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1. Introduction

Let E be a Banach space with norm || - ||, let E* denote the dual of E, and let (x, f) denote
the value of f € E*atx € E. Let T : E — E* be an operator. The problem of finding v € E
satisfying 0 € Tv is connected with the convex minimization problems. When T is maximal
monotone, a well-known method for solving the equation 0 € Tv in Hilbert space H is the
proximal point algorithm (see [1]): x; = x € H and

Xn+l = ]rnxn/ n= 1/2/° ey (11)

where 1, C (0,00) and J, = (I + rT)_1 for all r > 0 is the resolvent operator for T. Rockafellar
[1] proved the weak convergence of the algorithm (1.1).

The modifications of the proximal point algorithm for different operators have been
investigated by many authors. Recently, Kohsaka and Takahashi [2] considered the algorithm
(1.2) in a smooth and uniformly convex Banach space and Kamimura et al. [3] considered the
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algorithm (1.3) in a uniformly smooth and uniformly convex Banach space E; x; =x € E,u €
E and

Xpa1 = J N (anJu+ (A —an)] ], xn), n=12,..., (1.2)

Xn+l = ]71 (an]xn + (1 - an)] ]r,,xn)/ n= 112/- sy (13)

where J, = (J +7T)"'J, Jis the duality mapping of E. They showed that the algorithm (1.2)
converges strongly to some element of T~10 and the algorithm (1.3) converges weakly to
some element of T~!0 provided that the sequences {a,} and {r,} of real numbers are chosen
appropriately. These results extend the Kamimura and Takahashi [4] results in Hilbert spaces
to those in Banach spaces.

In 2008, motivated by Kim and Xu [5], Li and Song [6] studied a combination of the
schemes of (1.2) and (1.3); x; = x € E and

Yn = ]71(“11]3571 + (1 - “n)] ]r,,xn)/

Xp+1 = ]_1 (pn]x + (1 _ﬂn)]yn)/

(1.4)

foreveryn =1,2,...,where J, = (J + rT)"'J, J is the duality mapping of E. They also proved
strong and weak convergence theorems and give an estimate for the rate of convergence of
the algorithm (1.4).

Very recently, Ibaraki and Takahashi [7] introduced the Mann iteration and Harpern
iteration for new resovents of maximal monotone operator in a uniformly smooth and
uniformly convex Banach space E; x; = x € E u € E and

Xpe1 = apu+ (1 —an) Jr, %0, n=12,..., (1.5)

Xpi1 = Xy + (L —ay) Jr,xn, n=12,..., (1.6)

where J, = (I +rBJ)™", Jis the duality mapping of E, and B C E* x E is maximal monotone.
They proved that Algorithm (1.5) converges strongly to some element of (BJ )0 and
Algorithm (1.6) converges weakly to some element of (BJ)'0 provided that the sequences
{an} and {r,} of real numbers are chosen appropriately.

Inspired and motivated by Li and Song [6] and Ibaraki and Takahashi [7], we study a
combination of the schemes of (1.5) and (1.6); x; = x € E and

Yn = ApXy + (1- an)]rnxnz

(1.7)
Xn+l = ﬂnx + (1 - ,Bn)]/n/

foreveryn =1,2,..., where J, = (I + rB])_l, ] is the duality mapping of E, and B C E* x E
is maximal monotone. When a,, = 0, Algorithm (1.7) reduces to (1.5) and, when g, = 0,
Algorithm (1.7) reduces to (1.6). Then, we prove strong and weak convergence theorems of
the sequence and we also estimate the rate of the convergence of algorithm (1.7). Finally, by
using our main result, we consider the problem of finding minimizes of convex functions
defined on Banach spaces.



Abstract and Applied Analysis 3
2. Preliminaries

Let E be a real Banach space with dual space E*. When {x,} is a sequence in E, we denote
strong convergence of {x,} to x € E by x, — x and weak convergence by x, — x,
respectively. As usual, we denote the duality pairing of E* by (x, x*), whenx* € E*and x € E,
and the closed unit ball by Ug, and denote by R and N the set of all real numbers and the set
of all positive integers, respectively. The set R, stands for [0, +o0) and R, =R, U {+c0}. An
operator T C E x E* is said to be monotone if (x —y,x* - y*) > 0 whenever (x,x*), (y,y*) € T.
We denote the set {x € E : 0 € Tx} by T™'0. A monotone T is said to be maximal if its graph
G(T) = {(x,y) : y € Tx} is not properly contained in the graph of any other monotone
operator. If T is maximal monotone, then the solution set T~!0 is closed and convex. If
E is reflexive and strictly convex, then a monotone operator T is maximal if and only if
R(J + AT) = E* for each A > 0 (see [8, 9] for more details).
The normalized duality mapping | from E into E* is defined by

J(x) = {x* € E*: (x,x") = ||x| = ||x*||2}, Vx € E. (2.1)

We recall [10] that E is reflexive if and only if J is surjective; E is smooth if and only if | is
single-valued.
Let E be a smooth Banach space. Consider the following function: (see [11])

2
7

d(x,y) = x> - 2(x, Jy) + ||y Vx,y € E. (2.2)

Itis obvious from the definition of ¢ that (||x|| - ||y||)2 <P(x,y) < (x| + ||y||)2, forallx,y € E.
We also know that

d(x,y) +¢(y,x) =2(x-y,Jx-Jy), foreachx,y€E. (2.3)

We recall [12] that the functional || - ||* is called totally convex at x if the function v(x,t) :
[0,00) — [0, oo] defined by

v(x,t) =inf{¢p(y,x) :y €E, ||ly-x| =t}, (2.4)

is positive whenever ¢t > 0. The functional || - |1 is called totally convex on bounded sets if
for each bounded nonempty subset A of E, the function v(A,t) : [0,00) — [0, o0] defined by
v(A,t) =inf{v(x,t) : x € A} is positive on (0, 00).

