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This paper investigates a class of impulsive pulse-width sampler systems and its steadystate
control in the infinite dimensional spaces. Firstly, some definitions of pulse-width sampler
systems with impulses are introduced. Then applying impulsive evolution operator and fixed
point theorem, some existent results of steady-state of infinite dimensional linear and semilinear
pulse-width sampler systems with impulses are obtained. An example to illustrate the theory is
presented in the end.

1. Introduction

In the design of distributed parameter control systems, one of the important problems is
to choose controller and actuator. As the dimension of an industrial controller in actual
applications is finite, it restricts us to consider the distributed parameter system with a finite
dimensional output. In industrial process control systems, on-off actuators have been in
engineer’s good graces because of the cheap price and the high reliability.

The interest in the pulse-width sampler control systems was aroused as early as 1960s.
It was motivated by applications to engineering problems and neural nets modeling. In
modern times, the development of neurocomputers promises a rebirth of interest in this field.
The theory of pulse-width sampler control systems is treated as a very important branch of
engineering andmathematics. Nevertheless, it can supply a technical-mindedmathematician
with a number of new and interesting problems of mathematical nature. There are some
results such as steady-state control, stability analysis, robust control of pulse-width sampler
systems [1–7], integral control by variable sampling based on steady-state data, and adaptive
sampled-data integral control [8–11].
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On the other hand, in order to describe dynamics of population, subject to abrupt
changes as well as other phenomena, such as harvesting, diseases and so forth, some authors
have used impulsive differential equations to describe the model since the last century. The
reader can refer the basic theory of impulsive differential equations in finite dimensional
spaces to Lakshmikantham’s book [12]. Meanwhile, the impulsive evolution equations and
its optimal control problems on infinite dimensional Banach spaces have been investigated by
many authors including Ahmed, Liu, Nieto, and us (see for instance [13–25] and references
therein).

However, to our knowledge, the pulse-width sampler systemswith impulse on infinite
dimensional spaces have not been investigated extensively. In this paper, we first study the
following steady-state control of infinite dimensional linear system with impulses

ẋ(t) = Ax(t) + f(t) + Cu(t), t /= τk,

Δx(τk) = Bkx(τk) + ck, k = 1, 2, . . . ,

z(t) = K1x(t),

(1.1)

where the state variable x(t) takes values in a reflexive Banach space X,A is the infinitesimal
generator of a C0-semigroup {T(t), t ≥ 0} on the state space X, f(t) = f · 1(t) is T0-periodic
step disturbance of the system and f ∈ X. Control variable u(t) ∈ R

q, the input C : R
q → X

is a bounded linear operator. There is only one time sequences {τk | k ∈ Z
+
0} satisfing 0 < τ1 <

τ2 < · · · < τk · · · and limk→∞τk = ∞, Bk : X → X, 0 < τ1 < τ2 < · · · < τδ < T0, τk+δ = τk + T0,
Δx(τk) = x(τ+k )−x(τ−k ), x(τ

+
k ) = limh→ 0+ = x(τk +h) and x(τ−k ) = x(τk)represent , respectively

the right and left limits of x(t) at t = τk.K1 : X → R
p is a given bounded linear operator; z(t)

is the p dimensional output of the system (1.1).
We, then, study the following steady-state control of infinite dimensional semilinear

system with impulses

ẋ(t) = Ax(t) + f(t, x(t)) + Cu(t), t /= τk,

Δx(τk) = Bkx(τk) + ck, k = 1, 2, . . . ,

z(t) = K1x(t),

(1.2)

where f : [0,∞) ×X → X is T0-periodic continuous function.
Suppose that control signal u(t) is the output of the q dimensional pulse-width sampler

controller, and v(t) is the input of the q dimensional pulse-width sampler controller, which is
the output of some dynamical controller

v̇(t) = Jv(t) +K2z(t), (1.3)

where J is a q × q matrix, K2 is a q × p matrix, J is determined by the dynamic characteristics
of the controller, and K2 is called the feedback matrix which will be chosen in the latter
(see Theorem 3.4 and Theorem 3.8). The output signal u(t) = (u1(t), u2(t), . . . , uq(t))

T and the
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input signal v(t) = (v1(t), v2(t), . . . , vq(t))
T of the pulse-width sampler satisfy the following

dynamic relation:

ui(t) =

⎧
⎨

⎩

signαni , nT0 ≤ t < (n + |αni |)T0, i = 1, 2, . . . , q;

0, (n + |αni |)T0 ≤ t < (n + 1)T0, n = 0, 1, . . . ,
(1.4)

αni =

⎧
⎨

⎩

vi(nT0), |vi(nT0)| ≤ 1, i = 1, 2, . . . , q;

signvi(nT0), |vi(nT0)| ≥ 1, n = 0, 1, . . . ,
(1.5)

where T0 is called the sampling period of the pulse-width sampler which is the same as the
period of f and τk, k = 1, 2, . . . .

