γ∗mΛmfdμ(m)
∥
∥
∥
∥

2

= sup
g∈U,
‖g‖=1

∥
∥
∥
∥

〈∫

M

Γ∗mΛmfdμ(m), g
〉∥
∥
∥
∥

2

= sup
g∈U,
‖g‖=1

∥
∥
∥
∥

∫

M

〈

Λmf,Γmg
〉

dμ(m)
∥
∥
∥
∥

2

≤ sup
g∈U,
‖g‖=1

∥
∥
∥
∥

∫

M

〈

Λmf,Λmf
〉

dμ(m)
∥
∥
∥
∥

∥
∥
∥
∥

∫

M

〈

Γmg,Γmg
〉

dμ(m)
∥
∥
∥
∥

≤ B2

∥
∥
∥
∥

∫

M

〈

Λmf,Λmf
〉

dμ(m)
∥
∥
∥
∥
.

(4.13)

It is easy to know that L∗f =
∫

MΛ∗
mΓmfdμ(m) and ‖L‖ ≤

√

B1B2.

Theorem 4.8. Let {Λm ∈ End∗
A(U,Vm) : m ∈ M} be a continuous g-frame for U with respect to

{Vm : m ∈ M}, with g-frame bounds A1, B1 ≥ 0. Suppose that {Γm ∈ End∗
A(U,Vm) : m ∈ M} is a

continuous g-Bessel net for U with respect to {Vm : m ∈ M}. If L is surjective, then {Γm : m ∈ M}
is a continuous g-frame forU with respect to {Vm : m ∈M}.

On the contrary, if {Λm ∈ End∗
A(U,Vm) : m ∈ M} is a continuous g-Riesz basis for U with

respect to {Vm : m ∈M}, then L is surjective.

Proof. Suppose that {Λm ∈ End∗
A(U,Vm) : m ∈M} is a continuous g-frame forU with respect

to {Vm : m ∈ M}. By Theorem 4.3, we can define the synthesis operator T of (4.12). It is easy
to check that the adjoint operator of T is analysis operator as follows:

T ∗ : U −→
⊕

m∈M
Vm by T ∗(f

)

= {Λm : m ∈M} (4.14)

for any f ∈ U.
On the other hand, since {Γm ∈ End∗

A(U,Vm) : m ∈ M} is a continuous g-Bessel net
for U with respect to {Vm : m ∈ M}, by Corollary 4.4 we also can define the corresponding
operator Q :

⊕

m∈MVm → U, Q(g) =
∫

M Γ∗m(gm)dμ(m).
Hence we have Lf =

∫

M Γ∗mΛfdμ(m) = QT ∗f for any f ∈ U, namely, L = QT ∗. Since
L is surjective, then for any f ∈ U, there exists g ∈ U such that f = Lg = QT ∗g, and T ∗g ∈
⊕

m∈MVm, it follows that Q is surjective. By Theorem 4.3 we know that {Γm ∈ End∗
A(U,Vm) :

m ∈M} is a continuous g-frame forU with respect to {Vm : m ∈M}.
On the contrary, suppose that {Λm ∈ End∗

A(U,Vm) : m ∈ M} is a continuous g-Riesz
basis and {Γm ∈ End∗

A(U,Vm) : m ∈ M} is a continuous g-frame for U with respect to {Vm :
m ∈ M}. By Theorem 4.6, T is homeomorphous, so is T ∗. By Theorem 4.3 Q is surjective,
therefore L = QT ∗ is surjective.
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Theorem 4.9. Let {Λm ∈ End∗
A(U,Vm) : m ∈ M} be a continuous g-Riesz basis, {Γm ∈

End∗
A(U,Vm) : m ∈ M} is a continuous g-Bessel net for U with respect to {Vm : m ∈ M}. Then

{Γm : m ∈ M} a continuous g-Riesz basis for U with respect to {Vm : m ∈ M} if and only if L is
invertible.

