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Using fixed point method, we prove the generalized Hyers-Ulam stability of the following
additive-quadratic-cubic-quartic functional equation f(x+2y)+f(x−2y) = 4f(x+y)+4f(x−y)−
6f(x) + f(2y) + f(−2y) − 4f(y) − 4f(−y) in non-Archimedean Banach spaces.

1. Introduction and Preliminaries

A valuation is a function | · | from a fieldK into [0,∞) such that 0 is the unique element having
the 0 valuation, |rs| = |r| · |s|, and the triangle inequality holds, that is,

|r + s| ≤ |r| + |s|, ∀r, s ∈ K. (1.1)

A fieldK is called a valued field ifK carries a valuation. The usual absolute values of R and C

are examples of valuations.
Let us consider a valuation which satisfies a stronger condition than the triangle

inequality. If the triangle inequality is replaced by

|r + s| ≤ max{|r|, |s|}, ∀r, s ∈ K, (1.2)

then the function | · | is called a non-Archimedean valuation, and the field is called a non-
Archimedean field. Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N. A trivial example of
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a non-Archimedean valuation is the function | · | taking everything except for 0 into 1 and
|0| = 0.

Throughout this paper, we assume that the base field is a non-Archimedean field,
hence call it simply a field.

Definition 1.1 (see [1]). Let X be a vector space over a field K with a non-Archimedean
valuation | · |. A function ‖ · ‖ : X → [0,∞) is said to be a non-Archimedean norm if it satisfies
the following conditions:

(i) ‖x‖ = 0 if and only if x = 0;

(ii) ‖rx‖ = |r|‖x‖ (r ∈ K,x ∈ X);

(iii) the strong triangle inequality

∥
∥x + y

∥
∥ ≤ max

{‖x‖,∥∥y∥∥}, ∀x, y ∈ X (1.3)

holds. Then (X, ‖ · ‖) is called a non-Archimedean normed space.

Definition 1.2. (i) Let {xn} be a sequence in a non-Archimedean normed space X. Then the
sequence {xn} is called Cauchy if for a given ε > 0, there is a positive integerN such that

‖xn − xm‖ ≤ ε (1.4)

for all n,m ≥N.
(ii) Let {xn} be a sequence in a non-Archimedean normed space X. Then the sequence

{xn} is called convergent if for a given ε > 0, there are a positive integerN and an x ∈ X such
that

‖xn − x‖ ≤ ε (1.5)

for all n ≥N. Then we call x ∈ X a limit of the sequence {xn}, and denote it by limn→∞xn = x.
(iii) If every Cauchy sequence in X converges, then the non-Archimedean normed

space X is called a non-Archimedean Banach space.

The stability problem of functional equations originated from a question of Ulam [2]
concerning the stability of group homomorphisms. Hyers [3] gave a first affirmative partial
answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by
Aoki [4] for additive mappings and by Rassias [5] for linear mappings by considering an
unbounded Cauchy difference. The paper of Rassias [5] has provided a lot of influence in the
development of what we call generalized Hyers-Ulam stability or asHyers-Ulam-Rassias stability
of functional equations. A generalization of the Rassias theoremwas obtained by Găvruţa [6]
by replacing the unbounded Cauchy difference by a general control function in the spirit of
Rassias’ approach.

The functional equation

f
(

x + y
)

+ f
(

x − y) = 2f(x) + 2f
(

y
)

(1.6)
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is called a quadratic functional equation. In particular, every solution of the quadratic functional
equation is said to be a quadratic mapping. A generalized Hyers-Ulam stability problem for the
quadratic functional equation was proved by Skof [7] for mappings f : X → Y , where X is
a normed space and Y is a Banach space. Cholewa [8] noticed that the theorem of Skof is
still true if the relevant domain X is replaced by an Abelian group. Czerwik [9] proved the
generalized Hyers-Ulam stability of the quadratic functional equation.