We end this introduction by giving some definitions.

Definition 1.1. The closed-loop system (1.1), (1.3)–(1.5) is called linear pulse-width sampler
control system with impulses. The closed-loop system (1.2), (1.3)–(1.5) is called semilinear pulse-
width sampler control system with impulses.

Definition 1.2. In the closed-loop system (1.1), (1.3)–(1.5) (or system (1.2), (1.3)–(1.5)), the
q dimensional vector αn = (αn1 , αn2 , . . . , αnq)

T is called the duration ratio of the pulse-width
sampler in the nth sampling period, n = 0, 1, . . . .

We defined a closed cube Ω in R
q as

Ω =
{
α =
(
α1, α2, . . . , αq

)T ∈ R
q | |αi| ≤ 1, i = 1, 2, . . . , q

}
, (1.6)

then we have αn ∈ Ω, for n = 0, 1, . . . .

Definition 1.3. In the closed-loop system (1.1), (1.3)–(1.5) (or system (1.2), (1.3)–(1.5)), if there
exists a q dimensional vector

α =
(
αn1 , αn2 , . . . , αnq

)T ∈ Ω, (1.7)

and a corresponding periodicity rectangular-wave control signal u(t) = u(t, α) defined by

ui(t) = ui(t, α) =

⎧
⎨

⎩

sign αi, nT0 ≤ t < (n + |αni |)T0, i = 1, 2, . . . , q;

0, (n + |αni |)T0 ≤ t < (n + 1)T0, n = 0, 1, . . . .
(1.8)

such that the closed-loop system (1.1), (1.3)–(1.5) (or system (1.2), (1.3)–(1.5)), has a
corresponding T0-periodic trajectory x(·) = x(·, α) : x(t + T0, α) = x(t, α), t ≥ 0, then the
control signal (1.8) is called the steady-state control with respect to the disturbance f . The T0-
periodic trajectory x(·) is called steady-state corresponding to steady-state control u(·) and
the constant vector α ∈ Ω of steady-state control (1.8) is called to be a steady-state duration
ratio.
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Definition 1.4. In the closed-loop system (1.1), (1.3)–(1.5) (or system (1.2), (1.3)–(1.5)), if there
exists some α ∈ Ω such that

lim
n→∞

αn = α, where αn =
(
αn1 , αn2 , . . . , αnq

)T
, α =

(
α1, α2, . . . , αq

)T
, (1.9)

then system (1.1), (1.3)–(1.5) (or system (1.2), (1.3)–(1.5)), corresponding to the disturbance
f is called to be stead-state stable.

Further, system (1.1), (1.3)–(1.5) (or system (1.2), (1.3)–(1.5)), corresponding to the
perturbation f is called stead-state stabilizability if we can choose a suitable T0 > 0 andK2 such
that system (1.1), (1.3)–(1.5) (or system (1.2), (1.3)–(1.5)), is stead-state stable.

2. Mathematical Preliminaries

Let L(X,X) denote the space of linear operators from X to X, Lb(X,X) denote the space
of bounded linear operators from X to X, Lb(Rq, X) denote the space of bounded linear
operators from R

q to X, and Lb(X,Rp) denote the space of bounded linear operators from
X to R

p. It is obvious that Lb(X,X), Lb(Rq, X), and Lb(X,Rp) is the Banach space with the
usual supremum norm.

Define D̃ = {τ1, . . . , τδ} ⊂ [0, T0], where 0 < τ1 < τ2 < · · · < τδ < T0. We introduce
PC([0, T0];X) ≡ {x : [0, T0] → X | x is continuous at t ∈ [0, T0] \ D̃, x is continuous from
left and has right hand limits at t ∈ D̃}, and PC1([0, T0];X) ≡ {x ∈ PC([0, T0];X) | ẋ ∈
PC([0, T0];X)}. Set

‖x‖PC = max

{

sup
t∈[0,T0]

‖x(t + 0)‖, sup
t∈[0,T0]

‖x(t − 0)‖
}

, ‖x‖PC1 = ‖x‖PC + ‖ẋ‖PC. (2.1)

It can be seen that endowed with the norm ‖ · ‖PC(‖ · ‖PC1), PC([0, T0];X)(PC1([0, T0];X)) is
a Banach space.