Proof. We first suppose that L is invertible. Since {Λm ∈ End∗
A(U,Vm) : m ∈ M} is a g-

Riesz basis, {Γm ∈ End∗
A(U,Vm) : m ∈ M} is a g-Bessel sequence for U with respect to

{Vm : m ∈M}, by Theorem 4.3 and Corollary 4.4 we can define the operators T,Qmentioned
before and T is homeomorphous, hence T ∗ is also invertible. From the proof of Theorem 4.7
we know that L = QT ∗. Since L is invertible, so is Q. By Theorem 4.6 we have that {Γm ∈
End∗

A(U,Vm) : m ∈M} is a g-Riesz basis forU with respect to {Vm : m ∈M}.
Now we let {Λm ∈ End∗

A(U,Vm) : m ∈ M} and {Γm ∈ End∗
A(U,Vm) : m ∈ M} be two

g-Riesz basis forU with respect to {Vm : m ∈M}. By Theorem 4.6 both T,Q are invertible, so
L = QT ∗ is invertible too.

5. Some Equalities for Continuous g-frames in Hilbert C∗-Modules

Some equalities for frames involving the real parts of some complex numbers have been
established in [36]. These equalities generalized in [30] for g-frames in Hilbert C∗-modules.
In this section, we generalize the equalities to a more general form which generalized before
equalities and we deduce some equalities for g-frames in Hilbert C∗-modules to alternate
dual g-frame.

In [37], the authors verified a longstanding conjecture of the signal processing
community: a signal can be reconstructed without information about the phase. While
working on efficient algorithms for signal reconstruction, the authors of [38] established the
remarkable Parseval frame equality given below.

Theorem 5.1. If {fj : j ∈ J} is a Parseval frame for Hilbert spaceH, then for anyK ⊂ J and f ∈ H,
one has

∑

j∈K

∣
∣
〈

f, fj
〉∣
∣
2 −
∥
∥
∥
∥
∥
∥

∑

j∈K

〈

f, fj
〉

fj

∥
∥
∥
∥
∥
∥

2

=
∑

j∈Kc

∣
∣
〈

f, fj
〉∣
∣
2 −
∥
∥
∥
∥
∥
∥

∑

j∈Kc

〈

f, fj
〉

fj

∥
∥
∥
∥
∥
∥

2

. (5.1)

Theorem 5.1 was generalized to alternate dual frames [36]. If {fj : j ∈ J} is a frame,
then frame {gj : j ∈ J} is called alternate dual frame of {fj : j ∈ J} if for any f ∈ H,
f =

∑

j∈J〈f, gj〉fj .

Theorem 5.2. If {fj : j ∈ J} is a frame for Hilbert space H and {gj : j ∈ J} is an alternate dual
frame of {fj : j ∈ J}, then for any K ⊂ J and f ∈ H, one has

Re

⎛

⎝
∑

j∈K

〈

f, gj
〉〈

f, fj
〉

⎞

⎠ −
∥
∥
∥
∥
∥
∥

∑

j∈K

〈

f, gj
〉

fj

∥
∥
∥
∥
∥
∥

2

= Re

⎛

⎝
∑

j∈Kc

〈

f, gj
〉〈

f, fj
〉

⎞

⎠ −
∥
∥
∥
∥
∥
∥

∑

j∈Kc

〈

f, gj
〉

fj

∥
∥
∥
∥
∥
∥

2

.

(5.2)
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Recently, Zhu and Wu in [39] generalized equality (5.2) to a more general form which
does not involve the real parts of the complex numbers.

Theorem 5.3. If {fj : j ∈ J} is a frame for Hilbert space H and {gj : j ∈ J} is an alternate dual
frame of {fj : j ∈ J}, then for any K ⊂ J and f ∈ H, one has

⎛

⎝
∑

j∈K

〈

f, gj
〉〈

f, fj
〉

⎞

⎠ −
∥
∥
∥
∥
∥
∥

∑

j∈K

〈

f, gj
〉

fj

∥
∥
∥
∥
∥
∥

2

=

⎛

⎝
∑

j∈Kc

〈

f, gj
〉〈

f, fj
〉

⎞

⎠ −
∥
∥
∥
∥
∥
∥

∑

j∈Kc

〈

f, gj
〉

fj

∥
∥
∥
∥
∥
∥

2

. (5.3)