It is well known that if a Banach space E is uniformly convex, then || I is totally
convex on any bounded nonempty set. It is known that (see [12]) if || - 1% is totally convex on
a bounded set A, then v(A, ct) > cv(A,t) for c > 1 and t > 0, and v(A4, ) is strictly increasing
on [0, c0).

Lemma 2.1 (see [13]). Let E be a uniformly convex, smooth Banach space, and let {x,} and {y,} be
sequences in E. If {x,} or {yy,} is bounded and lim,, _, .o (x, y,) = 0, then lim,, _, oo ||y, — Y| = 0.
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Let E be a reflexive, strictly convex, smooth Banach space, and ] the duality mapping
from E into E*. Then J7! is also single-valued, one-to-one, surjective, and it is the duality
mapping from E* into E. We make use of the following mapping V studied in Alber [11]:

V(x, x%) = [lx]* = 2¢x, x*) + [|*)? (2.5)

for all x € E and x* € E*. In other words, V(x, x*) = ¢(x, ] }(x)) for all x € E and x* € E*.

Lemma 2.2 (see [7]). Let E be a reflexive, strictly convex, smooth Banach space, and let V be as in
(2.5). Then

V(x,x") +2(y, Jx —x*) <V (x+y,x%) (2.6)

forall x,y € E and x* € E*.

Let E be a smooth Banach space and let D be a nonempty closed convex subset of E.
A mapping R: D — D is called generalized nonexpansive if F(R) # @ and ¢(Rx, y) < ¢(x,y)
for each x € D and y € F(R), where F(R) is the set of fixed points of R. Let C be a nonempty
closed subset of E. A mapping R: E — C is said to be sunny if

R(Rx +t(x - Rx))=Rx, Vxe€E, Vt>O0. (2.7)

A mapping R : E — C is said to be a retraction if Rx = x, for all x € C. If E is smooth and
strictly convex, then a sunny generalized nonexpansive retraction of E onto C is uniquely
decided if it exists (see [14]). We also know that if E is reflexive, smooth, and strictly convex
and C is a nonempty closed subset of E, then there exists a sunny generalized nonexpansive
retraction Rc of E onto C if and only if J(C) is closed and convex. In this case, R¢ is given
by Rc = J'TIj(c) J see [15]. Let C be a nonempty closed subset of a Banach space E. Then
C is said to be a sunny generalized nonexpansive retract (resp., a generalized nonexpansive
retract) of E if there exists a sunny generalized nonexpansive retraction (resp, a generalized
nonexpansive retraction) of E onto C (see [14] for more detials). The set of fixed points of
such a generalized nonexpansive retraction is C. The following lemma was obtained in [14].

Lemma 2.3 (see [14]). Let C be a nonempty closed subset of a smooth and strictly convex Banach
space E. Let Rc be a retraction of E onto C. Then Rc is sunny and generalized nonexpansive if and

only if

(x = Rcx,JRcx - Jy) 20, (2.8)

foreach x € E and y € C, where ] is the duality mapping of E.

Let E be a reflexive, strictly convex, and smooth Banach space with its dual E*. If a
monotone operator B C E* x E is maximal, then (BJ )10 is closed and E = R(I + rBJ) for
all r > 0 (see [14]). So, for each r > 0 and x € E, we can consider the set J,(x) = {z €
E :x € z+rBJjz}. From [14], J,x consists of one point. We denote such a J, by (I + rBJ)7L.
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However J, is called a generalized resolvent of B. We also know that (B] )"0 = F(J,) for each
r > 0, where F(J,) is the set of fixed points of J, and J, is generalized nonexpansive for each
r > 0 (see [14]). The Yosida approximtion of B is defined by A, = (I - J,)/r. We know that
(J Jrx, A;x) € B; (see [14] for more detials). The following result was obtained in [14].

Theorem 2.4 (see [14]). Let E be a uniformly convex Banach space with a Fréchet differentiable
norm and let B C E* x E be a maximal monotone operator with B™10# 0. Then the following hold:

(1) for each x € E, lim, _, o, J,x exists and belongs to B o,

(2) if Rx :=lim, _, o, J,x for each x € E, then R is a sunny generalized nonexpansive retraction
of E onto (B))™0.

Lemma 2.5 (see [7]). Let E be a reflexive, strictly convex, and smooth Banach space, let B C E* x E
be a maximal monotone operator with B10#@, and J, = (I + rB] ) forall r > 0. Then

(x, Jrx) + ¢(Jrx,u) < ¢(x,u), (2.9)

forallr>0,ue€ (BJ)~'0, and x € E.