We introduce the following assumption [H1].

(i) [H1.1 ] A is the infinitesimal generator of a C0-semigroup {T(t), t ≥ 0} on X with domain
D(A).

(ii) [H1.2 ] There exists δ such that τk+δ = τk + T0.

(iii) [H1.3 ] For each k ∈ Z
+
0 , Bk ∈ Lb(X,X) and Bk+δ = Bk.

We first recall the homogeneous linear impulsive periodic system

ẋ(t) = Ax(t), t /= τk,

Δx(t) = Bkx(t), t = τk,
(2.2)
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and the associated Cauchy problem

ẋ(t) = Ax(t), t ∈ [0, T0] \ D̃,

Δx(τk) = Bkx(τk), k = 1, 2, . . . , δ,

x(0) = x.

(2.3)

If x ∈ D(A) and D(A) is an invariant subspace of Bk, using [18, Theorem 5.2.2,
page 144], step by step, one can verify that the Cauchy problem (2.3) has a unique classical
solution x ∈ PC1([0, T0];X) represented by x(t) = S(t, 0)x, where

S(·, ·) : Δ = {(t, θ) ∈ [0, T0] × [0, T0] | 0 ≤ θ ≤ t ≤ T0} −→ Lb(X,X) (2.4)

given by

S(t, θ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

T(t − θ), τk−1 ≤ θ ≤ t ≤ τk,

T
(
t − τ+k

)
(I + Bk)T(τk − θ), τk−1 ≤ θ < τk < t ≤ τk+1,

T
(
t−τ+k

)
[
∐

θ<τj<t

(
I+Bj

)
T
(
τj − τ+j−1

)
]

(I + Bi)T(τi−θ),

τi−1 ≤ θ < τi ≤ · · · < τk < t ≤ τk+1.

(2.5)

The operator {S(t, θ), (t, θ) ∈ Δ} is called impulsive evolution operator associated with
{Bk; τk}∞k=1.

The properties of the impulsive evolution operator, {S(t, θ), (t, θ) ∈ Δ} associated with
{T(t), t ≥ 0} and {Bk; τk}∞k=1, are collected here.

Lemma 2.1 (see [26, Lemma2.1] [27]). Let assumption [H1] hold. The impulsive evolution
operator {S(t, θ), (t, θ) ∈ Δ} has the following properties.

(1) For 0 ≤ θ ≤ t ≤ T0, S(t, θ) ∈ Lb(X,X), there exists a MT0 > 0 such that
sup0≤θ≤t≤T0‖S(t, θ)‖ ≤ MT0 .

(2) For 0 ≤ θ < r < t ≤ T0, r /= τk, S(t, θ) = S(t, r)S(r, θ).

(3) For 0 ≤ θ ≤ t ≤ T0, n ∈ Z+, S(t + nT0, θ + nT0) = S(t, θ).

(4) For 0 ≤ θ ≤ t ≤ T0, n ∈ Z+, S(t + nT0, 0) = S(t, 0)[S(T0, 0)]
n.

(5) For 0 ≤ θ < t, there exists an M ≥ 1, ω ∈ R such that

‖S(t, θ)‖ ≤ M exp

{

ω(t − θ) +
∑

θ≤τn<t
ln(M‖I + Bn‖)

}

. (2.6)

The exponential stability of the impulsive evolution operator {S(t, θ), t ≥ θ ≥ 0} will
be used throughout the paper; we recall them as the following definitions and lemmas.
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Definition 2.2. {S(t, θ), t ≥ θ ≥ 0} is called exponentially stable if there exist K ≥ 0 and ν > 0
such that

‖S(t, θ)‖ ≤ Ke−ν(t−θ), t > θ ≥ 0. (2.7)

Assumption [H2]: {T(t), t ≥ 0} is exponentially stable, that is, there exist K0 > 0 and ν0 > 0
such that

‖T(t)‖ ≤ K0e
−ν0t, t > 0. (2.8)

Two important criteria for exponential stability of a C0-semigroup are collected here.

Lemma 2.3 (see [26, Lemma2.4]). Assumptions [H1] and [H2] hold. There exists 0 < λ < ν0 such
that

δ∏

k=1

(K0‖I + Bk‖)e−λT0 < 1. (2.9)

Then {S(t, θ), t ≥ θ ≥ 0} is exponentially stable.