Now, we extended this equality to continuous g-frames and g-frames in Hilbert C∗-
modules and Hilbert spaces. LetH be a Hilbert C∗-module. If {Λm ∈ End∗

A(U,Vm) : m ∈ M}
is a continuous g-frame for U with respect to {Vm : m ∈ M}, then continuous g-frame {Γm ∈
End∗

A(U,Vm) : m ∈ M} is called alternate dual continuous g-frame of {Λm ∈ End∗
A(U,Vm) :

m ∈M} if for any f ∈ H, f =
∫

M〈f,Γmf〉Λmfdμ(m).

Lemma 5.4 (see [30]). Let H be a Hilbert C∗-module. If P,Q ∈ End∗
A(H,H) are two bounded

A-linear operators inH and P +Q = IH , then one has

P − P ∗P = Q∗ −Q∗Q. (5.4)

Now, we present main theorem of this section. In following, some result of this
theorem for the discrete case will be present.

Theorem 5.5. Let {Λm ∈ End∗
A(U,Vm) : m ∈ M} be a continuous g-frame, for Hilbert C∗-module

U with respect to {Vm : m ∈M} and continuous g-frame {Γm ∈ End∗
A(U,Vm) : m ∈M} is alternate

dual continuous g-frame of {Λm ∈ End∗
A(U,Vm) : m ∈ M}, then for any measurable subset K ⊂ M

and f ∈ H, one has

∫

K

〈f,Γmf〉〈f,Λmf〉∗dμ(m) −
∣
∣
∣
∣

∫

K

〈

f,Γmf
〉

Λmfdμ(m)
∣
∣
∣
∣

2

=
(∫

Kc

〈

f,Γmf
〉〈

f,Λmf
〉∗
dμ(m)

)∗
−
∣
∣
∣
∣
∣
∣

∑

j∈Kc

〈

f,Γmf
〉

Λmfdμ(m)

∣
∣
∣
∣
∣
∣

2

.

(5.5)

Proof. For any measurable subset K ⊂ M, let the operator UK be defined for any f ∈ H by
UKf =

∫

K〈f,Γmf〉Λmfdμ(m).
Then it is easy to prove that the operator UK is well defined and the integral

∫

K〈f,Γmf〉Λmfdμ(m) it is finite. By definition alternate dual continuous g-frameUK+UKc =1.
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Thus, by Lemma 5.4 we have

∫

K

〈

f,Γmf
〉〈

f,Λmf
〉∗
dμ(m) −

∣
∣
∣
∣

∫

K

〈

f,Γmf
〉

Λmfdμ(m)
∣
∣
∣
∣

2

=
∫

K

〈〈

f,Γmf
〉

Λmf, f
〉

dμ(m) − 〈UKf,UKf
〉

=
〈

UKf, f
〉 − 〈U∗

KUKf, f
〉

=
〈

U∗
Kcf, f

〉 − 〈U∗
KcUKcf, f

〉

=
〈

f,UKcf
〉 − 〈UKcf,UKcf

〉

=
(∫

Kc

〈

f,Γmf
〉〈

f,Λmf
〉∗
dμ(m)

)∗
−
∣
∣
∣
∣
∣
∣

∑

j∈Kc

〈

f,Γmf
〉

Λmfdμ(m)

∣
∣
∣
∣
∣
∣

2

.

(5.6)

Hence the theorem holds. The proof is completed.

Corollary 5.6. Let {Λj ∈ End∗
A(U,Vj) : j ∈ J} be a discrete g-frame, for Hilbert C∗-module U with

respect to {Vj : j ∈ J}, and discrete g-frame {Γj ∈ End∗A(U,Vj) : j ∈ J} is alternate dual discrete
g-frame of {Λj ∈ End∗A(U,Vj) : j ∈ J}, then for any subset K ⊂ J and f ∈ H, one has

∑

j∈K

〈

f,Γjf
〉〈

f,Λjf
〉∗ −

∣
∣
∣
∣
∣
∣

∑

j∈K

〈

f,Γjf
〉

Λjf

∣
∣
∣
∣
∣
∣

2

=

⎛

⎝
∑

j∈Kc

〈

f,Γjf
〉〈

f,Λjf
〉∗
⎞

⎠

∗

−
∣
∣
∣
∣
∣
∣

∑

j∈Kc

〈

f,Γjf
〉

Λjf

∣
∣
∣
∣
∣
∣

2

.