In [10], Jun and Kim considered the following cubic functional equation:

f
(

2x + y
)

+ f
(

2x − y) = 2f
(

x + y
)

+ 2f
(

x − y) + 12f(x), (1.7)

which is called a cubic functional equation and every solution of the cubic functional equation
is said to be a cubic mapping. In [11], Lee et al. considered the following quartic functional
equation:

f
(

2x + y
)

+ f
(

2x − y) = 4f
(

x + y
)

+ 4f
(

x − y) + 24f(x) − 6f
(

y
)

, (1.8)

which is called a quartic functional equation and every solution of the quartic functional
equation is said to be a quartic mapping.

The stability problems of several functional equations have been extensively
investigated by a number of authors and there are many interesting results concerning this
problem (see [12–27]).

Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on X if d
satisfies

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We recall a fundamental result in fixed point theory.

Theorem 1.3 (see [28, 29]). Let (X, d) be a complete generalized metric space and let J : X → X
be a strictly contractive mapping with Lipschitz constant L < 1. Then for each given element x ∈ X,
either

d
(

Jnx, Jn+1x
)

= ∞ (1.9)

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, for all n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ (1/(1 − L))d(y, Jy) for all y ∈ Y .

In 1996, Isac and Rassias [30] were the first to provide applications of stability theory
of functional equations for the proof of new fixed point theorems with applications. By
using fixed point methods, the stability problems of several functional equations have been
extensively investigated by a number of authors (see [31–36]).
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This paper is organized as follows: in Section 2, using the fixed point method, we
prove the generalizedHyers-Ulam stability of the additive-quadratic-cubic-quartic functional
equation

f
(

x + 2y
)

+ f
(

x − 2y
)

= 4f
(

x + y
)

+ 4f
(

x − y) − 6f(x) + f
(

2y
)

+ f
(−2y) − 4f

(

y
) − 4f

(−y)
(1.10)

in non-Archimedean Banach spaces for an odd case. In Section 3, using the fixed point
method, we prove the generalized Hyers-Ulam stability of the additive-quadratic-cubic-
quartic functional equation (1.10) in non-Archimedean Banach spaces for an even case.

Throughout this paper, assume thatX is a non-Archimedean normed vector space and
that Y is a non-Archimedean Banach space.

2. Generalized Hyers-Ulam Stability of the Functional Equation (1.10):
An Odd Case

One can easily show that an odd mapping f : X → Y satisfies (1.10) if and only if the odd
mapping f : X → Y is an additive-cubic mapping, that is,

f
(

x + 2y
)

+ f
(

x − 2y
)

= 4f
(

x + y
)

+ 4f
(

x − y) − 6f(x). (2.1)

It was shown in Lemma 2.2 of [37] that g(x) := f(2x) − 2f(x) and h(x) := f(2x) − 8f(x) are
cubic and additive, respectively, and that f(x) = (1/6)g(x) − (1/6)h(x).

One can easily show that an even mapping f : X → Y satisfies (1.10) if and only if the
even mapping f : X → Y is a quadratic-quartic mapping, that is,

f
(

x + 2y
)

+ f
(

x − 2y
)

= 4f
(

x + y
)

+ 4f
(

x − y) − 6f(x) + 2f
(

2y
) − 8f

(

y
)

. (2.2)

It was shown in Lemma 2.1 of [38] that g(x) := f(2x) − 4f(x) and h(x) := f(2x) − 16f(x) are
quartic and quadratic, respectively, and that f(x) = (1/12)g(x) − (1/12)h(x).

For a given mapping f : X → Y , we define

Df
(

x, y
)

:= f
(

x + 2y
)

+ f
(

x − 2y
) − 4f

(

x + y
) − 4f

(

x − y) + 6f(x)

− f(2y) − f(−2y) + 4f
(

y
)

+ 4f
(−y)

(2.3)

for all x, y ∈ X.
We prove the generalized Hyers-Ulam stability of the functional equationDf(x, y) = 0

in non-Archimedean Banach spaces: an odd case.

Theorem 2.1. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(

x, y
) ≤ L

|8|ϕ
(

2x, 2y
)

(2.4)
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for all x, y ∈ X. Let f : X → Y be an odd mapping satisfying

∥
∥Df

(

x, y
)∥
∥ ≤ ϕ(x, y) (2.5)

for all x, y ∈ X. Then there is a unique cubic mapping C : X → Y such that

∥
∥f(2x) − 2f(x) − C(x)∥∥ ≤ L

|8| − |8|L max
{|4|ϕ(x, x), ϕ(2x, x)} (2.6)

for all x ∈ X.

