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Route Sidi Bouzid, BP 4162, Safi 46000, Morocco

Correspondence should be addressed to Abdelaziz Soufyane, asoufyane@hotmail.com

Received 10 January 2009; Accepted 14 March 2009

Recommended by Irena Lasiecka

We consider the one-dimensional viscoelastic Porous-Thermo-Elastic system. We establish a
general decay results. The usual exponential and polynomial decay rates are only special cases.

Copyright q 2009 Abdelaziz Soufyane et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

An increasing interest has been developed in recent years to determine the decay behavior
of the solutions of several elasticity problems. It is known that combining the elasticity
equations with thermal effects provokes stability of solutions in the one-dimensional case
[1]. Several results concerning the exponential or the polynomial decay of solutions for the
thermoelastic systems were obtained by [2–6].

A sample model describing the one-dimensional porous-thermo-elasticity, which was
developed in [7, 8], is given by the following system:

ρutt = μuxx + bvx − βθx, in (0, L) × R
+,

Jvtt = αvxx − bux − ξv +mθ − τvt, in (0, L) × R
+,

cθt = κθxx − βuxt −mvt, in (0, L) × R
+,

(1.1)

where t denotes the time variable, x is the space variable, the functions uis the displacement,
v is the volume fraction of the solid elastic material, and the function θ is the temperature
difference. The coefficients ρ, μ, J , α, ξ, τ , c, and κ are positive constants. b is a constant such
that b2 < μξ.
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Casas andQuintanilla [7] considered the above system and used the semigroup theory
and the method developed by Liu and Zheng [4] to establish the exponential decay of the
solution under the boundary conditions of the form

u(x, t) = vx(x, t) = θx(x, t) = 0, x = 0, L, t ∈ (0,∞). (1.2)

Soufyane [9] considered the following system:

utt = uxx + vx − θx, in (0, L) × R
+,

vtt = vxx − ux − v + θ −
∫ t

0
g(t − s)vxx(s)ds, in (0, L) × R

+,

θt = θxx − uxt − vt, in (0, L) × R
+,

u(x, 0) = u0(x), ut(x, 0) = u1(x), v(x, 0) = v0(x),

vt(x, 0) = v1(x), θ(x, 0) = θ0(x),

u(0, t) = u(L, t) = vx(0, t) = vx(L, t) = θ(0, t) = θ(L, t) = 0, t ≥ 0.

(1.3)

He proved that the solution of (1.3) decays exponentially if the function g decays exponen-
tially, and the solutions (1.3) decay polynomially if the function g decays polynomially.

Recently Pamplona et al. [10] considered the follwing system:

ρutt = μuxx + bvx − βθx + γuxxt, in (0, π) × R
+,

Jvtt = αvxx − bux − ξv +mθ, in (0, π) × R
+,

cθt = κθxx − βuxt −mvt, in (0, π) × R
+,

u(x, 0) = u0(x), ut(x, 0) = u1(x), v(x, 0) = v0(x),

vt(x, 0) = v1(x), θ(x, 0) = θ0(x),

u(0, t) = u(π, t) = v(0, t) = v(π, t) = θx(0, t) = θx(π, t) = 0, t ≥ 0.

(1.4)

They proved that the system is not exponential stable, and they showed that the solution
decays polynomially.

In this paper we are concerned with the following model:

ρutt = μuxx + bvx − βθx, in (0, L) × R
+,

Jvtt = αvxx − bux − ξv +mθ, in (0, L) × R
+,

cθt = κθxx − βuxt −mvt, in (0, L) × R
+,

(1.5)

with the initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), v(x, 0) = v0(x),

vt(x, 0) = v1(x), θ(x, 0) = θ0(x),
(1.6)
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and the boundary conditions

u(0, t) = v(0, t) = θ(0, t) = θ(L, t) = 0, t ≥ 0, (1.7)

u(L, t) = −
∫ t

0
g1(t − s)[μux(L, s) + bv(L, s)]ds, (1.8)

v(L, t) = −
∫ t

0
g2(t − s)αvx(L, s)ds. (1.9)

Our main interest concerns the asymptotic behavior of the solution of the system above. That
is, whether the dissipation given by the boundary memory effect is strong enough to stabilize
the whole system. And what type of rate of decay may we expect (exponential decay or
polynomial decay?). We obtain an exponential decay or polynomial decay result under some
conditions on gi (i = 1, 2). Our proof is based on the multiplier techniques.