(5.7)

Corollary 5.7. Let {Λj ∈ L(U,Vj) : j ∈ J} be a g-frame, for Hilbert space U with respect to {Vj :
j ∈ J} and g-frame {Γj ∈ L(U,Vj) : j ∈ J} is alternate dual g-frame of {Λj ∈ L(U,Vj) : j ∈ J}, then
for any measurable subset K ⊂ J and f ∈ H, one has

∑

j∈K

〈

f,Γjf
〉〈

f,Λjf
〉 −
∣
∣
∣
∣
∣
∣

∑

j∈K

〈

f,Γjf
〉

Λjf

∣
∣
∣
∣
∣
∣

2

=

⎛

⎝
∑

j∈Kc

〈

f,Γjf
〉〈

f,Λjf
〉

⎞

⎠ −
∣
∣
∣
∣
∣
∣

∑

j∈Kc

〈

f,Γjf
〉

Λjf

∣
∣
∣
∣
∣
∣

2

.

(5.8)

The following results generalize the results in [30] in the case of continuous g-frames.

Lemma 5.8 (see [30]). Let H be a Hilbert C∗-module. If T is a bounded, selfadjoint linear operator
and satisfy 〈Tf, f〉 = 0, for all f ∈ H, then T = 0.



Abstract and Applied Analysis 15

Lemma 5.9 (see [30]). Let H be a Hilbert C∗-module. If P,Q ∈ End∗
A(H,H) are two bounded,

selfadjoint A-linear operators inH and P +Q = IH , then one has

〈

Pf, f
〉

+
∣
∣Qf

∣
∣
2 =
〈

Qf, f
〉

+
∣
∣Pf

∣
∣
2 ≥ 3

4
〈

f, f
〉

. (5.9)

Theorem 5.10. Let {Λm ∈ End∗
A(U,Vm) : m ∈M} be a continuous g-frame, for Hilbert C∗-module

U with respect to {Vm : m ∈M} and let {Λ̃m : m ∈M} be the canonical dual continuous g-frame of
{Λm : m ∈M}, then for any measurable subset K ⊂M and f ∈ U, one has

∫

K

〈

Λmf,Λmf
〉

dμ(m) +
∫

M

〈

Λ̃mSKcf, Λ̃mSKcf
〉

dμ(m)

=
∫

Kc

〈

Λmf,Λmf
〉

dμ(m) +
∫

M

〈

Λ̃mSKf, Λ̃mSKf
〉

dμ(m)

≥ 3
4

∫

M

〈

Λmf,Λmf
〉

dμ(m).

(5.10)

Proof. Since S is an invertible, positive operator on U, and SK + SKc = S, then S−1/2SKS−1/2 +
S−1/2SKcS−1/2 = IU. Let P = S−1/2SKS−1/2, Q = S−1/2SKcS−1/2. By Lemma 5.9, we obtain

〈

S−1/2SKS−1/2f, f
〉

+
∣
∣
∣S−1/2SKcS−1/2f

∣
∣
∣

2
=
〈

S−1/2SKcS−1/2f, f
〉

+
∣
∣
∣S−1/2SKS−1/2f

∣
∣
∣

2 ≥ 3
4
〈

f, f
〉

.