Lemma 2.6 (see [16]). Let {s,} be a sequence of nonnegative real numbers satisfying

Syt < (1 —ay)sp+auty+1,, n>1, (2.10)

where {ay,}, {t,}, and {r,} satisfy the conditions: {a,} C [0,1], 3721 an = oo, limsup, , _t, <0,
and ry, >0, > 77 1y < 00. Then, lim,, _, o5, = 0.

Lemma 2.7 (see [17]). Let {a,} and {f,} be sequence of nonnegative real numbers satisfying

ani1 < ay + P, (2.11)

foralln e N.If 3, By < +oo. Then {ay,} has a limit in [0, +o0).

3. Convergence Theorems

In this section, we first prove a strong convergence theorem for the algorithm (1.7) which
extends the previous result of Ibaraki and Takahashi [7] and we next prove a weak
convergence theorem for algorithm (1.7) under different conditions on data, respectively.

Theorem 3.1. Let E be a uniformly convex Banach space whose norm is uniformly Gateaux
differentiable. Let B C E* x E be a maximal monotone operator with B10# @ and let J, = (I + rBJ )t
forall r > 0. Let {x,} be a sequence generated by x1 = x € E and

Yn = XXy + (1 - an)]r,,xnr

(3.1)
Xp+1 = ﬂnx + (1 - ﬂn)yn/
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foreveryn =1,2,..., where {a,}, {fn} C [0,1], {r,} C (0, 00) satisfy lim,,_, .y, = 0, lim, B =
0, o2y Bn = o0 and lim,, _, 1, = oo. Then the sequence {x,} converges strongly to R(B])flo(x),
where R g1y~ is a sunny generalized nonexpansive retraction of E onto (B] )~0.

Proof. Note that B10# () implies (BJ) "0 #0. In fact, if u* € B™'0, we obtain 0 € Bu* and hence
0 € BJ J™'u*. So, we have J™'u* € (BJ )_10. We denote a sunny generalized nonexpansive
retraction R g1y of E onto (BJ)™'0 by R.Letz € (BJ)~'0. We first prove that {x,} is bounded.

From Lemma 2.5 and the convexity of || - |?, we have

d)(ym Z) = d)(anxn +(1- “n)]r,,xnr z)
< an(i)(xnr z)+(1- an)(i)(]rnxn/ z)
< and)(xnr z)+(1-ay) {‘i’(xnr z) - ¢(xn/ ]rnxn)}
S and(xn, z) + (1 - an)P(xn, 2) = ¢(xn, 2),

(3.2)

for all n € N. By (3.2), we have

¢(xn11,2) = (fux + (1= Pa)yn 2)
< Pudp(x,2) + (1= Pu) ¢ (yn, 2) (3.3)
< Pud(x,2) + (1= ) p(xn, 2),

for all n € N. Hence, by induction, we have ¢(x,,z) < ¢(x,z) for all n € N and, therefore,
{¢(xy,2)} is bounded. This implies that {x,} is bounded. Since ¢(v,,z) < ¢(x,, z) and
O¢(Jr,xn,2) < ¢(xy,2) for all n € N, it follows that {y,} and {J,,x,} are also bounded. We
next prove that

lim sup(x — Rx, Jx, — JRx) <O0. (3.4)

Put u, = x,41 for all n € N. Since {Ju,} is bounded, without loss of generality, we have a
subsequence {Juy,,} of {Ju,} such that

lim (x — Rx, Ju,, — JRx) = lim sup(x — Rx, Ju, — JRx), (3.5)

and {Ju,,} converges weakly to some v* € E*. From the definition of {x,}, we have
Un —Yn = ﬂn(x - yn)/ Yn — ]rnxn = an(xn - ]r,,xn) (36)
for all n € N. Since {y, } is bounded and 3, — 0asn — oo, it follows that

Tim [y =yl = Tim o = | = 0. (37)
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Moreover, we note that

nlgrgo”yn = Jrxall = nlijl;loan”xn = Jr,xall = 0. (3.8)

By (3.7) and (3.8), we have

lim ||u, — Jy, x4|| = 0. (3.9)

Since E has a uniformly Gateaux differentiable norm, the duality mapping J is norm to weak*
uniformly continuous on each bounded subset of E. Therefore, we obtain from (3.9) that

Jun, = JJr, xn, =0, asi— oco. (3.10)

This implies that | J, x, — v*asi — co. On the other hand, from r, — wasn — oo, we
have I

. .1
lim || Ay, x| = Lim —||x;,, — J;, 4] = 0. (3.11)
n— oo n—owty,

If (v*,y) € B, then it holds from the monotonicity of B that
(V= An X, Y = JTr Xn) 20, (3.12)

foralli € N. Lettingi — oo, we get (i, y*—v*) > 0. Then, the maximal of B implies v* € B710.
Put v = J"'v*. Applying Lemma 2.3, we obtain

lim sup(x — Rx, Ju, — JRx) = lim (x — Rx, Ju,, — JRx)

= (x — Rx,v" — JRx) (3.13)
=(x—-Rx,Jv-JRx) <0.