This work is divided into four sections. In Section 2 we introduce some notations and
some material needed for our work. In Section 3 we state and prove the exponential decay of
the solutions of our studied system. Section 4 is devoted to the polynomial decay.

2. Preliminaries

In this section we introduce some notations and we study the existence of regular and weak
solutions to system (1.5)–(1.9). First, we will use (1.8) and (1.9) to estimate the boundary
terms ux(L, t) and vx(L, t).

Defining the convolution product operator by

(g ∗ ϕ)(t) =
∫ t

0
g(t − s)ϕ(s)ds, (2.1)

and differentiating equation (1.8) we obtain

μux(L, t) + bv(L, t) +
1

g1(0)
(g ′

1 ∗ u)(L, t) = − 1
g1(0)

ut(L, t) ∀t ≥ 0. (2.2)

Applying Volterra’s inverse operator, we get

μux(L, t) + bv(L, t) = − 1
g1(0)

[ut(L, t) + (k1 ∗ u)(L, t)], ∀t ≥ 0, (2.3)

where the resolvent kernel k1 satisfies

k1(t) +
1

g1(0)
(g ′

1 ∗ k1)(t) = − 1
g1(0)

g ′
1(t). (2.4)
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Denoting by η1 = 1/g1(0), we arrive at

μux(L, t) + bv(L, t) = −η1[ut(L, t) + k1(0)u(L, t) − k1(t)u(L, 0) + (k′
1 ∗ u)(L, t)], ∀t ≥ 0. (2.5)

A similar procedure leads to

αvx(L, t) = −η2[vt(L, t) + k2(0)v(L, t) − k2(t)v(L, 0) + (k′
2 ∗ v)(L, t)], ∀t ≥ 0, (2.6)

where η2 = 1/g2(0).
Reciprocally, taking, in a natural way, the initial data u0(L) = v0(L) = 0, the identities

(2.5) and (2.6) imply (1.8) and (1.9).
Since we are interested in relaxation functions of exponential or polynomial type and

identities (2.5)-(2.6) involve the resolvent kernels ki (i = 1, 2), we want to know if ki has the
same properties. The following lemma answers this question. Let h be a relaxation function
and k its resolvent kernel, that is,

k(t) − (k ∗ h)(t) = h(t). (2.7)

Lemma 2.1 (see [11]). If h is a positive continuous function, then k is also positive and continuous.
Moreover,

(1) If there exist positive constants c0 and γ with c0 < γ such that

h(t) ≤ c0e
−γt, (2.8)

then the function k satisfies

k(t) ≤ c0(γ − ε)
(γ − ε − c0)

e−εt, (2.9)

for all 0 < ε < γ − c0.
(2) If

cp := sup
t∈R+

∫ t

0
(1 + t)p(1 + t − s)−p(1 + s)−pds < +∞, (2.10)

for a given p > 1 and if there exists a positive constant c0 with c0cp < 1, for which

h(t) ≤ c0(1 + t)−p, (2.11)

then the function k satisfies

k(t) ≤ c0
1 − c0cp

(1 + t)−p. (2.12)



Abstract and Applied Analysis 5

Based on Lemma 2.1, we will use (2.5)-(2.6) instead of (1.8)-(1.9). We then define

(g oϕ)(t) :=
∫ t

0
g(t − s)|ϕ(t) − ϕ(s)|2ds,

(g 	 ϕ)(t) :=
∫ t

0
g(t − s)(ϕ(t) − ϕ(s))ds.