Proof. Letting x = y in (2.5), we get

∥
∥f

(

3y
) − 4f

(

2y
)

+ 5f
(

y
)∥
∥ ≤ ϕ(y, y) (2.7)

for all y ∈ X.
Replacing x by 2y in (2.5), we get

∥
∥f

(

4y
) − 4f

(

3y
)

+ 6f
(

2y
) − 4f

(

y
)∥
∥ ≤ ϕ(2y, y) (2.8)

for all y ∈ X.
By (2.7) and (2.8),

∥
∥f

(

4y
) − 10f

(

2y
)

+ 16f
(

y
)∥
∥

≤ max
{∥
∥4

(

f
(

3y
) − 4f

(

2y
)

+ 5f
(

y
))∥
∥,

∥
∥f

(

4y
) − 4f

(

3y
)

+ 6f
(

2y
) − 4f

(

y
)∥
∥
}

≤ max
{|4| · ∥∥f(3y) − 4f

(

2y
)

+ 5f
(

y
)∥
∥,

∥
∥f

(

4y
) − 4f

(

3y
)

+ 6f
(

2y
) − 4f

(

y
)∥
∥
}

≤ max
{|4|ϕ(y, y), ϕ(2y, y)}

(2.9)

for all y ∈ X.
Letting y := x/2 and g(x) := f(2x) − 2f(x) for all x ∈ X, we get

∥
∥
∥g(x) − 8g

(x

2

)∥
∥
∥ ≤ max

{

|4|ϕ
(x

2
,
x

2

)

, ϕ
(

x,
x

2

)}

(2.10)

for all x ∈ X.
Consider the set

S :=
{

g : X −→ Y
}

, (2.11)

and introduce the generalized metric on S

d
(

g, h
)

= inf
{

μ ∈ R+ :
∥
∥g(x) − h(x)∥∥ ≤ μ(max

{|4|ϕ(x, x), ϕ(2x, x), ∀x ∈ X})}

, (2.12)
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where, as usual, infφ = +∞. It is easy to show that (S, d) is complete. (See the proof of Lemma
2.1 of [39].)

Now we consider the linear mapping J : S → S such that

Jg(x) := 8g
(x

2

)

(2.13)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

∥
∥g(x) − h(x)∥∥ ≤ ε ·max

{|4|ϕ(x, x), ϕ(2x, x)} (2.14)

for all x ∈ X. Hence

∥
∥Jg(x) − Jh(x)∥∥ =

∥
∥
∥8g

(x

2

)

− 8h
(x

2

)∥
∥
∥ ≤ |8|ε L|8| max

{|4|ϕ(x, x), ϕ(2x, x)} (2.15)

for all x ∈ X. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d
(

Jg, Jh
) ≤ Ld(g, h) (2.16)

for all g, h ∈ S.
It follows from (2.10) that

∥
∥
∥g(x) − 8g

(x

2

)∥
∥
∥ ≤ L

|8|
(

max
{|4|ϕ(x, x), ϕ(2x, x)}) (2.17)

for all x ∈ X. So d(g, Jg) ≤ L/|8|.
By Theorem 1.3, there exists a mapping C : X → Y satisfying the following.
(1) C is a fixed point of J , that is,

C
(x

2

)

=
1
8
C(x) (2.18)

for all x ∈ X. The mapping C is a unique fixed point of J in the set

M =
{

h ∈ S : d
(

g, h
)

<∞}

. (2.19)

This implies that C is a unique mapping satisfying (2.18) such that there exists a μ ∈ (0,∞)
satisfying

∥
∥g(x) − C(x)∥∥ ≤ μ ·max

{|4|ϕ(x, x), ϕ(2x, x)} (2.20)

for all x ∈ X; since g : X → Y is odd, C : X → Y is an odd mapping.
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(2) d(Jng, C) → 0 as n → ∞. This implies the equality

lim
n→∞

8ng
( x

2n
)