Lemma 2.4 (see [26, Lemma2.5]). Assume that assumption [H1] holds. Suppose

0 < μ1 = inf
k=1,2,...,δ

(τk − τk−1) ≤ sup
k=1,2,...,δ

(τk − τk−1) = μ2 < ∞. (2.10)

If there exists α > 0 such that

ω +
1
μ
ln(M‖I + Bk‖) ≤ −γ < 0, k = 1, 2, . . . , δ, (2.11)

where

μ =

⎧
⎨

⎩

μ1, γ +ω < 0,

μ2, γ +ω ≥ 0,
(2.12)

then {S(t, θ), t ≥ θ ≥ 0} is exponentially stable.

Remark 2.5 (see [26, Theorem3.2]). If {S(t, θ), t ≥ θ ≥ 0} is exponentially stable, then [I −
S(T0, 0)] is inverse and [I − S(T0, 0)]

−1 ∈ Lb(X,X).
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3. Steady-State Control

In this section, we study the steady-state control of pulse-width sampler control system with
impulses. First we introduce the following assumptions.

[H3]: f(t), t ≥ 0, is T0-periodic step perturbation.

[H4]: Control signal u(t) is T0-periodic, which is defined by the rectangular wave signal
u(t, α), α ∈ Ω given by (1.8).

Similar to the proof of Theorem 3.2 [26], one can obtain the following results
immediately.

Lemma 3.1. Assumptions [H1], [H3], and [H4] hold. Suppose {S(t, θ), t ≥ θ ≥ 0} is exponentially
stable; for every u(t, α), system (1.1) has a unique T0-periodic PC-mild solution

x(t, α) = S(t, 0)x0 +
∫ t

0
S(t, θ)

(
f(θ) + Cu(θ, α)

)
dθ +

∑

0≤τk<t
S
(
t, τ+k
)
ck, (3.1)

where

x0 = [I − S(T0, 0)]−1
∫T0

0
S(T0, θ)

(
f(θ) + Cu(θ, α)

)
dθ, [I − S(T0, 0)]−1 ∈ Lb(X,X), (3.2)

which is globally asymptotically stable.

By Lemma 3.1, we have the following results.

Theorem 3.2. Under the assumptions of Lemma 3.1, if the sampler periodic T0 has the following
properties:

iωn ∈ ρ(J), ωn =
2nπ
T0

, n = 0,±1,±2, . . . , (3.3)

where ρ(J) is the resolvent set of the matrix J , i satisfies i2 = −1, then the following open-loop control
system

ẋ(t, α) = Ax(t, α) + f(t) + Cu(t, α), t /= τk,

Δx(t, α) = Bkx(t, α) + ck, t = τk,

z(t) = K1x(t),

v̇(t, α) = Jv(t, α) +K2z(t, α)

(3.4)

has a unique T0-periodic PC-mild solution v(t, α) given by

v(t, α) = eJt
[
(
I − eJT0

)−1∫T0

0
eJ(T0−s)K2z(s, α)ds

]

+
∫ t

0
eJ(t−s)K2z(s, α)ds, (3.5)
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Proof. By (3.3), we know that eiωnT0 = ei2nπ = 1, that is 1 ∈ ρ(eJT0). Thus (I − eJT0)−1 exists and
is bounded. It is not difficult to see that

v(t, α) = eJtv0 +
∫ t

0
eJ(t−s)K2z(s, α)ds, (3.6)

where v0 = v(0, α).
Consider

y = (I − eJT0)
−1
∫T0

0
eJ(T0−s)K2z(s, α)ds, (3.7)

which is the unique solution of the following equation:

y = eJty +
∫ t

0
eJ(t−s)K2z(s, α)ds. (3.8)

Let

v0 = y =
(
I − eJT0

)−1∫T0

0
eJ(T0−s)K2z(s, α)ds; (3.9)

it comes from Lemma 3.1 that

z(t + T0, α) = z(t, α), t ≥ 0. (3.10)

It is easy to verify that

v(t, α) = eJt
[

(I − eJT0)
−1
∫T0

0
eJ(T0−s)K2z(s, α)ds

]

+
∫ t

0
eJ(t−s)K2z(s, α)ds (3.11)

is just the T0-periodic PC-mild solution v(t, α) of open-loop control system (3.4).
In order to discuss the existence of steady-state control of system (1.1), we define a

map G : Ω ∈ R
q → R

q given by

G(α) =
(
I − eJT0

)−1∫T0

0
eJ(T0−s)K2K1x(s, α)ds, α ∈ Ω, (3.12)

where x(·, α) is the T0-periodic PC-mild solution of system (1.1) corresponding to α ∈ Ω.
Then we have the following result.
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Lemma 3.3. Under the assumptions of Theorem 3.2, there exists a constant M > 0 such that