(2.13)

By using Hölder’s inequality for 0 ≤ μ ≤ 1, we have

|(g 	 ϕ)(t)|2 ≤
(∫ t

0
|g(s)|2(1−μ)ds

)
(|g|2μoϕ)(t). (2.14)

Lemma 2.2 (see [12]). If g, ϕ ∈ C1(R+), then

(g ∗ ϕ)ϕt = −1
2
g(t)|ϕ(t)|2 + 1

2
g ′oϕ − 1

2
d

dt

(
g oϕ −

(∫ t

0
g(s)ds

)
|ϕ(t)|2

)
. (2.15)

3. Exponential Decay

In this section we study the asymptotic behavior of the solutions of system (1.5)–(1.9), when
the resolvent kernels ki (i = 1, 2) satisfy, for γi > 0, the following conditions:

ki(0) > 0, ki(t) ≥ 0, k′
i(t) ≤ 0, k′′

i (t) ≥ −γik′
i(t). (3.1)

These assumptions imply that k′
i converges exponentially to 0, that is,

0 ≤ −k′
i(t) ≤ Ce−γit. (3.2)

We define the first-order energy of system (1.5)–(1.9) by

E(t) :=
1
2

∫L

0

[
ρ|ut(x, t)|2 + J |vt(x, t)|2 + c|θ(x, t)|2 + μ|ux(x, t)|2

]
dx

+
1
2

∫L

0

[
α|vx(x, t)|2 + ξ|v(x, t)|2 + 2bux(x, t)v(x, t)

]
dx

+
η1
2
(k1(t)u2(L, t) − (k′

1 ou)(L, t) +
η2
2
(k2(t)v2(L, t) − (k′

2ov)(L, t).

(3.3)

In the sequel we define by V1 := {u ∈ H1(0, L) : u(0) = 0}. We are now ready to state our first
result.
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Theorem 3.1. Given ((u0, u1), (v0, v1), θ0) ∈ ((V1 × L2(0, L))2×L2(0, L)), assume that (3.1) holds
with

sup
t∈[t0,∞[

(ki(t)) small enough. (3.4)

Assume further that b is a small number, then the energy E satisfies the following decay estimates:

E(t) ≤ c1E(0)e−ωt, if u0(L) = v0(L) = 0. (3.5)

Otherwise,

E(t) ≤ c1E(0)e−ωt

(
1 +

∫ t

0
k2
1(s)e

ωsds +
∫ t

0
k2
2(s)e

ωsds

)
, (3.6)

where c1 and ω are positive constants independent of the initial data.

Proof. The main idea is to construct a Lyapunov functional L(t) equivalent to E(t). To do this
we use the multiplier techniques. The proof of Theorem 3.1 will be achieved with the help of
a sequence of lemmas.

Lemma 3.2. Under the assumptions of Theorem 3.1, the energy of the solution of (1.5)–(1.9) satisfies

dE

dt
≤ −κ

∫L

0
|θx|2dx − η1

2
u2
t (L, t) +

η1
2
k2
1(t)|u0(L)|2

+
η1
2
k′
1(t)|u(L, t)|2 −

η1
2
(k′′

1ou)(L, t)

− η2
2
v2
t (L, t) +

η2
2
k2
2(t)|v0(L)|2

+
η2
2
k′
2(t)|v(L, t)|2 −

η2
2
(k′′

2ov)(L, t).

(3.7)

Proof. Multiplying first equation of (1.5) by ut, multiplying second equation of (1.5) by vt and
third equation of (1.5) by θ, and integrating by parts over [0, L],we obtain

d

2dt

∫L

0
(ρ|ut|2 + μ|ux|2)dx = −b

∫L

0
utxvdx + β

∫L

0
uxtθdx + [μux(L, t) + bv(L, t)]ut(L, t),

d

2dt

∫L

0
(J |vt|2 + α|vx|2 + ξ|v|2)dx = −b

∫L

0
vtuxdx +m

∫L

0
θvtdx + αvx(L)vt(L),

d

2dt

∫L

0
c|θ|2dx = −κ

∫L

0
|θx|2dx −m

∫L

0
θvtdx − β

∫L

0
θuxtdx.