Finally, we prove that x, — Rxasn — oo. From Lemma 2.2, the convexity of || - |* and (3.2),
we have

¢(xni1, RX) = V(Bux + (1= Pu) Y, JRX)
<V (Bux + (1= Bu)Yn — Pu(x - Rx), JRx)
= 2{=Pu(x = Rx), Jxni1 = JRx)
= V(BuRx + (1= u)Yn, JRx) + 2B, (x — RX, J X1 — JRx) (3.14)
= ¢(BuRx + (1= B) Y, Rx) + 2B, (x = RX, Jx1 — JRx)
< Pup(Rx, Rx) + (1~ )¢ (Y, Rx) +2B(x ~ Rx, J2tp1 — JRX)
< (1= Bn)P(xn, Rx) + B0y,
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for all n € N, where 0, = 2(x — Rx, Jx,.1 — JRx). It easily verified from the assumption and
(3.4) that 377, f, = oo and limsup, _, 0, < 0. Hence, by Lemma 2.6, lim,, _, ¢ (x,, Rx) = 0.
Applying Lemma 2.1, we obtain lim,, _, o, ||x, — Rx|| = 0. Therefore, {x,} converges strongly to
R(B])—lo(x). O

Put a, = 0 in Theorem 3.1, then we obtain the following result.

Corollary 3.2 (see Ibaraki and Takahashi [7]). Let E be a uniformly convex and uniformly smooth
Banach space and let B C E* x E be a maximal monotone operator with B0 #@, let J, = (I + rBJ] )t
forall r > 0,and let {x,} be a sequence generated by x, = x € E and

Xnt+1 = ﬂnx + (1 - ﬂn)]r,,xnr (315)

forevery n = 1,2,..., where {f,} C [0,1], {r,} C (0,00) satisfy im, .oy = 0, Doy Pu = o0
and limy, _, o1y, = co. Then the sequence {x,} converges strongly to R gy -1o(x), where R gy is the

generalized projection of E onto (BJ)™0.

Theorem 3.3. Let E be a uniformly convex and smooth Banach space whose duality mapping ] is
weakly sequentially continuous. Let B C E* x E be a maximal monotone operator with B™10# () and
let J, = (I+rBJ)" forall r > 0. Let {x,} be a sequence generated by x; = x € E and

Yn = AnXy + (1 —ay) I, xp,

(3.16)
Xn+l = ﬂnx + (1 - ﬁn)y"'

for every n = 1,2,..., where {a,}, {fn} C [0,1], {rn} C (0,00) satisfy Xy Pu < oo,
limsup, , a, <1andliminf,_, .7, > 0. Then the sequence {x,} converges weakly to an element

of (B])™'0.,

Proof. Letv € (B])_10. Then, from (3.3), we have
¢(xn+1/ v) < (1 - ,Bn)(,b(xn/ v) + ﬂnd)(x/ v) < (i)(xn/ v) + ﬂnd)(x/ v), (3.17)

for all n € N. By Lemma 2.7, lim, _, n¢(x,, v) exists. From (||x,| - lol)? < ¢(x,,v) and
¢(Jr,xn,v) < $(x,,v), we note that {x,} and {J,, x,} are bounded. From (3.3) and (3.2), we
have

P(xn1,0) < Pud(x,0) + (1= Bn) P (Y, v)
< P (x,0) + (1 = Bu) {@np(xn, 0) + (1 = &) (P(xn, ) = P (2, J1, Xn)) }
= Bup(x,0) + (1 = Bu) {§ (20, 0) = (1 = an)P(xn, J7, %n) |
= Pup(x,0) + (1 = B)p(xn, 0) = (1 = ) (1 = @) p(xn, J1, Xn),

(3.18)
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for all n € N and hence,

(1 - ﬁn)(l - “n)‘l’(xm ]r,,xn) < ﬂ‘rl(i)(x/ v) + (1 - ﬂn)‘i)(xnr v) - ¢(xn+1/ v)

(3.19)
= ﬂn (‘i)(xr v) - d)(xnr U)) + (i)(xnr v) - ¢(xn+1/ v),

for all n € N. Since lim,,_, ., = 0 and limsup,, _, _a, <1, lim, _, ,$(xy, ], x,) = 0. Applying
Lemma 2.1, we obtain

nhjrgo”xn = Jr,xnll = 0. (3.20)

Since {x,} is bounded, we have a subsequence {x,,} of {x,} such that x,, = w € Easi — co.
Then it follows from (3.20) that J,, x,, = w asi — oo. On the other hand, from (3.20) and
liminf, _, .7, > 0, we have

. 1
lim || Ay, x| = lim —|[x, = J, x4 = 0. (3.21)
n— oo n~>oorn

Let (z*, z) € B. Then, it holds from monotonicity of B that

(z= Ar, Xn, 2" = J ], Xn,) 20, (3.22)

for all i € N. Since | is weakly sequentially continuous, letting i — oo, we get (z,z* - Jw) > 0.
Then, the maximality of B implies Jw € B~!0. Thus, w € (BJ )~1o.

