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We study global behavior of the following max-type difference equation xn+1 =
max{1/xn,An/xn−1}, n = 0, 1, . . . , where {An}∞n=0 is a sequence of positive real numbers
with 0 ≤ infAn ≤ supAn < 1. The special case when {An}∞n=0 is a periodic sequence with period k
and An ∈ (0, 1) for every n ≥ 0 has been completely investigated by Y. Chen. Here we extend his
results to the general case.
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1. Introduction

In the recent years, there has been a lot of interest in studying the global behavior of, the so-
called, max-type difference equations; see, for example, [1–17] (see also references therein).
In [1, 3–5, 7, 8], the second order max-type difference equation

xn+1 = max
{

1
xn

,
An

xn−1

}
, n = 0, 1, . . . (1.1)

has been studied for positive coefficientsAn, which are periodic with period k. The case k = 1
was studied in [1], the case k = 2 was studied in [3], the case k = 3 was studied in [4, 8],
and the more difficult case k = 4 was studied in [7]. Chen [5] found that every positive
solution of (1.1) is eventually periodic with period 2 when {An}∞n=0 is a periodic sequence of
positive real numbers with period k ≥ 2 and An ∈ (0, 1) for all n ≥ 0. These results were
also included in the recent monograph [9] along with other related references. In this paper,
we study global behavior of (1.1) when {An}∞n=0 is a sequence of positive real numbers with
0 ≤ infAn ≤ supAn < 1.
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2. Main Results

The main results of this paper are established through the following lemmas.

Lemma 2.1. Let {xn}∞n=−1 be a positive solution of (1.1), then

(1) xn+1xn ≥ 1 for all n ≥ 0;

(2) if xk+1xk > 1 for some k ≥ 1, then xk+2xk+1 = 1.

Proof. (1) is obvious since xn+1 ≥ 1/xn for all n ≥ 0.

(2) If xk+1xk > 1 for some k ≥ 1, then xk+1xk−1 = Ak. Suppose for the sake of
contradiction that xk+2xk+1 > 1, then similarly we get xk+2xk = Ak+1 and

Ak+1Ak = xk+1xk−1xk+2xk ≥ 1. (2.1)

This is a contradiction since Ak+1 < 1 and Ak < 1. The proof is complete.

Lemma 2.2. Let {xn}∞n=−1 be a positive solution of (1.1) and Pn = max{xn, xn−1} for all n ≥ 1. Then

(1) xn+1 ≤ Pn and Pn is nonincreasing;

(2) xn is bounded, and moreover 1/P1 ≤ xn ≤ P1 for any n ≥ 1.

Proof. By Lemma 2.1(1) and the assumption An < 1, we obtain that for any n ≥ 1,

xn+1 = max
{

xn−1
xnxn−1

,
Anxn

xnxn−1

}
≤ max{xn−1, xn} = Pn. (2.2)

Hence

Pn+1 = max{xn+1, xn} ≤ Pn, (2.3)

which implies that for all n ≥ 1,

xn ≤ P1. (2.4)

Furthermore, it follows that for all n ≥ 1,

xn+1 = max
{

1
xn

,
An

xn−1

}
≥ 1

xn
≥ 1

P1
. (2.5)

The proof is complete.

Remark 2.3. Note that from the proof of Lemma 2.2 we have that P1 ≥ 1.

Remark 2.4. Various sequences which satisfy inequality in Lemma 2.2(1), that is, xn+1 ≤ Pn

have been studied, for example, in [18–24].
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Lemma 2.5. Let {xn}∞n=−1 be a positive solution of (1.1) and limn→∞Pn = S. Then S =
lim supn→∞xn.

Proof. Since Pn is a subsequence of xn, it follows that

S ≤ lim sup
n→∞

xn. (2.6)

On the other hand, by xn+1 ≤ Pn for all n ≥ 1, we obtain

lim sup
n→∞

xn ≤ lim sup
n→∞

Pn = S. (2.7)

The proof is complete.

Remark 2.6. Let {xn}∞n=−1 be a positive solution of (1.1). By Lemma 2.2, we see that if S =
lim supn→∞xn and xN < S for someN > 0, then xN−1, xN+1 ∈ [S,+∞). For example, if it were
xN−1 < S, then it would be PN < S, which would imply lim supn→∞xn < S.

Lemma 2.7. Suppose that {xn}∞n=−1 is a positive solution of (1.1) and S = lim supn→∞xn. Write

ω(xn) =
{
x : there exist − 1 ≤ k1 < k2 < · · · < kn < · · · such that lim

n→∞
xkn = x

}
. (2.8)

Then ω(xn) = {S, 1/S}.