(3.8)
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By a summation of these three identities, we get

d

2dt

∫
Ω
(ρ|ut|2 + μ|ux|2 + J |vt|2 + α|vx|2 + ξ|v|2 + c|θ|2 + 2buxv)dx

≤ −κ
∫L

0
|θx|2dx + [μux(L, t) + bv(L, t)]ut(L, t) + αvx(L, t)vt(L, t),

(3.9)

using (2.5), (2.6), and Lemma 2.2, we obtain

dE

dt
≤ −κ

∫L

0
|θx|2dx − η1

2
u2
t (L, t) +

η1
2
k2
1(t)|u0(L)|2

+
η1
2
k′
1(t)|u(L, t)|2 −

η1
2
(k′′

1ou)(L, t)

− η2
2
v2
t (L, t) +

η2
2
k2
2(t)|v0(L)|2

+
η2
2
k′
2(t)|v(L, t)|2 −

η2
2
(k′′

2ov)(L, t),

(3.10)

which ends the proof of Lemma 3.2.

Lemma 3.3. Under the assumptions of Theorem 3.1, the energy of the solution of (1.5)–(1.9) satisfies

d

dt

∫L

0
(2xux + (1 − ε0)u)ρutdx +

d

dt

∫L

0
(2xvx + (1 − ε0)v)Jvtdx

≤ −ε0
∫L

0
ρu2

t dx − (2 − ε0)
2

μ

∫L

0
u2
xdx − 2b(1 − ε0)

∫L

0
uxvdx

− ε0

∫L

0
Jv2

t dx − (2 − ε0)
2

α

∫L

0
v2
xdx + C

∫L

0
θ2
xdx

+ (1 − ε0)μu(L)ux(L) + ρLu2
t (L) + μLu2

x(L) − (1 − ε0)αv(0)vx(0),

(3.11)

where ε0 is a small positive number.

Proof. We multiply first equation of (1.5) by 2xux + (1 − ε0)u to obtain

d

dt

∫L

0
(2xux + (1 − ε0)u)ρutdx

=
∫L

0
(2xutx + (1 − ε0)ut)ρutdx +

∫L

0
(2xux + (1 − ε0)u)(μuxx + bvx − βθx)dx.

(3.12)
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Integrating by parts, we get

d

dt

∫L

0
(2xux + (1 − ε0)u)ρutdx = −ε0

∫L

0
ρu2

t dx − (2 − ε0)μ
∫L

0
u2
xdx + b

∫L

0
2xuxvxdx

− b(1 − ε0)
∫L

0
uxvdx + (1 − ε0)μu(L, t)ux(L, t) + ρLu2

t (L, t)

+ μLu2
x(L, t) − β

∫L

0
(2xux + (1 − ε0)u)θxdx.

(3.13)

Similarly, we multiply second equation of (1.5) by 2xvx + (1 − ε0)v and integrate over ]0, L[,
using integration by parts, to arrive at

d

dt

∫L

0
(2xvx + (1 − ε0)v)Jvtdx = −ε0

∫L

0
Jv2

t dx − (2 − ε0)α
∫L

0
v2
xdx + ε0

∫L

0
ξv2dx + αLv2

t (L, t)

+ μLv2
x(L, t) − ξLv2(L, t) − (1 − ε0)αv(L, t)vx(L, t)

−
∫L

0
b(2xvx + (1 − ε0)v)uxdx +m

∫L

0
(2xvx + (1 − ε0)v)θdx.