Let {xy,} and {xn].} be two subsequences of {x,} such that x,, — w; and X, — Wo.
By similar argument as above, we obtain wy,w, € (BJ )_10. Put a = lim,_, o (¢ (xy, w1) —

P (xn, w2)).
Note that d)(xn/ wl) - (i)(xn/ w2) = 2<xnr ]ZU2 - ]w1> + ”u’l”2 - ||’(U2||2,7’l =1,2,.... From
X,, — wy and Xp, — W, We have

a=2(wi, Jw, - Jwi) + [[wi]* - |[wal?, (3.23)

a =2(w,, Jw, - Jwi) + [[wi|* - |[wa?, (3.24)

respectively. Combining (3.23) and (3.24), we have
(w1 —ws, Jwr - Jwy) = 0. (3.25)

Since ] is strictly monotone, it follows that w; = w,. Therefore, {x,} converges weakly to an
element of (BJ) 0. O

Put B, = 0 in Theorem 3.3, then we obtain the following result.

Corollary 3.4 (see Ibaraki and Takahashi [7]). Let E be a uniformly convex and smooth Banach
space whose duality mapping | is weakly sequentially continuous. Let B C E* x E be a maximal
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monotone operator with B*0#0, let J, = (I +rB]J )t for all r > 0 and let {x,} be a sequence
generated by x1 = x € E and

Xn+1 = ,ann + (1 - ﬁn)]rnxn/ (3.26)

for every n = 1,2,..., where {a,},{f.} C [0,1], {rn} C (0,00) satisfy >gqPn < oo,
lim sup, _, a, <1andlim inf, 1, > 0. Then the sequence {x,} converges weakly to an element

of (B])0.

4. Rate of Convergence for the Algorithm
In this section, we study the rate of the convergence of the algorithm (1.7). We use the
following notations in [6, 18]:

Ny := {(p ‘R, — R, | t— ¢(t) is nondecreasing for t > 0, ((0) = 0},

Q= {p: R = B 90 =0, lime() <0},
- (4.1)
Iy := {(p R, — R, | ¢ islsc and convex and ¢(t) =0 <=t = O},

X = {(p ‘R, = R, | ¢ is Isc and convex, ¢(0) =0, }L%Et_l‘/)(t) = 0}.

We recall [18] that, for a function ¢ : R, — R, satisfying ¢(0) = 0, its pseudoconjugate
¢" : R, — R,, defined by

¢*(s) :=sup{st—g(t) |t >0} €R, (4.2)

is lower semicontinuous, convex and satisfies ¢*(0) = 0, ¢*(s) > 0 for all s > 0.
For a function ¢ € Ny, its greatest quasi-inverse (ph : R, — R,, defined by

¢ (s) :=sup{t >0 | o(t) < s}, (4.3)

is nondecreasing. It is known [18] that ¢" € No N Qg if p(t) =0 & t=0.
For a function ¢ : R — R, its lower semicontinuous convex hull, denoted by coy, is
defined by epi(coy) = cl(co(epiyp)). It is obvious that coyp is lower semicontinuous convex and

cop < .

Proposition 4.1. Let E be uniformly convex and uniformly smooth. Then, for every r > 0, there exists
Oy € X1 such that, for all x,y € rUF,

(y—x,Jy-Jx) <o (|Jy - Jxl)). (4.4)
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Proof. Since E is uniformly convex, f(x) = (1/ 2)||x||* is uniform convex on rUp for all r >
0. Since the norm of E is Fréchet differentiable, its Fréchet derivative Vf(x) = Jx. In [18,
Proposition 3.6.5] for f and B = rUg, where r is an arbitrary positive real number, we get the
function 8,(-) : [0, +00) — [0,+00), defined by

. (1 1
O (t) = 1nf{§||y||2 - §||x||2 —(y-x,Jx):xerlUgy€E,|ly—x| = t}, (4.5)
satisfies that &, (t) = 0 if and only if t = 0, and +~'3,(t) is nondecreasing. Thus,
1 2 1 2
SIyI™ =51l = (y = x, Jx) 2 8 (Ily - 1)) (4.6)
forall x € rUg, y € E and hence
]. 2 1 2 J—
§||y+x|| > §||x|| +(y, Jx)+co & (llyll) (4.7)
forall x € rUg, y € E. It follows that
1 _ 1
(3, J) = I3l + G, Ty = T + Gy, Ty = Tx) ~ @Iyl 2 (v + %, Ty) = 5lly + 2] 48)
forall x e rUg, y € E. Since (x, Jx) = (1/2) ||| + (1/2)]|x]|*, we have
1 2 - 1 2
SRl + (y +x, Ty = J) = @0 (Iyl) 2 (v + %, Ty) = 5 1y + x| (49)

forallx e rUgand y € E.
Taking the supremum on both sides of (4.9) over y € E, by [18, Lemma 3.3.1(v)] (if
f(x) := @(|lx]|), where ¢ € Np, then f*(x*) = ¢*(]|x*|)), we get that

1 1
Sl + (x, Ty = Jx) + @8)" (ITy = Jx1) = 5 ||y (4.10)

for all x € rUg and y € E. Since &, (t) is nondecreasing and lim; _, ,,t '8, (t) > 8,(1) > 0, we
have cod, € Iy. It follows from [20, Lemma 3.3.1(iii)] that (Eﬂr)# € 3.
Interchanging x and y in (4.10) for x, y € rUF, it also holds that

1 __ 1
Syl + (v Jx = Jy) + @0)" (1 = Jxl) = 5l (4.11)

Thus, by taking o, := 2(cod,)" € =, and adding side by side (4.10) and (4.11), we obtained