‖G(α) −G(α)‖ ≤ M‖K2‖‖α − α‖, α, α ∈ Ω. (3.13)

Proof. Suppose x1(t, α) and x2(t, α) are the T0-periodic PC-mild solution of system (1.1)
corresponding to α and α ∈ Ω, respectively, then

x1(0) − x2(0) = x1(T0) − x2(T0)

= S(T0, 0)(x1(0) − x2(0)) +
∫T0

0
S(T0, θ)C(u(θ, α) − u(θ, α))dθ.

(3.14)

Thus,

‖x1(0) − x2(0)‖ ≤
∥
∥
∥[I − S(T0, 0)]

−1
∥
∥
∥‖S(T0, θ)‖‖C‖Lb(Rq,X)

∫T0

0
‖u(θ, α) − u(θ, α)‖

Rqdθ. (3.15)

For 0 ≤ θ ≤ t ≤ T0, we obtain

‖x1(t, α)−x2(t, α)‖ ≤ ‖S(t, 0)‖‖x1(0)−x2(0)‖ + ‖S(T0, θ)‖‖C‖Lb(Rq,X)

∫T0

0
‖u(θ, α) − u(θ, α)‖

Rqdθ

≤ K‖C‖Lb(Rq,X)(‖Q‖K + 1)
∫T0

0
‖u(θ, α) − u(θ, α)‖

Rqdθ

≤ M1

∫T0

0
‖u(θ, α) − u(θ, α)‖

Rqdθ,

(3.16)

where

M1 = K‖C‖Lb(Rq,X)(‖Q‖K + 1), Q = [I − S(T0, 0)]
−1. (3.17)

By elementaly computation,

‖G(α) −G(α)‖ ≤
∥
∥
∥(I − eJT0)

−1∥∥
∥

∥
∥
∥eJT0

∥
∥
∥‖K2‖‖K1‖Lb(X,Rp)

∫T0

0
‖x1(s, α) − x2(s, α)‖ds

≤
∥
∥
∥(I − eJT0)

−1∥∥
∥

∥
∥
∥eJT0

∥
∥
∥‖K2‖‖K1‖Lb(X,Rp)M1T0

∫T0

0
‖u(θ, α) − u(θ, α)‖

Rqdθ

≤ M2‖K2‖
∫T0

0
‖u(θ, α) − u(θ, α)‖

Rqdθ,

(3.18)
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where

M2 =
∥
∥
∥(I − eJT0)

−1∥∥
∥

∥
∥
∥eJT0

∥
∥
∥‖K1‖Lb(X,Rp)M1T0. (3.19)

(i) For αlαl > 0. Without loss of generality, we suppose that 0 < αl < αl, then we have

∫T0

0
‖u(θ, α) − u(θ, α)‖

Rqdθ ≤
∫αlT0

αlT0

‖u(θ, α) − u(θ, α)‖
Rqdθ ≤ T0‖α − α‖. (3.20)

(ii) For αlαl < 0. For example, αl < 0 < αl, |αl| > αl, we have

∫T0

0
‖u(θ, α) − u(θ, α)‖

Rqdθ ≤
∫ |αl |T0

αlT0

‖u(θ, α) − u(θ, α)‖
Rqdθ ≤ 2T0‖α − α‖. (3.21)

By (3.18), (3.20) and (3.21), there exists a constant M > 0 such that

‖G(α) −G(α)‖ ≤ M‖K2‖‖α − α‖, α, α ∈ Ω. (3.22)

By Lemma 3.3, we have the following result immediately.

Theorem 3.4. Under the assumptions Theorem 3.2, one can choose a suitable ‖K2‖ such that the
systems (1.1), (1.3)–(1.5) have a unique steady-state and the fixed point of G is just the conducting
vector.