(3.14)

Summing the above two identities and using Poincare’s and Young’s inequalities and taking
ε0 small, we deduce that

d

dt

∫L

0
(2xux + (1 − ε0)u)ρutdx +

d

dt

∫L

0
(2xvx + (1 − ε0)v)Jvtdx

≤ −ε0
∫L

0
ρu2

t dx − (2 − ε0)
2

μ

∫L

0
u2
xdx − 2b(1 − ε0)

∫L

0
uxvdx

− ε0

∫L

0
Jv2

t dx − (2 − ε0)
2

α

∫L

0
v2
xdx + C

∫L

0
θ2
xdx

+ (1 − ε0)μu(L, t)ux(L, t) + ρLu2
t (L, t) + μLu2

x(L, t)

− αLv2
t (L, t) + μLv2

x(L, t) − ξLv2(L, t) + (1 − ε0)αv(L, t)vx(L, t).

(3.15)

The proof of Lemma 3.3 is completed.

Now, we introduce the Lyapunov functional. So, forN > 0 large enough, let

L(t) = NE(t) +
∫L

0
(2xux + (1 − ε0)u)ρutdx +

∫L

0
(2xvx + (1 − ε0)v)Jvtdx. (3.16)
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Applying Young’s inequality and Poincaré’s inequality to the boundary terms, we have, for
ε > 0,

(1 − ε0)μu(L, t)ux(L, t) + (1 − ε0)αv(L, t)vx(L, t)

≤ ε[μu2(L, t) + αv2(L, t)] + Cε[μu2
x(L, t) + αv2

x(L, t)]

≤ εC

(∫L

0
|ux|2dx +

∫L

0
|vx|2dx

)
+ Cε[μu2

x(L, t) + αv2
x(L, t)].

(3.17)

By rewriting the boundary conditions (2.5)-(2.6) as

μux(L, t) = −bv(L, t) − η1(ut + k1(t)u − k1(t)u0 − k′
1 	 u)(L, t),

αvx(L, t) = −η2(vt + k2(t)v − k2(t)v0 − k′
2 	 v)(L, t),

(3.18)

and combining all above relations, using the fact that b is a small number, the condition 17,
taking N large enough, ε0 very small, and ε 
 ε0, we obtain

dL
dt

(t) ≤ −κN
2

∫L

0
|θx|2dx −N

η1
8
u2
t (L, t) +Nη1k

2
1(t)|u0(L)|2

− Nη1
2

k′′
1ou(L, t) −

Nη2
8

v2
t (L, t) +Nη2k

2
2(t)|v0(L)|2

− Nη2
2

k′′
2ov(L, t) − ε0

∫L

0
ρu2

t dx − (1 − ε0)
8

μ

∫L

0
u2
xdx

− ε0

∫L

0
Jv2

t dx − (1 − ε0)
8

α

∫L

0
v2
xdx

+ Cε((−k′
1 	 u)2 + (−k′

2 	 v)2)(L, t).

(3.19)

Applying inequality (2.14) with μ = 1/2, using the trace formula we have, for some positive
constant c0, the following estimate:

d

dt
L(t) ≤ −c0E(t) + C

[
k2
1(t)|u0(L)|2 + k2

2(t)|v0(L)|2]. (3.20)

Also, by direct computations, it is easy to check that, forN large, we have

N

2
E(t) ≤ L(t) ≤ 2NE(t). (3.21)
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Therefore (3.20) becomes

d

dt
L(t) ≤ −ωL(t) + C

[
k2
1(t)|u0(L)|2 + k2

2(t)|v0(L)|2], (3.22)

for some positive constants ω. At this point we distinguish two cases.

Case 1. If u0(L) = v0(L) = 0, then (3.22) reduces

d

dt
L(t) ≤ −ωL(t), ∀t ≥ 0. (3.23)

A simple integration over (0, t) yields

L(t) ≤ L(0)e−ωt, ∀t ≥ 0. (3.24)

By using (3.21), estimate (3.5) is proved.