(y-x,Jy-Jx)<o.(IJy - JxI), Vx,yerUe. (4.12)
O
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Theorem 4.2. Let E be a uniformly convex and uniformly smooth Banach space. Suppose that B C
E* x E is maximal monotone with B*0 = {v*} and B! is Lipschitz continuous at 0 with modulus
1>0. Let {x,} be a sequence generated by x1 = x € E and

Yn = ApXy + (1- an)]rnxnz

(4.13)
Xn+l = ﬂnx + (1 - ,Bn)]/n/

foreveryn =1,2,..., where {a,}, {Bn} C [0,1], {rn} C (0, 00) satisfying lim,_, 1, = oo. If either
S P < o0 and lim sup,, _,_a, < 1orlim,_ By =0, 32 fu = oo and lim,,_, ,a, = 0, then
{x,} converges strongly to v := J\v*and ¢(x,, v) converges to 0.

Moreover, there exists an integer N > 0 such that

¢ (xps1,0) < TuP(x,0) + 60, +6,, Vn>N, (4.14)

where T, = P + SN Bl Timion (1= Biatj, 60 = TTEn(1 = ideti, 60 = (1= @) /7 + SN ((1 -

a,-)/r,')l_[}q:i”(l - Bj-1)aj) and limy, . 7, = lim,, _, .0, = lim,, _, .6, = 0. Also, one obtains

P(xns1,0) < Pup(x,v) + (zxn + o(é))k(d)(xn,v)), (4.15)

for all n > N, where k(t) = max{t,v!'(t)} € No N Qq, and v,(t) := v(rUg,t), v is the greatest
quasi-inverse of v, (t), and r is a positive number such that {v} U {x,} U {J,,x,} C rUE.

Proof. Put v = J'v*. Since B0 = {v*}, we have (BJ)™'0 = {v}. We separate the proof into
two cases.

Case1. 3721 Pn < o,and lim sup, , a, <1.

According to Theorem 3.3, we have lim,_,.¢(x,,v) exists, {x,} and {],,} are
bounded, and hence {v} U {x,} U {J,,x,} C rUg for some r > 0. Since B! is Lipschitz
continuous at 0 with modulus I > 0, for some 7 > 0, we have ||z* — v*|| < [||w| whenever
z* € B'Y(w) and |lw|| < 7. Since r, — oo, we may assume [/r, < 1 for all n > 1. From
Theorem 3.3, we have ||x, — J,, x,|| — 0and ||A;,x,]| — 0asn — oo. Hence, there exists an
integer N > 0 such that || A, x,|| < T forall n > N. Since | J,, x, € B'A, x,, we have

1T Jr,2%n = 0"l <1 Ar,xull,  Vm 2 N. (4.16)

By |Jxn—v*|| < |Jxn— ] Jr, Xl + 1] Jr,%n —0*|| for all n € N. Since J is uniformly continuous on
each bounded set, (3.20), (3.21) and (4.16), we obtain lim,,_, ;|| Jx, — v*|| = 0. By the uniform
smoothness of E*, we have lim,,_, o [|x, — ©|| = lim,,—,oo||J "} Jx, — J7'0*|| = 0. Since ¢ (x,, v) +
¢(v,x,) =2(x, =0, Jxp — JU) =2(x, — v, Jx, —v*) for all m € N, we get

P (xn,0) <2(xy, — 0, Jxn —0*) <2||xy, — 0||||Jxy — v*|| — O, as n — co. (4.17)
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Hence, ¢(x,,v) — 0asn — oo. It follows from Proposition 4.1 and (4.16) that there exists

o(t) € X1, which implies o(It) < lo(t) forallt > 0 and I € [0,1], such that

d)(]rnxn/ v) < (i)(]r,,xn/ v) + ¢(U, ]rnxn)
=2(Jr,xn =0, ] 1, %0 — JU) S o(|l] Jr,xn = JOII)

=20 (] Jo = 0°l) < 20 (1)1 Ay, ) (418)
=20 (1] 2222 ) < 2o, - gl
for all n > N. It follows from o (t) € X1 and (3.20) that
Jim o ([lx, = Jr, xal)) = 0. (4.19)
From (3.3), (3.2), and (4.18), we have
P (xXns1,0) < Pud(x,0) + (1 = Bp) {an@(xn,0) + (1 — )P (J1, x0,0) }
(4.20)

< Pab(6,0) + (1= Pu)tup (e, 0) + (1= ) (1 - mf—io(nxn ~ xal)

for all n > N. Since ¢(x,,v) — 0 and (4.19), we may assume ¢(x,,v) < 1 and 20(||x, -
Jr,xnll) < 1forall n > N. By (4.20) and induction, we obtain

P (ni1,0) < <ﬂn LSeTTa- ﬂ])a]>¢(x v) + <H<1 pl>al>¢<xN,v>

i=N  j=i+l

DC (4.21)
+(1—ﬁn)l<(1 n) Z 2 (lln = ]rnxn”)l_[(l ﬂ] )a]>

j=i+l

< Tp(x,0) + 0, + 64,

foralln > N, where 7, = 8, + X1y, i1 (L= Bpaj, 00 = TTiEN (1= Pi)eti, 60 = I((L—an) /1 +