(5.11)

Replacing f by S1/2f , then one has

〈

SKf, f
〉

+
〈

S−1SKcf, SKcf
〉

=
〈

SKcf, f
〉

+
〈

S−1SKf, SKf
〉

≥ 3
4
〈

Sf, f
〉

. (5.12)

On the other hand, we have

〈

SKf, f
〉

=
〈∫

K

Λ∗
mΛmfdμ(m), f

〉

=
∫

K

〈

Λmf,Λmf
〉

dμ(m),

∫

K

〈

Λ̃mf, Λ̃mf
〉

dμ(m) =
∫

K

〈

ΛmS
−1f,ΛmS

−1f
〉

dμ(m) =
∫

K

〈

Λ∗
mΛmS

−1f,ΛmS
−1f
〉

dμ(m)

=
〈∫

K

Λ∗
mΛmS

−1fdμ(m),ΛmS
−1f
〉

=
〈

SS−1f, S−1f
〉

=
〈

f, S−1f
〉

=
〈

S−1f, f
〉

.

(5.13)

Associating with (5.12) the proof is finished.
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Corollary 5.11. Let {fm ∈ H : m ∈ M} be a continuous frame for Hilbert C∗-module H with
canonical dual frame {f̃m ∈ H : m ∈ M}, then for any measurable subset K ⊂ M and f ∈ H, one
has

∫

K

〈

f, fm
〉〈

fm, f
〉

dμ(m) +
∫

M

〈

SKcf, f̃j
〉〈

f̃j , SKcf
〉

dμ(m)

=
∫

Kc

〈

f, fm
〉〈

fm, f
〉

dμ(m) +
∫

M

〈

SKf, f̃j
〉〈

f̃j , SKf
〉

dμ(m).

(5.14)

Proof. For any f ∈ U, if we let Λmf = 〈f, fj〉 in Theorem 5.10, then we get the conclusion.

Theorem 5.12. Let {Λm ∈ End∗
A(U,Vm) : m ∈ M} be a continuous Parseval g-frame, for Hilbert

C∗-moduleU with respect to {Vm : m ∈M}, then for any measurable subsetK ⊂M and f ∈ U, one
has

∫

K

〈

Λmf,Λmf
〉

dμ(m) +
∣
∣
∣
∣

∫

Kc

Λ∗
mΛmfdμ(m)

∣
∣
∣
∣

2

=
∫

Kc

〈

Λmf,Λmf
〉

dμ(m) +
∣
∣
∣
∣

∫

K

Λ∗
mΛmfdμ(m)

∣
∣
∣
∣

2

≥ 3
4
〈

f, f
〉

.

(5.15)

Proof. Since {Λm ∈ End∗
A(U,Vm) : m ∈ M} is a continuous Parseval g-frame in Hilbert C∗-

moduleU with respect to {Vm : m ∈M}, then for any f ∈ U, we have

∫

M

〈

Λmf,Λmf
〉

dμ(m) =
〈

f, f
〉

. (5.16)

So

〈

Sf, f
〉

=
〈∫

M

Λ∗
mΛmfdμ(m), f

〉

=
∫

M

〈

Λmf,Λmf
〉

dμ(m) =
〈

f, f
〉

. (5.17)

Hence for any f ∈ U, we have 〈(S−IU)f, f〉 = 0. Let T = S−IU. Since S is bounded, selfadjoint,
then T ∗ = (S − IU)∗ = S∗ − I∗U = S − IU = T , so T is also bounded, selfadjoint. By Lemma 5.8,
we have T = 0, namely, S = IU, so Λ̃m = ΛmS

−1 = Λm. From (5.16), then we have that: for any
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measurable subset K ⊂M and f ∈ U,

∫

M

〈

Λ̃mSKf, Λ̃mSKf
〉

dμ(m) =
∫

M

〈

ΛmSKf,ΛmSKf
〉

dμ(m)

=
〈

SKf, SKf
〉

=
∣
∣
∣
∣

∫

K

Λ∗
mΛmfdμ(m)

∣
∣
∣
∣

2

,

∫

M

〈

Λ̃mSKcf, Λ̃mSKcf
〉

dμ(m) =
∫

M

〈

ΛmSKcf,ΛmSKcf
〉

dμ(m)

=
〈

SKcf, SKcf
〉

=
∣
∣
∣
∣

∫

Kc

Λ∗
mΛmfdμ(m)

∣
∣
∣
∣

2

.

