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We consider the generalized shift operator, associated with the Dunkl operator A,(f)(x) =
(d/dx) f(x)+(Qa+1)/x)((f(x)-f(-x))/2), a > =1/2. We study some embeddings into the Morrey
space (D-Morrey space) Ly1q, 0 < A < 2a + 2 and modified Morrey space (modified D-Morrey

space) L, q associated with the Dunkl operator on R. As applications we get boundedness of the
fractional maximal operator Mg, 0 < ff < 2a + 2, associated with the Dunkl operator (fractional
D-maximal operator) from the spaces Ly, to L, (R) for p = (2a +2 — 1)/p and from the spaces

Tyia(R) to Lo, (R) for Qa+2-1)/f<p< Qa+2)/p.

1. Introduction

On the real line, the Dunkl operators are differential-difference operators introduced in 1989
by Dunkl [1] and are denoted by A,, where « is a real parameter > —1/2. These operators
are associated with the reflection group Z, on R. Rosler in [2] shows that the Dunkl kernel
verifies a product formula. This allows us to define the Dunkl translations 7, x € R.

In the theory of partial differential equations, together with weighted L, ., (R") spaces,
Morrey spaces L, 1 (R") play an important role. Morrey spaces were introduced by Morrey in
1938 in connection with certain problems in elliptic partial differential equations and calculus
of variations (see [3]). Later, Morrey spaces found important applications to Navier-Stokes
[4, 5] and Schrodinger [6-8] equations, elliptic problems with discontinuous coefficients [9,
10], and potential theory [11-13]. An exposition of the Morrey spaces can be found in the
book [14].

In the present work, we study some embeddings into the D-Morrey and modified D-
Morrey spaces. As applications we give boundedness of the fractional D-maximal operator
in the D-Morrey and modified D-Morrey spaces.



2 Abstract and Applied Analysis

The paper is organized as follows. In Section 2, we present some definitions and
auxiliary results. In Section 3, we give some embeddings into the D-Morrey and modified D-
Morrey spaces. In Section 4, we prove the boundedness of the fractional D-maximal operator
Mg from the spaces Ly, q to Lo (R) for p = (2a +2 - 1)/p and from the spaces ip, 1La(R) to
Lo(R) for Qa+2-1)/p<p< (2a+2)/p.

2. Preliminaries

On the real line, we consider the first-order differential-difference operator defined by

Aa(f) () = 2 f ) + 2“+1(f(’“)‘2f (‘x)), as -1, @1)

which is called the Dunkl operator. For A € C, the Dunkl kernel E,(A-) on R was introduced
by Dunkl in [1] (see also [15-17]) and is given by

Eq(Ax) = ju(idx) + Ax 1)],,c+1(1)ux) x €R, (2.2)

2(a +

where j, is the normalized Bessel function of the first kind and order « [18], defined by

2n
]"( = T(a +1)Z( DICZER (2.3)

Ja Anll(n+a+1)
The Dunkl kernel E, (1) is the unique analytic solution on R of the initial problem for the

Dunkl operator (see [1]).
Let p, be the weighted Lebesgue measure on R given by

|x|2(1+1

20+1T (qr + 1) @4)

dpg(x) =

For every 1 < p < oo, we denote by L, ,(R) = L,(dp,) the spaces of complex-valued
functions f, measurable on R such that

1/p
£l = (] [f@ dpalx)) <o ifpel,c0),
" UR > (2.5)

||f||LM = ess ?Rup|f(x)| if p = co.
X€E

For 1 < p < oo, we denote by WL, ,(R) the weak L,, spaces defined as the set of
locally integrable functions f(x), x € R with the finite norm

I llwe,, = S‘i(}_)f’r(#a{x eR:[f(0)]>r))"". (2.6)
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Note that

Lya(®) € WLya®), || fllyr,. <INl VF €Ly @7)

Forall x,y,z € R, we put

Wa(x,y,2) = (1= Oxyz+Ozny + 0zy2) Aa(X, Y, 2), (2.8)
where
2, .2 2
rry-z o x,y €R\ {0},
Oryzi=q Y (2.9)

0 otherwise,

and A, is the Bessel kernel given by

([0t 1y ][ - G -y ]) ™

da

if |z| € Ay,

Aa(x,y,2) = |xyz| (2.10)
0 otherwise,
where d,, = ([(a +1))>/ (2% T(a+1/2)) and Ay, = [[Ix] = |y, |x| + [y]].
In the sequel we consider the signed measure vy, on R, given by
Wa(x,y,z)dp.(z) if x,y eR\ {0},
Vxy = doy(z) if y=0, (2.11)

ds,(z) if x = 0.