Case 2. If u0(L)/= 0 or v0(L)/= 0, then (3.22) gives

d

dt
L(t) ≤ −ωL(t) + C1k

2
1(t) + C2k

2
2(t), (3.25)

where

C1 = C|u0(L)|2, C2 = C|v0(L)|2. (3.26)

In this case we introduce the following functional:

F(t) := L(t) − C1e
−ωt

∫ t

0
k2
1(t)e

ωsds − C2e
−ωt

∫ t

0
k2
2(t)e

ωsds. (3.27)

A simple differentiation of F, using (3.25), leads to

dF

dt
(t) ≤ −ωF(t). (3.28)

Again a simple integration over (0, t) yields

F(t) ≤ F(0)e−ωt, ∀t ≥ 0. (3.29)

A combination of (3.21), (3.27), and (3.29) then yields the estimate (3.6). This completes the
proof of Theorem 3.1.
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4. Polynomial Decay

In this section we study the asymptotic behavior of the solutions of system (1.5)–(1.9) when
the resolvent kernels ki (i = 1, 2) satisfy

ki(0) > 0, ki(t) ≥ 0, k′
i(t) ≤ 0, k′′

i (t) ≥ γi(−k′
i(t))

1+qi , (4.1)

for (q1, q2)/= (0, 0), 0 ≤ qi < 1/2, and some positive constants γi. These assumptions imply that
k′
i decays polynomially to 0 if qi > 0. That is,

0 ≤ −k′
i(t) ≤ C(1 + t)−1/qi . (4.2)

The following lemmas will play an important role in the sequel.

Lemma 4.1. (see [13]) Let p > 1, 0 ≤ r < 1, and t ≥ 0. Then for 0 < r,

(|k′|oφ(L, t))1+1/(1−r)(1+p)

≤ 2
(
‖φ‖2L∞(0,T,H1(0,L))

∫ t

0
|k′(s)|rds

)1/(1−r)(1+p)(|k′|1+1/(1+p)oφ(L, t)),
(4.3)

and for r = 0,

(|k′|oφ(L, t))1+1/(1+p)

≤ 2
(∫ t

0
‖φ(·, s)‖2H1(0,L)ds + t‖φ(·, t)‖2H1(0,L)

)1/(1+p)(|k′|1+1/(1+p)oφ(L, t)),
(4.4)

where

p =
1
q
− 1. (4.5)

Theorem 4.2. Given that ((u0, v0), (u1, v1, θ0)) ∈ (V 2 × (L2(0, L))3), assume that b small number
and (4.1) hold. Then there exists a positive constant λ > 0, for which the energy E satisfies, for all
t ≥ 0, the following decay estimates:

E(t) ≤ λ

(1 + t)1/q
, if u0(L) = v0(L) = 0 on. (4.6)

Otherwise,

E(t) ≤ λ

(1 + t)(1−r)/q

[
1 +

∫ t

0
(k2

1(s) + k2
2(s))(1 + s)(1−r)(p+1)ds

]
, (4.7)
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where

q = max{q1, q2}, 1
p + 1

< r <
p

p + 1
, p = min{p1, p2}. (4.8)

Moreover, if

∫∞

0
(k2

1(s) + k2
2(s))(1 + s)(1−r)(p+1)ds < +∞ (4.9)

for some r, satisfying (4.8), then (4.7) reduces to (4.6).

Proof. By using (4.1) in (3.7), we easily see that

dE

dt
≤ − κ

∫L

0
|θx|2dx − η1

2
u2
t (L, t) +

η1
2
k2
1(t)|u0(L)|2

+
η1
2
k′
1(t)|u(L, t)|2 −

η1γ1
2

(−k′
1(t))

1+q1ou(L, t)

− η2
2
v2
t (L) +

η2
2
k2
2(t)|v0(L)|2

+
η2
2
k′
2(t)|v(L)|2 −

η2γ2
2

(−k′
2(t))

1+q2ov(L, t).