Proof. Let x(t, α) be the T0-periodic PC-mild solution of system (1.1) corresponding to α ∈ Ω,
then

x(0) = x(T0) = S(T0, 0)x(0) +
∫T0

0
S(T0, θ)

(
f(θ) + Cu(θ, α)

)
dθ, (3.23)

that is,

x(0) = [I − S(T0, 0)]−1
∫T0

0
S(T0, θ)

(
f(θ) + Cu(θ, α)

)
dθ. (3.24)

By virtue of [H3], we can suppose that ‖f(t)‖ ≤ f0, t ≥ 0, then

‖x(0)‖≤
∥
∥
∥[I−S(T0, 0)]−1

∥
∥
∥‖S(T0, θ)‖

∫T0

0

(
‖C‖Lb(Rq,X)q+f0

)
dθ ≤ K‖Q‖

(
‖C‖Lb(Rq,X)q+f0

)
T0≡M3.

(3.25)
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It comes from

G(α) =
(
I − eJT0

)−1∫T0

0
eJ(T0−s)K2K1S(t, 0)x(0)ds

+
(
I − eJT0

)−1∫T0

0
eJ(T0−s)K2K1

(∫ t

0
S(t, s)

(
f(s) + Cu(s, α)

)
ds

)

ds

(3.26)

that

‖G(α)‖ ≤ M4‖K2‖, (3.27)

where

M4 =
∥
∥
∥
∥

(
I − eJT0

)−1∥∥
∥
∥

∥
∥
∥eJT0

∥
∥
∥‖K1‖Lb(X,Rp)T0M3

(

K +
1

‖Q‖
)

. (3.28)

Using Lemma 3.3 and (3.27), it is not difficult to verify that G : Ω → Ω is a contraction map
when

0 < ‖K2‖ <
1

max
(
M,M4

) . (3.29)

By the application of contractionmapping principle,G has a unique fixed point α∗ ∈ Ω.
Obviously, the T0-periodic PC-mild solution of system (1.1) corresponding to α∗ is just the
unique steady-state.

Next, we investigate the steady-state control of system (1.2), (1.3)–(1.5). We need to
introduce the following assumption [H5].

(i) [H5.1 ] f : [0,∞) × X → X is measurable for t ≥ 0, and for any x, y ∈ X, there exists a
positive constant Lu > 0 such that

∥
∥f(t, x) − f

(
t, y
)∥
∥ ≤ Lu

∥
∥x − y

∥
∥. (3.30)

(ii) [H5.2 ] f(t, x) is T0-periodic in t. That is, f(t + T0, x) = f(t, x), t ≥ 0.

Lemma 3.5. Under the assumptions [H1], [H4] and [H5], the impulsive evolution operator
{S(t, θ), t ≥ θ ≥ 0} is exponentially stable, that is, there exists a constant K > 0 and ν > 0 such
that

‖S(t, θ)‖ ≤ Ke−ν(t−θ), t > θ ≥ 0, (3.31)
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where ν > (LuKT0 + lnK)/T0, then system (1.2) has a unique T0-periodic PC-mild solution x(·, α)
corresponding to control u(·, α) given by

x(t, α) = S(t, 0)x0 +
∫ t

0
S(t, θ)

(
f(θ, x(θ)) + Cu(θ, α)

)
dθ +

∑

0≤τk<t
S
(
t, τ+k
)
ck (3.32)

and is also exponentially stable.

Proof. Suppose that x1(t, α) (x2(t, α)) is the PC-mild solution of system (1.2) corresponding
to initial value x1 = x1(0) (x2 = x2(0)), respectively, then

‖x1(t) − x2(t)‖ ≤ Ke−vt‖x1 − x2‖ + LuK

∫ t

0
e−v(t−θ)‖x1(θ) − x2(θ)‖dθ

≤ Ke−vt‖x1 − x2‖ + LuK

∫ t

0
‖x1(θ) − x2(θ)‖dθ.

(3.33)

By Gronwall inequality, we can deduce

‖x1(t) − x2(t)‖ ≤ Ke(LuK−ν)t‖x1 − x2‖, t ∈ [0, T0]. (3.34)

Define a map H : X → X given by

H(t)x = x(t) = S(t, 0)x +
∫ t

0
S(t, θ)

(
f(θ, x(θ)) + Cu(θ, α)

)
dθ +

∑

0≤τk<t
S
(
t, τ+k
)
ck. (3.35)

Then we can verify that

‖H(T0)x1 −H(T0)x2‖ ≤ Ke(LuK−ν)T0‖x1 − x2‖. (3.36)

It comes from

ν >
LuKT0 + lnK

T0
(3.37)

that H(T0) is a contraction map on X. Thus, by the application of contraction mapping
principle again, H(T0) has a unique fixed point x∗ ∈ X satisfying

H(T0)x∗ = x∗. (3.38)

Using (2), (3), (4) of Lemma 2.1, one can verify that

H(nT0) = [H(T0)]n, n ∈ N. (3.39)
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By virtue of (3.34), (3.38), and (3.39), we know that x(·) = x(·, x∗) is just the T0-periodic PC-
mild solution of (1.2) which is exponentially stable.