Proof. If ω(xn) contains only one point, we may assume by taking a subsequence that Ank →
μ(< 1). By taking the limit in the following relationship:

xnk+1 = max
{

1
xnk

,
Ank

xnk−1

}
, (2.9)

as k → ∞, we obtain

S = max
{
1
S
,
μ

S

}
=

1
S
, (2.10)

which implies that S = 1.
If ω(xn) contains at least two points, let L ∈ ω(xn) − {S}, then there exists a subsequence xnk

of xn such that

xnk −→ L < S. (2.11)

By Remark 2.6, we see that there exists N > 0 such that for every nk > N,

xnk < S, xnk+1, xnk−1 ∈ [S,+∞), (2.12)
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from which it follows that

xnk+1 −→ S, xnk−1 −→ S. (2.13)

By taking a subsequence we may assume that Ank → μ(< 1). By taking the limit in the
following relationship:

xnk+1 = max
{

1
xnk

,
Ank

xnk−1

}
, (2.14)

as k → ∞, we obtain

S = max
{
1
L
,
μ

S

}
=

1
L
, (2.15)

which implies

L =
1
S
. (2.16)

The proof is complete.

Theorem 2.8. Let {xn}∞n=−1 be a positive solution of (1.1) and S = lim supn→∞xn. Then one of the
following two statements is true.

(1) If there exist infinitely many n such that xn ≥ S and xn+1 ≥ S, then {xn}∞n=−1 is eventually
equal to 1.

(2) If there exists N such that xN+2k < S and xN+2k−1 ≥ S for all k ≥ 0, then xN+2k → 1/S
and xN+2k−1 → S.

Proof. (1) We assume that there exists an infinite sequence n1 < n2 < n3 < · · · < nk < · · · such
that

xnk ≥ S, xnk+1 ≥ S. (2.17)

By taking a subsequence we may assume from Lemma 2.7 that

Ank −→ μ < 1, xnk−1 −→ l ∈
{
S,

1
S

}
. (2.18)

By taking the limit in the following relationship:

xnk+1xnk = max
{
1,

Ankxnk

xnk−1

}
, (2.19)
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as k → ∞, we get

S2 = max
{
1,

Sμ

l

}
. (2.20)

Since Sμ/l ∈ {μ, μS2} and μ < 1, it follows that S2 = 1 and ω(xn) = {1}.
In the following, we show that {xn}∞n=−1 is eventually equal to 1. It only needs to prove that
there exists N ≥ 0 such that for all n ≥ N,

1
xn

>
An

xn−1
. (2.21)

Indeed, if there exist infinitely many nk such that

xnk+1 =
Ank

xnk−1
, (2.22)

by taking a subsequence we may assume that Ank → μ < 1, then it follows that

1 =
μ

1
, μ = 1, (2.23)

which is a contradiction. Therefore there exists N such that for all n ≥ N,

xn+1 =
1
xn

. (2.24)

Thus

xn = xN, for n = N + 2k,

xn = xN+1, for n = N + 2k + 1.
(2.25)

Since xn → 1, we have xN+1 = xN = 1.
(2) If S = 1, then the result follows from Lemma 2.7. In the following, we assume S/= 1.
Suppose for the sake of contradiction that there exists a subsequence xN+2ki of xN+2k such
that

xN+2ki −→ S. (2.26)

By taking a subsequence we may assume that

AN+2ki −→ μ. (2.27)
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By taking the limit in the following relationship:

xN+2ki+1 = max
{

1
xN+2ki

,
AN+2ki

xN+2ki−1

}
, (2.28)

as ki → ∞,we get

S = max
{
1
S
,
μ

S

}
, (2.29)

which implies

S = 1. (2.30)

This is a contradiction. The proof is complete.

Corollary 2.9. Let {An}∞n=0 be a periodic sequence of positive real numbers, then every positive
solution of (1.1) is eventually periodic with period 2.

Proof. Let {xn}∞n=−1 be a positive solution of (1.1) and S = lim supn→∞xn. By Remark 2.6 and
Theorem 2.8, we may assume without loss of generality that x2k < S, x2k−1 ≥ S ≥ 1 for all k ≥
0. Suppose for the sake of contradiction that there exists a sequence m1 < m2 < · · · < mk < · · ·
such that

(1) xmk+1xmk−1 = Amk , and xmk+1xmk > 1;

(2) xn+1xn = 1, for n/=mk.