Zi:N((l az)/n)l_[,-:m(l Bi-1)a;).
Next, we prove 7, 8, and 6, tend to 0. By a,,, f, € [0,1] and >.72; i < o0, we get

0< =+t AT -y < o+ Zﬁz - Zﬂz < Zﬂz (122)

i=N  j=i+l
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Thus {7,} isbounded. Since a;, € [0,1] and lim sup, _, a, <1, there existssomea (0 <a <1)
such that 0 < a, < a whenever n > N. Then, we get

n-1 n

0 < lim sup 7, < lim sup B, + lim supZﬁiH (1-Bj)a;

n— oo n— oo n—w =N j=i+l

= lim g, +1im sup(1-Bn)an <ﬁn 1+ Zﬁzﬁ (1- .51)“]> (4.23)

n—o =N j=i+l

=lim sup(1 - f,)anTp-1 < lim supa,7,—1 < a lim sup 7,1

n— oo n—oo n—oo

=a lim sup 7,

n— oo

which implies

nlgrgo T, = hr,?_iljp T, =0. (4.24)
Meanwhile, we also have
0<0,= IZN( -Piai < Ha <amN* 0. (4.25)
On the other hand,
6 _1<(1 ) 5 () T1C-8- 1)a]>
=~ T o

< (1_‘xn)ri+anl<( ra: l) Z(l a)H(l ﬁ] 1)d]> (426)

Ti j=i+l

1
=(1- an)r— + a,05-1.

Since lim sup, _, _a, <1, 377, (1 — a) = +oo, it follows from Lemma 2.6 that 6, — 0.
From o(t) € %;, which implies that lim;_,¢: (o(t) /t) = 0, and (3.20). It follows that

i O'(”xn_]r,,xnn)
m —-—————-

=0. 4.27
B e = T (4.27)
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By (4.18), we have

l
¢(]T'nxnlv) < r_zo(”xn - ]rnxn”)

_ LZO'(”xn_]rnxn”)
Tn X, = ]rnxn”

1
- (7) 1 = Tl

for all n > N, where o(i) = iZo(llxn —JnXall)
Tn mno |xn _]rnxn”
Since E is uniformly convex, || - 17 is uniformly totally convex on each bounded set of
E. Denote by v, (t) := v(rUg, t) the modulus of uniformly total convexity on the bounded set
rUg. Then v, (t) € Ny and satisfies v(||x,, — [, xxll) < $(xn, J1,Xn). From the definition of the

greatest quasi-inverse of v , we deduce that

[lxc, — ]rnxn” (4.28)

lxn = Jr, xn]l < Vf <¢(xn/ ]rnxn))- (4.29)
From Lemma 2.5, we have
¢ (xn, Jr,xn) < P(xn, ) — ¢(Jr, X0, 0) < P(x4,0). (4.30)

Since v!' € Ny, it holds by (4.28), (4.29), and (4.30) that
l I\ 5
(i)(]rnxn, D) <o T_ ||xn - ]r,,xn” <o T_ Vy ((i)(xn/v))r (431)

for all n € N. Let k(t) = max{t,v/'(t)}. Since ! € Ny and v,(t) > 0 for t > 0, it follows in [18,
Lemma 3.3.1(i)] that v/'(t) € Qq and this implies that k(t) € Ny N Q. By the first inequality
of (4.20), (4.31) and the definition of k(t), we have

P(xns1,0) < Pu(x,0) + (an + o<%>>k(¢(xn,v)), Vn > N. (4.32)

Case 2. limy,_,oofn = 0, Yoy Bn = o0, and limy, _, o, = 0.

From the proof of Theorem 3.1, we note that if B0 = {v}, then {$(x,,v)}
converges to 0, {x,} converges strongly to v, and lim,_ «l|/x, — Jr,Xu|| = 0. By the same
argument as in the proof of Case 1, we obtain ¢(x,+1,v) < T,¢(x,v) + 60, + 6, for alln > N,
where 1, 0,, and 6,, are those of Case 1.
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It remains to show that {7,}, {0,}, and {6,} converge to 0. Since a,, , € [0,1] and
lim, , a, = 0, lim,, _, o B, = 0, it follows that

n-1 n
0< T =Pu+ D B[ [(1-5)a

=N j=itl

n-1 n
= Bu(1— ) + Pucta + DB [ [ (1 - B)a;

=N j=itl
<Pn+an <ﬁn + nz_lﬁiﬁ(l_ﬂj)> (4.33)
=N j=itl

:ﬁn+an<l—ﬁ(1—ﬂi)> <Pp+a,—0,
i=N
0<6, = [~ <a [~ fr) — 0

=N i=N

whenever n > N large enough.
On the other hand,

=~ i j=i+l n

5, = l<(1 ;nan) nzl (1-a) v~ H (1-p;- 1)a]> 1- an)i + 2,6, (4.34)

Since lim,, o, = 0, X774 (1 — ay) = +o0. It follows from Lemma 2.6 that 6, — 0. Moreover,
according to the proof of Case 1, we also have that, for alln > N,

P (xns1,0) < Pup(x,v) + <an + o< ))k((ﬁ(xn,v)) (4.35)

where k(t) is the same as that of Case 1. Hence, the conclusion follows. O

If a,, = 0 for all n € N, then the algorithm (1.7) reduces to (1.5). Also, letting a, = 0 in
(4.15) we obtain