Similar to the proof of Lemma 3.1, using Lemma 3.5, we can obtain the following result
immediately.

Lemma 3.6. Under the assumptions of Lemma 3.5, if T0 also satisfies (3.3), then the open-loop control
system

ẋ(t, α) = Ax(t, α) + f(t, x(t, α)) + Cu(t, α), t /= τk,

Δx(t, α) = Bkx(t, α) + ck, t = τk,

z(t, α) = K1x(t, α),

v̇(t, α) = Jv(t, α) +K2z(t, α).

(3.40)

has a unique T0-periodic PC-mild solution v(·, α).

In order to discuss the existence of steady-state control of system (1.2), we define a
map G : Ω ∈ R

q → R
q given by

G̃(α) =
(
I − eJT0

)−1∫T0

0
eJ(T0−s)K2K1x(s, α)ds, α ∈ Ω, (3.41)

where x(·, α) is the periodic solution of system (1.2) corresponding to α ∈ Ω. Then we have
the following results.

Lemma 3.7. Under the assumptions of Lemma 3.6, there exists a constant M̂ > 0 such that

∥
∥
∥G̃(α) − G̃(α)

∥
∥
∥ ≤ M̂‖K2‖‖α − α‖, α, α ∈ Ω. (3.42)

Proof. Suppose that x1(t, α) and x2(t, α) are the T0-periodic PC-mild solutions corresponding
to α and α ∈ Ω with the initial value x1(0) and x2(0), respectively, then

x1(0) − x2(0) = x1(T0) − x2(T0)

= S(T0, 0)(x1(0) − x2(0)) +
∫T0

0
S(T0, θ)

(
f(θ, x1(θ)) − f(θ, x2(θ))

)
dθ

+
∫T0

0
S(T0, θ)C(u(θ, α) − u(θ, α))dθ.

(3.43)



14 Abstract and Applied Analysis

Thus,

x1(0) − x2(0) = [I − S(T0, 0)]−1
[∫T0

0
S(T0, θ)

(
f(θ, x1(θ)) − f(θ, x2(θ))

)
dθ

+
∫T0

0
S(T0, θ)C(u(θ, α) − u(θ, α))dθ

]

.

(3.44)

Furthermore,

‖x1(0) − x2(0)‖ ≤ ‖Q‖MT0

[

Lu

∫T0

0
‖x1(θ) − x2(θ)‖dθ

+‖C‖Lb(Rq,X)

∫T0

0
‖u(θ, α) − u(θ, α)‖

Rqdθ

]

.

(3.45)

For 0 ≤ θ ≤ t ≤ T0, we have

‖x1(t, α) − x2(t, α)‖ ≤ ‖Q‖M2
T0
Lu

∫T0

0
‖x1(θ, α) − x2(θ, α)‖dθ

+MT0‖C‖Lb(Rq,X)(‖Q‖MT0 + 1)
∫T0

0
‖u(θ, α) − u(θ, α)‖

Rqdθ

+MT0Lu

∫ t

0
‖x1(θ, α) − x2(θ, α)‖dθ.

(3.46)

By Gronwall inequality again, we obtain

‖x1(t, α) − x2(t, α)‖ ≤ eMT0LuT0‖Q‖M2
T0
Lu

∫T0

0
‖x1(θ, α) − x2(θ, α)‖dθ

+ eMT0LuT0MT0‖C‖Lb(Rq,X)(‖Q‖MT0 + 1)
∫T0

0
‖u(θ, α) − u(θ, α)‖

Rqdθ.

(3.47)

Integrating from 0 to T0, we obtain

∫T0

0
‖x1(t, α) − x2(t, α)‖dt ≤ M6

M5

∫T0

0
‖u(θ, α) − u(θ, α)‖

Rqdθ, (3.48)

where

M5 = 1 − eMT0LuT0‖Q‖M2
T0
Lu > 0, M6 = eMT0LuT0T0MT0‖C‖Lb(Rq,X)(‖Q‖MT0 + 1). (3.49)
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Thus,

∥
∥
∥G̃(α) − G̃(α)

∥
∥
∥ ≤
∥
∥
∥(I − eJT0)

−1∥∥
∥

∥
∥
∥eJT0

∥
∥
∥‖K2‖‖K1‖Lb(X,Rp)

∫T0

0
‖x1(s, α) − x2(s, α)‖ds

≤
∥
∥
∥(I − eJT0)

−1∥∥
∥

∥
∥
∥eJT0

∥
∥
∥‖K2‖‖K1‖Lb(X,Rp)

M6

M5

∫T0

0
‖u(θ, α) − u(θ, α)‖

Rqdθ

≤ 2
∥
∥
∥(I − eJT0)

−1∥∥
∥

∥
∥
∥eJT0

∥
∥
∥‖K2‖‖K1‖Lb(X,Rp)

M6

M5
T0‖α − α‖.