= C(x) (2.21)

for all x ∈ X.
(3) d(g,C) ≤ (1/(1 − L))d(g, Jg), which implies the inequality

d
(

g,C
) ≤ L

|8| − |8|L. (2.22)

This implies that the inequality (2.6) holds.
By (2.5),

∥
∥
∥8nDg

( x

2n
,
y

2n
)∥
∥
∥ ≤ |8|nmax

{

ϕ

(
2x
2n
,
2y
2n

)

, |2|ϕ
( x

2n
,
y

2n
)}

(2.23)

for all x, y ∈ X and all n ∈ N. So

∥
∥
∥8nDg

( x

2n
,
y

2n
)∥
∥
∥ ≤ |8|n L

n

|8|n max
{

ϕ
(

2x, 2y
)

, |2|ϕ(x, y)} (2.24)

for all x, y ∈ X and all n ∈ N. So

∥
∥DC

(

x, y
)∥
∥ = 0 (2.25)

for all x, y ∈ X. Thus the mapping C : X → Y is cubic, as desired.

Corollary 2.2. Let θ and p be positive real numbers with p < 3. Let f : X → Y be an odd mapping
satisfying

∥
∥Df

(

x, y
)∥
∥ ≤ θ(‖x‖p + ∥

∥y
∥
∥
p) (2.26)

for all x, y ∈ X. Then there exists a unique cubic mapping C : X → Y such that

∥
∥f(2x) − 2f(x) − C(x)∥∥ ≤ max

{

2 · |4|, |2|p + 1
} θ

|2|p − |8| ‖x‖
p (2.27)

for all x ∈ X.

Proof. The proof follows from Theorem 2.1 by taking

ϕ
(

x, y
)

:= θ
(‖x‖p + ∥

∥y
∥
∥
p) (2.28)

for all x, y ∈ X. Then we can choose L = |8|/|2|p and we get the desired result.
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Theorem 2.3. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(

x, y
) ≤ |8|Lϕ

(x

2
,
y

2

)

(2.29)

for all x, y ∈ X. Let f : X → Y be an odd mapping satisfying (2.5). Then there is a unique cubic
mapping C : X → Y such that

∥
∥f(2x) − 2f(x) − C(x)∥∥ ≤ 1

|8| − |8|L max
{|4|ϕ(x, x), ϕ(2x, x)} (2.30)

for all x ∈ X.

Proof. It follows from (2.10) that

∥
∥
∥
∥
g(x) − 1

8
g(2x)

∥
∥
∥
∥
≤ 1

|8| max
{|4|ϕ(x, x), ϕ(2x, x)} (2.31)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.1.

Theorem 2.4. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(

x, y
) ≤ L

|2|ϕ
(

2x, 2y
)

(2.32)

for all x, y ∈ X. Let f : X → Y be an odd mapping satisfying (2.5). Then there is a unique additive
mapping A : X → Y such that

∥
∥f(2x) − 8f(x) −A(x)

∥
∥ ≤ L

|2| − |2|L max
{|4|ϕ(x, x), ϕ(2x, x)} (2.33)

for all x ∈ X.

Proof. Letting y := x/2 and g(x) := f(2x) − 8f(x) for all x ∈ X in (2.9), we get

∥
∥
∥g(x) − 2g

(x

2

)∥
∥
∥ ≤ max

{

|4|ϕ
(x

2
,
x

2

)

, ϕ
(

x,
x

2

)}

(2.34)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.1.
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Corollary 2.5. Let θ and p be positive real numbers with p < 1. Let f : X → Y be an odd mapping
satisfying (2.26). Then there exists a unique additive mapping C : X → Y such that

∥
∥f(2x) − 8f(x) −A(x)

∥
∥ ≤ max

{

2 · |4|, |2|p + 1
} θ

|2|p − |2| ‖x‖
p (2.35)

for all x ∈ X.

Proof. The proof follows from Theorem 2.4 by taking

ϕ
(

x, y
)

:= θ
(‖x‖p + ∥

∥y
∥
∥
p) (2.36)

for all x, y ∈ X. Then we can choose L = |2|/|2|p and we get the desired result.