For x,y € Rand f being a continuous function on R, the Dunkl translation operator
Ty is given by

T f(y) = JR f(2)dvyy (2). (2.12)

Using the change of variable z = W(x,y,0) = \/ x? + y? — 2xy cos 6, we have also (see
[2])

X

) = Co [ [rm - fem+ LG - fem | ane, @)

where dv,(0) = (1 - cos 0)sin**6d0 and C, = T(a + 1) /2/7(a + 1/2).
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Proposition 2.1 (see Soltani [16]). For all x € R the operator T, extends to L, .(R), p > 1 and we
have for f € L, 4(R),

Iz fllz,, <41, (2.14)

Let B(0,t) =] —t,t[, t > 0 and p, (] — t,t[) = bat?**?, where b, = 2% ((a + 1)[ (@ + 1)) .
For Lll‘f;(R) (the space of locally integrable functions on R), we consider

M (x) := sup(saB(0,7)) " JB(O ) | f|(y) dpa(y).- (2.15)

r>0
Theorem 2.2 (see [19]). (1) If f € L1,4(R), then for every > 0,

pelx <R MF) > ) < SIfL 216)

where C > 0 is independent of f.
Q) IffeL,a(R),1<p< oo, then Mf € L, 4(R) and

IMfllL,, < Coll £l (2.17)
where Cp, > 0 is independent of f.
Corollary 2.3. If f € L11°; (R), then
}if})(#aB(Orr))*l IB(O )Txf (v)dua(y) = f(x) (2.18)

forae x €R.

3. Some Embeddings into the D-Morrey and Modified
D-Morrey Spaces

Definition 3.1 (see [20]). Let 1 < p < 00,0 < A <2a +2, and [t]; = min{1,t}, t > 0. We denote
by Lp,1,.(R) Morrey space (= D-Morrey space) and by ip, 1a(R) the modified Morrey space (=
modified D-Morrey space), associated with the Dunkl operator as the set of locally integrable
functions f(x), x € R, with the finite norms

1/p
= sop (£, wliPwnm)
X€R 50 B(0,0)
(3.1)

1711z

pAa

1/p
= sup <[t]?f Txlfl”(y)d#a(y)> ,
X€R,t>0 B(0,t)

cR, >

respectively.
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If A <0or A >2a+2, then Ep, 12(R) = ©, where O is the set of all functions equivalent
to 0 on R.
Note that

Lp,a (R) Cs ip,O,a (R) = Lp,O,zx (R)/
Iz, = 1FNlL,,. <4l £,

EP,M(R) G Lpa(R), ”f"LW < ||f||imaf

(3.2)

PO PO

) (3.3)
Lpia(®) G Lppa(®),  [|f[l;,,, <lIfllz,,.-

Definition 3.2 (see [19]). Let 1 < p < o0, 0 < A < 2a + 2. We denote by WL, ,(R) the weak
D-Morrey space and by Wip, 1La(R) the modified weak D-Morrey space as the set of locally
integrable functions f(x), x € R with finite norms

_ 1/p
1w, = supr sup (Fpdy € BOD : | fl) >r}) 7,

> x€R, >0
y (3.4)
_ P
Ifllwz, . :=sup r sup ([E1 paly € BOD : me|fl)>7}) ",
. >0 x€eR,>0
respectively.
We note that
LP,M(R) C WLP/M (R), ”f ||WLPM < ”f “LW,/
N 5 (3.5)
Lpa(®) CWEpna®), [ fllwi,,. < Il
Lemma 3.3 (see [20]). Let 1 < p < oo. Then
Lp,2a+2,a (R) = Loc (R)/
(3.6)
1/
I£Ils, .00 = 402" 1A -
Lemma 3.4. Let 1 <p < o0, 0< A <2a+2. Then
Lyaa(R) = Ly 1a(R) N Lya(R),
(3.7)

max{ £l AN} < IFllz < max{ £, 4lA]L,, }-
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Proof. Let f € ip, 1La(R). Then by (3.3) we have

Lyia(R)Cs Ly a(R) N Ly a(R),

(3.8)
max{|ll,,... 1fll,,.} < Iflz,..
Let f € Ly)«(R) N L, (R). Then
1/p
11, = s (10 [, sl @)
X€R,£>0 B(0f)
1/p
= max{ sup <t")‘f Txlfl”(y)dﬂa(y)> , (3.9)
x€R,0<t<1 B(0,t)
1/p
ap ( MN@%@>}QWWM¢M@}
xeR,t>1 \J B(0,t)
Therefore, f € ip, 1a(R) and the embedding L, 1« (R) N Ly« (R) Cs ip, 1a(R) is valid.
Thus Lypa(R) = Ly 1a(R) N Ly a(R). O
From Lemmas 3.3 and 3.4 for 1 < p < oo, we have
ip,2a+2,a (R) = Lo (R) N Lp,u (R) (310)
Lemma 3.5. Let 0 < A <2a+2. Then
Leas2)/@ara-2,a(R) & Li1a(R), 11/ ”Lu,a < 4bﬁ/(2a+2) Il f ||L(2a+2)/(2a+27,\),a‘ (3.11)