(5.18)

Combining (5.16) and Theorem 5.10, we get the result.

Corollary 5.13. Let {fm ∈ H : m ∈ M} be a continuous Parseval frame for Hilbert C∗-module H,
then for any measurable subset K ⊂M and f ∈ H, one has

∫

K

〈

f, fm
〉〈

fm, f
〉

dμ(m) +
∣
∣
∣
∣

∫

Kc

〈

f, fj
〉

fjdμ(m)
∣
∣
∣
∣

2

=
∫

Kc

〈

f, fm
〉〈

fm, f
〉

dμ(m) +
∣
∣
∣
∣

∫

K

〈

f, fj
〉

fjdμ(m)
∣
∣
∣
∣

2

.

(5.19)

Corollary 5.14. Let {Λm ∈ End∗A(U,Vm) : m ∈ M} be a continuous λ-tight g-frame, for Hilbert
C∗-moduleU with respect to {Vm : m ∈M}, then for any measurable subsetK ⊂M and f ∈ U, one
has

λ

∫

K

〈

Λmf,Λmf
〉

dμ(m) +
∣
∣
∣
∣

∫

Kc

Λ∗
mΛmfdμ(m)

∣
∣
∣
∣

2

= λ
∫

Kc

〈

Λmf,Λmf
〉

dμ(m) +
∣
∣
∣
∣

∫

K

Λ∗
mΛmfdμ(m)

∣
∣
∣
∣

2

.

(5.20)

Proof. Since {Λm : m ∈ M} is a continuous λ-tight g-frame, then {Λm : m ∈ M} is a
continuous g-Parseval frame, by Theorem 5.12 we know that the conclusion holds.

Corollary 5.15. Let {fm ∈ H : m ∈ M} be a continuous λ-tight frame for Hilbert C∗-module H
then for any measurable subset K ⊂M and f ∈ H, one has

λ

∫

K

〈

f, fm
〉〈

fm, f
〉

dμ(m) +
∣
∣
∣
∣

∫

Kc

〈

f, fj
〉

fjdμ(m)
∣
∣
∣
∣

2

= λ
∫

Kc

〈

f, fm
〉〈

fm, f
〉

dμ(m) +
∣
∣
∣
∣

∫

K

〈

f, fj
〉

fjdμ(m)
∣
∣
∣
∣

2

.

(5.21)
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Corollary 5.16. Let {Λm ∈ End∗A(U,Vm) : m ∈ M} be a continuous λ-tight g-frame, for Hilbert
C∗-module U with respect to {Vm : m ∈ M}, then for any measurable subset K,L ⊂ M,K

⋂
L = φ

and f ∈ U, one has

∣
∣SK⋃Lf

∣
∣
2 − ∣∣SKc\Lf

∣
∣
2 =
∣
∣SKf

∣
∣
2 − ∣∣SKcf

∣
∣
2 + 2λ

∫

L

〈

Λmf,Λmf
〉

dμ(m). (5.22)

Proof. Since for any f ∈ U, by Corollary 5.14, we get

∣
∣
∣SK⋃Lf |2−

∣
∣
∣SKc\Lf |2 = λ

∫

K
⋃
L

〈

Λmf,Λmf
〉

dμ(m) − λ
∫

Kc\L

〈

Λmf,Λmf
〉

dμ(m)

= λ
∫

K

〈

Λmf,Λmf
〉

dμ(m) + λ
∫

L

〈

Λmf,Λmf
〉

dμ(m)

− λ
∫

Kc

〈

Λmf,Λmf
〉

dμ(m) + λ
∫

L

〈

Λmf,Λmf
〉

dμ(m)

=
∥
∥SKf

∥
∥
2 − ∥∥SKcf

∥
∥
2 + 2λ

∫

L

〈

Λmf,Λmf
〉

dμ(m).

(5.23)
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[17] P. G. Casazza and J. Kovačević, “Equal-norm tight frames with erasures,” Advances in Computational
Mathematics, vol. 18, no. 2–4, pp. 387–430, 2003.
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