Theorem 2.6. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(

x, y
) ≤ |2|Lϕ

(x

2
,
y

2

)

(2.37)

for all x, y ∈ X. Let f : X → Y be an odd mapping satisfying (2.5). Then there is a unique additive
mapping A : X → Y such that

∥
∥f(2x) − 8f(x) −A(x)

∥
∥ ≤ 1

|2| − |2|L max
{|4|ϕ(x, x), ϕ(2x, x)} (2.38)

for all x ∈ X.

Proof. It follows from (2.34) that

∥
∥
∥
∥
g(x) − 1

2
g(2x)

∥
∥
∥
∥
≤ 1

|2| max
{|4|ϕ(x, x), ϕ(2x, x)} (2.39)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.1.

3. Generalized Hyers-Ulam Stability of the Functional Equation (1.10):
An Even Case

Now we prove the generalized Hyers-Ulam stability of the functional equation Df(x, y) = 0
in non-Archimedean Banach spaces: an even case.

Theorem 3.1. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(

x, y
) ≤ L

|16|ϕ
(

2x, 2y
)

(3.1)
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for all x, y ∈ X. Let f : X → Y be an even mapping satisfying (2.5) and f(0) = 0. Then there is a
unique quartic mapping Q : X → Y such that

∥
∥f(2x) − 4f(x) −Q(x)

∥
∥ ≤ L

|16| − |16|L max
{|4|ϕ(x, x), ϕ(2x, x)} (3.2)

for all x ∈ X.

Proof. Letting x = y in (2.5), we get

∥
∥f

(

3y
) − 6f

(

2y
)

+ 15f
(

y
)∥
∥ ≤ ϕ(y, y) (3.3)

for all y ∈ X.
Replacing x by 2y in (2.5), we get

∥
∥f

(

4y
) − 4f

(

3y
)

+ 4f
(

2y
)

+ 4f
(

y
)∥
∥ ≤ ϕ(2y, y) (3.4)

for all y ∈ X.
By (3.3) and (3.4),

∥
∥f

(

4y
) − 20f

(

2y
)

+ 64f
(

y
)∥
∥

≤ max
{∥
∥4

(

f
(

3y
) − 6f

(

2y
)

+ 15f
(

y
))∥
∥,

∥
∥f

(

4y
) − 4f

(

3y
)

+ 4f
(

2y
)

+ 4f
(

y
)∥
∥
}

≤ max
{|4| · ∥∥f(3y) − 6f

(

2y
)

+ 15f
(

y
)∥
∥,

∥
∥f

(

4y
) − 4f

(

3y
)

+ 4f
(

2y
)

+ 4f
(

y
)∥
∥
}

≤ max
{|4|ϕ(y, y), ϕ(2y, y)}

(3.5)

for all y ∈ X.
Letting y := x/2 and g(x) := f(2x) − 4f(x) for all x ∈ X, we get

∥
∥
∥g(x) − 16g

(x

2

)∥
∥
∥ ≤ max

{

|4|ϕ
(x

2
,
x

2

)

, ϕ
(

x,
x

2

)}

(3.6)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 3.2. Let θ and p be positive real numbers with p < 4. Let f : X → Y be an even mapping
satisfying (2.26) and f(0) = 0. Then there exists a unique quartic mapping Q : X → Y such that

∥
∥f(2x) − 4f(x) −Q(x)

∥
∥ ≤ max

{

2 · |4|, |2|p + 1
} θ

|2|p − |16| ‖x‖
p (3.7)

for all x ∈ X.
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Proof. The proof follows from Theorem 3.1 by taking

ϕ
(

x, y
)

:= θ
(‖x‖p + ∥

∥y
∥
∥
p) (3.8)

for all x, y ∈ X. Then we can choose L = |16|/|2|p and we get the desired result.

Theorem 3.3. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(

x, y
) ≤ |16|Lϕ

(x

2
,
y

2

)

(3.9)

for all x, y ∈ X. Let f : X → Y be an even mapping satisfying (2.5) and f(0) = 0. Then there is a
unique quartic mapping Q : X → Y such that

∥
∥f(2x) − 4f(x) −Q(x)

∥
∥ ≤ 1

|16| − |16|L max
{|4|ϕ(x, x), ϕ(2x, x)} (3.10)

for all x ∈ X.