Proof. The embedding is a consequence of Holder’s inequality and Proposition 2.1. Indeed,

Il = swp [ ol 1))
B(0,1)

xX€R,t>0

a+2-1)/(2a+2)
x€R, >0 >

< sup £ (4B, t))A/(2a+2) (J' ( )Tx|f| () Car/ Q2N g,y
B0t

A/ (2a+2)
S 4ba * ||f||L(za+2)/(2a+2a\)/u'
(3.12)
O

On the D-Morrey spaces, the following embedding is valid.
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Lemma 3.6 (see [20]). Let0< A <2a+2and 0 < p <2a+2— X Then forp = 2a+2-1)/p,
1/p
Lpra(®) € Lizar-pa(®), N fllpysye Sb N, 0 (3.13)

where1/p+1/p' =1.
On the modified D-Morrey spaces, the following embedding is valid.

Lemma3.7. Let 0 < A <2a+2and 0< f<2a+2— X Then for Qa+2-1)/f<p < (2a+2)/p,

Lpra(®) G Ligess pa®),  |fllp,,.,. <67 I (3.14)

P :

Proof. Let0 <A <2a+2,0<f<2a+2-1, f € I’:p,Ala(R),and Ra+2-1)/p<p<(2a+2)/p.
By the Holder’s inequality, we have

—20-2
0y, = 00 ER7 [ il w)aay)
XEIR, > 7

, —(2a+2)/p' _ _
<b," sup ([t,t7) ) el

xeR, >0

1/p
X<[t]1*f Txlfl”(y)dﬂa(y)>
B(0,1)

3.15
1p 1\ 2a+2-p 1\ @/ g (2ar2-1)/p o
=b," sup <[t]1t ) <[t]1t > [t]}
xeR, >0
1/p
x<[t]ﬁf Txlfl”(y)dﬂa(y)>
B(0,t)
1/ 1\ Qa+2)/p=p 5 _(2a12-1)/
<6 £l .oup (1e1e) [ ez,
>
Note that
(2a+2) /p- _ -
sup([tht_1> a+2)/p ﬂ[t]? (2a+2-1)/p _ max{suptﬂ—(2a+2—k)/p, Suptﬂ—(2a+2)/P} < oo
t>0 0<t<1 t>1
(3.16)
L 20+2-A 200+ 2
iff <p< .

p
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Therefore, f € L1424 (R) and

1/p
£l <7 NI (317)

pAa :

4. Some Applications

In this section, using the results of Section 3, we get the boundedness of the fractional D-
maximal operator in the D-Morrey and modified D-Morrey spaces.
For 0 < p < 2a + 2, we define the fractional maximal functions

M (6) = sup(uaB©0) % [ || (w) (),
£>0 B(0,t) 4.1)
1/
Myf () = (M| £11)"7 ().
In the case ff = 0, we denote M, f by M, f. Note that M f = Mf.

Lemmad4.1. Let1<p<oco,0<f<2a+2,and f € Lypas2-pal(R). Then Mppf € Lo (R) and the
following equality

(B/(2a+2)-1)(1/p)
My £l = 20 g, @2)
is valid.
Proof.
1/p
Iyl =o' sup (#252[ nPaa)
x€R, >0 B(0,t) (4.3)
(B/ (2a+2)-1)(1/p)
= b/ -

Taking f = 0 in Lemma 4.1 and using Lemma 3.3, we get for M, f the following result.

Corollary 4.2. Let 1 < p < co. Then
IMpflle, =4lA1. (44)

Lemma43. Let 1<p <o, 0<f<2a+2,and f € ip,z,,,J,z_ﬁ,a (R). Then Mppf € Leo(R) and the
following equality

1My pfl,, =P (4.5)

202

is valid.
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Corollary 4.4. Let 0 < A < 2a +2and 0 < p < 2a + 2 — \. Then the operator My is bounded from
Ly ato Lo for p = (2a +2 = )/ p. Moreover,

/Qa+2)-1 /Qa+2)-1/
IMsfll,, =882 N f N, <O NN (4.6)

Corollary 4.5. 1 <p < 0,0 <A <2a+2,0 < p <2a+2- ) Then the operator Mg is bounded
from Ly q to Lo, for 2a+2—1)/B < p < (2a +2)/p. Moreover,

/(2a+2)-1 /(2a+2)-1/
IMpfll, =82 s, <O TPNA N 47)

A :
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