(4.10)

By defining the functional L(t) as in (3.16), we get

dL
dt

(t) ≤ − κN

2

∫L

0
|θx|2dx − Nη1

8
u2
t (L, t) +Nη1k

2
1(t)|u0(L)|2

− Nη1γ1
2

(−k′
1(t))

1+q1ou(L, t) − Nη2
8

v2
t (L, t) +Nη2k

2
2(t)|v0(L)|2

− Nη2γ2
2

(−k′
2(t))

1+q2ov(L, t) − ε0

∫L

0
ρu2

t dx − (1 − ε0)
8

μ

∫L

0
u2
xdx

− ε0

∫L

0
Jv2

t dx − (1 − ε0)
8

α

∫L

0
v2
xdx

+ Cε((−k′
1 	 u)2 + (−k′

2 	 v)2)(L, t).

(4.11)

Applying inequality (2.14) for k′
i with μ = (p1 + 2)/2(p1 + 1) if i = 1 and μ = (p2 + 2)/2(p2 + 1)

if i = 2, we get

|k′
1 	 u|2 ≤ C(−k′

1)
1+q1ou, |k′

2 	 v|2 ≤ C(−k′
2)

1+q2ov . (4.12)
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Using the above inequalities and taking N large, then for some positive constant c1, we
obtain

d

dt
L(t) ≤ − c1

[∫L

0
|θ|2dx +

∫L

0
ρu2

t dx +
∫L

0
μu2

xdx +
∫L

0
Jv2

t dx +
∫L

0
αv2

xdx

+ (−k′
1(t))

1+q1ou(L, t) + (−k′
2(t))

1+q2ov(L, t)
]

+ Cε(k2
1(t)|u0(L)|2 + k2

2(t)|v0(L)|2) − Nη1
8

u2
t (L, t) −

Nη2
8

v2
t (L, t).

(4.13)

Now, we fix 0 < r < 1 such that 1/(p + 1) < r < p/(p + 1) and p = min{p1, p2}. From (4.1) we
get

∫ t

0
|k′

i(s)|rds ≤ C
∫∞
0 (1 + t)−r/qids < ∞, i = 1, 2.

[−k′
1(t)ou(L)]

1+1/(1−r)(p+1) ≤ C[(−k′
1(t))

1+1/(p1+1)ou(L)]

[−k′
2(t)ov(L)]

1+1/(1−r)(p+1) ≤ C[(−k′
2(t))

1+1/(p2+1)ov(L)].

(4.14)

Consequently we have

CE(t)1+1/(1−r)(p+1) ≤
∫L

0
[ρ|ut|2 + J |vt|2 + c|θ|2 + μ|ux|2 + [α|vx|2]dx

+ [(−k′
1(t))

1+q1ou(L)] + [(−k′
2(t))

1+q2ov(L)].

(4.15)

Inserting (4.15) into (4.13) and using (3.21), we deduce that

d

dt
L(t) ≤ −C(L(t))1+1/(1−r)(p+1) + Cε(k2

1(t)|u0(L)|2 + k2
2(t)|v0(L)|2). (4.16)

Here, we distinguish two cases.

Case 1 (u0(L) = v0(L) = 0). In this case (4.16) reduces to

d

dt
L(t) ≤ −C(L(t))1+1/(1−r)(p+1). (4.17)

A simple integration over (0, t) gives

L(t) ≤ C

(1 + t)(1−r)(p+1)
, ∀t ≥ 0. (4.18)
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As a consequence of (4.18) and the fact that (1 − r)(p + 1) > 1, we easily verify that

∫∞

0
L(t)dt + sup

t≥0
tL(t) < ∞. (4.19)

Therefore, by using Lemma 4.1, (3.3), and (3.21), we have

[|k′
1|ou(L)]1+1/(1+p) ≤ C

[|k′
1|1+1/(1+p1)ou(L)

]

[|k′
2|ov(L)]1+1/(1+p) ≤ C

[|k′
2|1+1/(1+p2)ov(L)

]
,

(4.20)

which implies that

[
|k′

1|
1+1/(1+p1)

ou(L)
](p+1)/(p+2) ≥ C[|k′

1|ou(L)][
|k′

2|
1+1/(1+p2)

ov(L)
](p+1)/(p+2) ≥ C[|k′

2|ov(L)].
(4.21)

Consequently we have

CE(t)1+1/(p+1) ≤
∫L

0
ρ|ut|2 + J |vt|2 + c|θ|2 + μ|ux|2 + [α|vx|2]dx

+ [(−k′
1(t))

1+q1ou(L)] + [(−k′
2(t))

1+q2ov(L)].