(3.50)

Choosing a constant

M̂ = 2
∥
∥
∥(I − eJT0)

−1∥∥
∥

∥
∥
∥eJT0

∥
∥
∥‖K1‖Lb(X,Rp)

M6

M5
T0 > 0, (3.51)

then,

∥
∥
∥G̃(α) − G̃(α)

∥
∥
∥ ≤ M̂‖K2‖‖α − α‖, α, α ∈ Ω. (3.52)

Using Lemma 3.7, we have the following result.

Theorem 3.8. Under the assumptions of Lemma 3.7, there exists a constant Nf > 0 such that
‖f(t, x)‖ ≤ Nf , if ‖K2‖ is sufficiently small, then system (1.2), (1.3)–(1.5) has a unique steady-
state and the fixed point of G̃ is just the conducting vector.

Proof. Let x(t, α) be the T0-periodic PC-mild solution of system (1.2) corresponding to α ∈ Ω,
then

x(0) = [I − S(T0, 0)]−1
∫T0

0
S(T0, θ)

(
f(θ, x(θ)) + Cu(θ, α)

)
dθ. (3.53)

Further,

‖x(0)‖ ≤ K‖Q‖
(
‖C‖Lb(Rq,X)q +Nf

)
T0 = M7. (3.54)

Let

M8 =
∥
∥
∥
∥

(
I − eJT0

)−1∥∥
∥
∥

∥
∥
∥eJT0

∥
∥
∥‖K1‖Lb(X,Rp)KT0

[
M7 +

(
Nf + ‖C‖Lb(Rq,X)q

)
T0
]
. (3.55)
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It comes from

G(α) =
(
I − eJT0

)−1∫T0

0
eJ(T0−s)K2K1S(t, 0)x(0)ds

+
(
I − eJT0

)−1∫T0

0
eJ(T0−s)K2K1

(∫ t

0
S(t, s)

(
f(s, x(s, α)) + Cu(s, α)

)
ds

)

ds

(3.56)

that

‖G(α)‖ ≤ M8‖K2‖. (3.57)

It is not difficult to see that G : Ω → Ω is a contraction map when

0 < ‖K2‖ <
1

max
(
M̂,M8

) . (3.58)

By application of contraction mapping principle again, G̃ has a unique fixed point α̃∗ ∈ Ω.
Obviously, the T0-periodic PC-mild solution of system (1.2) corresponding to α̃∗ is just the
unique steady-state.

Finally, an example is given for demonstration. Consider the following system

∂

∂t
x
(
t, y
)
=

∂2x
(
t, y
)

∂2y
+ bu(t) + f

(
y
) · 1(t), y ∈ (0, l), 2π > t > 0, t /=

π

2
, π,

3π
2
,

Δx
(
τi, y
)
= x
(
τ+i , y

) − x
(
τ−i , y

)
= bkx

(
τi, y
)
, y ∈ (0, l), t =

π

2
, π,

3π
2
,

x(t, 0) = x(t, l) = 0, t ≥ 0,

z(t) =
∫ l

0
k1x
(
t, y
)
dy,

(3.59)

and the output v(t) satisfies

dv(t)
dt

= v(t) + k2z(t), (3.60)

where b, bk, k1 and k2 are constants.
Let X = L2(0, l); define

(Ax)
(
y
)
= x′′(y

)
, for arbiartry x ∈ D(A),

D(A) =
{
x ∈ L2(0, l) | x, x′′ ∈ L2(0, l), x(0) = x(l) = 0

}
.

(3.61)
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Then A can generate an exponentially stable C0-semigroup {T(t), t ≥ 0} in L2(0, l) and
‖T(t)‖ ≤ e−(π/l)t, t ≥ 0. We only choose a suitable positive number k2, then all the assumptions
are met in Theorem 3.4, our results can be used to system (3.59).
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