Proof. It follows from (3.6) that

∥
∥
∥
∥
g(x) − 1

16
g(2x)

∥
∥
∥
∥
≤ 1

|16| max
{|4|ϕ(x, x), ϕ(2x, x)} (3.11)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.1.

Theorem 3.4. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(

x, y
) ≤ L

|4|ϕ
(

2x, 2y
)

(3.12)

for all x, y ∈ X. Let f : X → Y be an even mapping satisfying (2.5) and f(0) = 0. Then there is a
unique quadratic mapping T : X → Y such that

∥
∥f(2x) − 16f(x) − T(x)∥∥ ≤ L

|4| − |4|L max
{|4|ϕ(x, x), ϕ(2x, x)} (3.13)

for all x ∈ X.

Proof. Letting y := x/2 and g(x) := f(2x) − 16f(x) for all x ∈ X in (3.5), we get

∥
∥
∥g(x) − 4g

(x

2

)∥
∥
∥ ≤ max

{

|4|ϕ
(x

2
,
x

2

)

, ϕ
(

x,
x

2

)}

(3.14)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.1.
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Corollary 3.5. Let θ and p be positive real numbers with p < 2. Let f : X → Y be an even mapping
satisfying (2.26) and f(0) = 0. Then there exists a unique quadratic mapping T : X → Y such that

∥
∥f(2x) − 16f(x) − T(x)∥∥ ≤ max

{

2 · |4|, |2|p + 1
} θ

|2|p − |4| ‖x‖
p (3.15)

for all x ∈ X.

Proof. The proof follows from Theorem 3.4 by taking

ϕ
(

x, y
)

:= θ
(‖x‖p + ∥

∥y
∥
∥
p) (3.16)

for all x, y ∈ X. Then we can choose L = |4|/|2|p and we get the desired result.

Theorem 3.6. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(

x, y
) ≤ |4|Lϕ

(x

2
,
y

2

)

(3.17)

for all x, y ∈ X. Let f : X → Y be an even mapping satisfying (2.5) and f(0) = 0. Then there is a
unique quadratic mapping T : X → Y such that

∥
∥f(2x) − 16f(x) − T(x)∥∥ ≤ 1

|4| − |4|L max
{|4|ϕ(x, x), ϕ(2x, x)} (3.18)

for all x ∈ X.

Proof. It follows from (3.14) that

∥
∥
∥
∥
g(x) − 1

4
g(2x)

∥
∥
∥
∥
≤ 1

|4| max
{|4|ϕ(x, x), ϕ(2x, x)} (3.19)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.1.

For a given f , let fo(x) := ((f(x) − f(−x))/2) and fe(x) := ((f(x) + f(−x))/2). Then
fo is odd and fe is even. Let go(x) := fo(2x) − 2fo(x) and ho(x) := fo(2x) − 8fo(x). Then
fo(x) = (1/6)go(x) − (1/6)ho(x). Let ge(x) := fe(2x) − 4fe(x) and he(x) := fe(2x) − 16fe(x).
Then fe(x) = (1/12)ge(x) − (1/12)he(x). Thus

f(x) =
1
6
go(x) − 1

6
ho(x) +

1
12
ge(x) − 1

12
he(x). (3.20)
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Theorem 3.7. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(

x, y
) ≤ L

|2|ϕ
(

2x, 2y
)

(3.21)

for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and (2.5). Then there exist an
additive mapping A : X → Y , a quadratic mapping T : X → Y , a cubic mapping C : X → Y , and
a quartic mapping Q : X → Y such that

∥
∥
∥
∥
f(x) − 1

6
A(x) − 1

12
T(x) − 1

6
C(x) − 1

12
Q(x)

∥
∥
∥
∥

≤ max
{

L

|6| · |2|(1 − L) ,
L

|12| · |4|(1 − L) ,
L

|6| · |8|(1 − L) ,
L

|12| · |16|(1 − L)
}

· 1
|2| max

{|4|ϕ(x, x), ϕ(2x, x), |4|ϕ(−x,−x), ϕ(−2x,−x)}

≤ L

|12| · |16| · |2|(1 − L) ·max
{|4|ϕ(x, x), ϕ(2x, x), |4|ϕ(−x,−x), ϕ(−2x,−x)}

(3.22)

for all x ∈ X.