(4.22)

Inserting (4.22) into (4.13), with u0(L) = v0(L) = 0, we deduce that

d

dt
L(t) ≤ −C(L(t))1+1/(p+1). (4.23)

A simple integration then leads to

L(t) ≤ C

(1 + t)p+1
=

C

(1 + t)1/q
, ∀t ≥ 0. (4.24)

where q = max{q1′q2}. By using (3.21), estimate (4.6) is established.

Case 2 (u0(L)/= 0 or v0(L)/= 0). In this case (4.16) gives that

d

dt
L(t) ≤ −C(L(t))1+1/(1−r)(p+1) + C1k

2
1(t) + C2k

2
2(t), (4.25)

where

C1 = Cε|u0(L)|2, C2 = Cε|v0(L)|2. (4.26)
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We then introduce the following functional H(t) := L(t) − g(t),where

g(t) := C1(1 + t)−(1−r)(p+1)
∫ t

0
k2
1(s)(1 + s)(1−r)(p+1)ds

+ C2(1 + t)−(1−r)(p+1)
∫ t

0
k2
2(s)(1 + s)(1−r)(p+1)ds.

(4.27)

By using (4.1), it is easy to show that, for some t0 > 0, we have

g(t)1+1/(1−r)(p+1) = (1 + t)−1−(1−r)(p+1)

×
[∫ t

0
(C1k

2
1(s) + C2k

2
2(s))(1 + s)(1−r)(p+1)ds

]1+1/(1−r)(p+1)

≥ γ0(1 + t)−1−(1−r)(p+1)

×
[∫ t

0
(C1k

2
1(s) + C2k

2
2(s))(1 + s)(1−r)(p+1)ds

]
, ∀t ≥ t0,

(4.28)

where

γ0 =
[∫ t0

0
(C1k

2
1(s) + C2k

2
2(s))(1 + s)(1−r)(p+1)ds

]1/(1−r)(p+1)
. (4.29)

Hence, simple calculations give

g ′(t) + Cg(t)1+1/(1−r)(p+1) ≥ C1k
2
1(t) + C2k

2
2(t), ∀t ≥ t0. (4.30)

Thanks to (4.25)–(4.30), we have

H ′(t) ≤ −C[L(t)1+1/(1−r)(p+1) − g(t)1+1/(1−r)(p+1)]. (4.31)

By using the fact that

L(t)1+1/(1−r)(p+1) = [H(t) + g(t)]1+1/(1−r)(p+1) ≥ [H(t)1+1/(1−r)(p+1) + g(t)1+1/(1−r)(p+1)] (4.32)

estimate (4.31) gives

H ′(t) ≤ −CH(t)1+1/(1−r)(p+1), ∀t ≥ t0. (4.33)

A simple integration of (4.33) over (t0, t) then leads to

H(t) ≤ C

(1 + t)(1−r)(p+1)
, ∀t ≥ t0. (4.34)
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Therefore, using (4.27)we get, for all, t ≥ t0,

L(t) ≤ C

(1 + t)(1−r)(p+1)

[
1 +

∫ t

0
(k2

1(s) + k2
2(s))(1 + s)(1−r)(p+1)ds

]
. (4.35)

Again, recalling (3.21) and using the continuity and the boundedness of E, estimate (4.7) is
established.

If, in addition,

∫∞

0
(k2

1(s) + k2
2(s))(1 + s)(1−r)(p+1)ds < +∞ (4.36)

for some r, satisfying (4.8) then (4.35) takes the form

L(t) ≤ C

(1 + t)(1−r)(p+1)
. (4.37)

By repeating (4.18)–(4.24), the desired estimate is established.
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