P(xpi1,0) <pn¢(x,v)+o< )k((])(xn, )), Vn>N. (4.36)

Corollary 4.3 (see Li and Song [6]). Let H be a Hilbert space and let B ¢ H x H be a maximal
monotone with B0 = {v*} and B! is Lipschitz continuous at 0 with modulus | > 0. Let {x,} be a
sequence generated by x1 = x € H and

Xp41 = XXy + (1 — ay) J1, Xn, (4.37)
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for every n = 1,2,..., where {a,} C [0,1], {r,} C (0,00) satisfy lim sup, , a, < 1, and
limy, —, 7 = oo. Then the sequence {x,} converges strongly to v. Moreover, there exists an integer
N > 0 such that

lxp1 -0l £V6,+6, Vn>N, (4.38)

where 0, = [Titnai, 6u = W((1 = an)/ra + SEN((1 = @) /r)[T}iaay), and lim, 0, =
limy, _, .6, = 0. Meanwhile, one obtains the estimate, for alln > N,

1 2
0o = 01l < + o - ) o - L (4.39)

n

Proof. Note that, for x,y € H, wehave ] =I and ¢(x,y) = ||x - y||2. Under our assumptions,
the iterative sequence (4.37) reduces to a special case of the algorithm (1.7) where , = 0.
From the proof of Case 1 in Theorem 4.2, we know that {x,} converges strongly to v and
there exists some N > 0 such that (4.20) and (4.21) hold for n > N.

Let B, = 0 in the inequality (4.21). Then, 7, = 0. It follows from (4.21) that

|xpe1 — 0l £ VOy + 64, VYn>N. (4.40)

Since a, € [0,1] and lim sup,, _, _a, < 1, there exists some a(0 < a < 1) such that 0 < a, < &
whenever n > N. Then, we get 6, = [T ya: < a®N*1 — 0. Also,

1-— . n-1 1-— ; n
5n=z<( ), 5 _“)na])

=~ T =ik

n Tn-1 =~ T j=in

=(1- an)ri + atnl((1 —nt) | S a-a ﬁa]) (4.41)

l
= (1 - an)a + an(sn_l.
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Since lim sup,, , _a, < 1, 372,(1 - a,) = +oo. It follows from Lemma 2.6 that 6, — 0.
Additionally, from (4.20), (4.16), and (4.30), we have

2 2 2
[%ns1 = 011 < allxtn = OI* + (1 = )| 1, 2% =
< allxn = o> + (1 = an) (1| Ar, xal])

2
Xy — X
= anlln — 0l + (1 — )| Tnn

" (4.42)
2 1\’ 2
< aullxn =07+ (A —an){ = ) llxn - 2
1\ 2
S{an+ (=) Jlxn—2l
Tn
for all n > N, which implies the equality (4.39). O

5. Applications

In this section, we study the problem of finding a minimizer of a proper lower
semicontinuous convex function in a Banach space.

Theorem 5.1. Let E be a uniformly convex and uniformly smooth Banach space and let f* : E* —
(—o0, 0] be a proper lower semicontinuous convex function such that (0 f*)_1076 0. Let {x,} be a
sequence defined as follows: x, = x € E and

* : * * 1 *[|2 _ l * .
Z = arg;{gg{f @) + 5yl = oy >},
]/:1 = apXy t+ (1 - “n)]_lz:u' (5.1)

Xn+l = ﬂnx + (1 - ﬁn)y;r

for every n = 1,2,..., where {ay}, {fn} C [0,1], and {r,} C (0,00) satisfy lim,_,a, = O,
lim, . oofn = 0, 2oy Pu = o0, and lim,,_, s, = oo. Then the sequence {x,} converges strongly
to R f+5)10(X), where Ry p. -1 is a sunny generalized nonexpansive retraction of E onto (9f*] )~0.

Proof. By Rockafellar’s theorem [19, 20], the subdifferential mapping 0 f* C E* x E is maximal
monotone. Let J, = (I +r0f] ) forall ¥ > 0. As in the proof of [7, Corollary 5.1], we have
J~'z, = Jr,xn for all n € N. Hence, by Theorem 3.1, {x,} converges strongly to R . y-19(x).

O

When a,, = 0 in Theorem 5.1 we obtain the following corollary.
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Corollary 5.2 (see Ibaraki and Takahashi [7]). Let E be a uniformly convex and uniformly smooth
Banach space and let f* : E* — (—oo,00] be a proper lower semicontinuous convex function such
that (af*)‘lo #0. Let {x,,} be a sequence defined as follows: x1 = x € E and

* : * * L * 2_ l * .
Y —arg;pelg{f ¥+ 5 lly Il = oy >}/ 652)

Xn+1 = ﬂnx + (1 - ﬁ")]_lyz’

foreveryn =1,2,..., where {f,} C [0,1] and {r,} C (0, 00) satisfy im, _, xfn = 0, X771 fu = 0,
and limy, , 7y = oo. Then the sequence {x,} converges strongly to R . y1o(x), where Rz py-1g i

a sunny generalized nonexpansive retraction of E onto (df*J)™'0.
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