Corollary 3.8. Let θ and p be positive real numbers with p < 1. Let f : X → Y be a mapping
satisfying f(0) = 0 and (2.5). Then there exist an additive mapping A : X → Y , a quadratic
mapping T : X → Y , a cubic mapping C : X → Y and a quartic mapping Q : X → Y , such that

∥
∥
∥
∥
f(x) − 1

6
A(x) − 1

12
T(x) − 1

6
C(x) − 1

12
Q(x)

∥
∥
∥
∥
≤ max

{

2 · |4|, |2|p + 1
} · θ

|12|(|2|p − |2|)‖x‖
p

(3.23)

for all x ∈ X.

Proof. The proof follows from Theorem 3.7 by taking

ϕ
(

x, y
)

:= θ
(‖x‖p + ∥

∥y
∥
∥
p) (3.24)

for all x, y ∈ X. Then we can choose L = |2|/|2|p and we get the desired result.

Theorem 3.9. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(

x, y
) ≤ |16|Lϕ

(x

2
,
y

2

)

(3.25)
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for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and (2.5). Then there exist an
additive mapping A : X → Y , a quadratic mapping T : X → Y , a cubic mapping C : X → Y and a
quartic mapping Q : X → Y such that

∥
∥
∥
∥
f(x) − 1

6
A(x) − 1

12
T(x) − 1

6
C(x) − 1

12
Q(x)

∥
∥
∥
∥

≤ max
{

1
|6| · |2|(1 − L) ,

1
|12| · |4|(1 − L) ,

1
|6| · |8|(1 − L) ,

1
|12| · |16|(1 − L)

}

· 1
|2| max

{|4|ϕ(x, x), ϕ(2x, x), |4|ϕ(−x,−x), ϕ(−2x,−x)}

≤ 1
|12| · |16| · |2|(1 − L) ·max

{|4|ϕ(x, x), ϕ(2x, x), |4|ϕ(−x,−x), ϕ(−2x,−x)}

(3.26)

for all x ∈ X.
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Sciences Mathématiques, vol. 132, no. 2, pp. 87–96, 2008.

[17] C. Park, “Hyers-Ulam-Rassias stability of a generalized Apollonius-Jensen type additive mapping
and isomorphisms betweenC∗-algebras,”Mathematische Nachrichten, vol. 281, no. 3, pp. 402–411, 2008.

[18] C. Park and J. Cui, “Generalized stability of C∗-ternary quadratic mappings,” Abstract and Applied
Analysis, vol. 2007, Article ID 23282, 6 pages, 2007.

[19] C. Park and A. Najati, “Homomorphisms and derivations in C∗-algebras,” Abstract and Applied
Analysis, vol. 2007, Article ID 80630, 12 pages, 2007.

[20] Th.M. Rassias, “Problem 16; 2, Report of the 27th International Symposium on Functional Equations,”
Aequationes Mathematicae, vol. 39, pp. 292–293; 309, 1990.

[21] Th. M. Rassias, “On the stability of the quadratic functional equation and its applications,” Studia
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[25] Th. M. Rassias and P. Šemrl, “On the behavior of mappings which do not satisfy Hyers-Ulam
stability,” Proceedings of the American Mathematical Society, vol. 114, no. 4, pp. 989–993, 1992.

[26] Th.M. Rassias and P. Šemrl, “On the Hyers-Ulam stability of linear mappings,” Journal of Mathematical
Analysis and Applications, vol. 173, no. 2, pp. 325–338, 1993.

[27] Th. M. Rassias and K. Shibata, “Variational problem of some quadratic functionals in complex
analysis,” Journal of Mathematical Analysis and Applications, vol. 228, no. 1, pp. 234–253, 1998.
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