Then mk is odd for every k ≥ 1. Let mk = 2nk + 1, then it follows from Lemma 2.1 that

x2nk+2x2nk = A2nk+1 < 1 = x2nk+1x2nk < x2nk+1x2nk+2. (2.31)

From this and by (2) it follows that

A2nk+1

x2nk+2
= x2nk < x2nk+2 = x2nk+4 = · · · = x2nk+1 < x2nk+1+2 =

A2nk+1+1

x2nk+1

. (2.32)

Therefore for every k ≥ 1,

A2nk+1 < x2
2nk+2 = x2

2nk+1
< A2nk+1+1, (2.33)

which is a contradiction since {An}∞n=0 is a periodic sequence. The proof is complete.

Remark 2.10. Corollary 2.9 is the main result of [5].
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3. Example

In this section, we give an example for {An}∞n=0 to be no periodic sequence.

Example 3.1. Consider

xn+1 = max
{

1
xn

,
An

xn−1

}
, n = 0, 1, . . . , (3.1)

where A2n = A2n+1 = (2 − 1/2n)(2 − 1/2n+1)/16 for any n ≥ 0. Then solution {xn}∞n=−1 of (3.1)
with the initial values x−1 = 1/4 and x0 = 4 satisfies the following.

(1) x2p−1x2p = 1, for any p ≥ 0.

(2) x2p−1 < x2p+1 =
A2p

x2p−1
<

1
2
< 2 < x2p+2 < x2p, for any p ≥ 0.

Proof. By simple computation, we have

A2p =
(2 − 1/2p)

(
2 − 1/2p+1

)
16

>

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2
−1, if p = 0,

(
A0

x−1

)2

, if p = 1,

(
A2p−2A2p−6 · · ·A2

A2p−4A2p−8 · · ·A0
x−1

)2

, if p ≥ 2 is even,

(
A2p−2A2p−6 · · ·A4A0

A2p−4A2p−8 · · ·A2x−1

)2

, if p ≥ 2 is odd.

(3.2)

It follows from (3.1) and (3.2) that

x1x−1 = max
{
x−1
x0

, A0

}
= max

{
x2
−1, A0

}
= A0,

x2x1 = max
{
1,

x1A1

x0

}
= max

{
1,

A0A1

x−1x0

}
= 1,

x3x1 = max
{
x1

x2
, A2

}
= max

{
x2
1

x2x1
, A2

}
= max

{(
A0

x−1

)2

, A2

}
= A2,

x4x3 = max
{
1,

x3A3

x2

}
= max

{
1,

A2A3

x2x1

}
= 1,

x5x3 = max
{
x3

x4
, A4

}
= max

{
x2
3

x4x3
, A4

}
= max

{(
x3x1

x1x−1
x−1

)2

, A4

}

= max

{(
A2

A0
x−1

)2

, A4

}
= A4,
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x6x5 = max
{
1,

x5A5

x4

}
= max

{
1,

A4A5

x4x3

}
= 1,

x7x5 = max
{
x5

x6
, A6

}
= max

{
x2
5

x6x5
, A6

}
= max

{(
x5x3x1x−1
x3x1x−1

)2

, A6

}

= max

{(
A4A0

A2x−1

)2

, A6

}
= A6,

x8x7 = max
{
1,

x7A7

x6

}
= max

{
1,

A6A7

x6x5

}
= 1.

(3.3)

By induction, we have from (3.1) and (3.2) that for any p ≥ 1,

x4p+1x4p−1 = max

{
x4p−1
x4p

,A4p

}
= max

⎧⎨
⎩

x2
4p−1

x4px4p−1
, A4p

⎫⎬
⎭ = max

{
x2
4p−1, A4p

}

= max

⎧⎨
⎩
(

x4p−1x4p−3x4p−5 · · ·x1

x4p−3x4p−5x4p−7 · · ·x−1
x−1

)2

, A4p

⎫⎬
⎭

= max

⎧⎨
⎩
(

A4p−2A4p−6 · · ·A2

A4p−4A4p−8 · · ·A0
x−1

)2

, A4p

⎫⎬
⎭ = A4p,

x4p+2x4p+1 = max

{
1,

x4p+1A4p+1

x4p

}
= max

{
1,

A4pA4p+1

x4px4p−1

}
= 1,

x4p+3x4p+1 = max

{
x4p+1

x4p+2
, A4p+2

}
= max

⎧⎨
⎩

x2
4p+1

x4p+2x4p+1
, A4p+2

⎫⎬
⎭ = max

{
x2
4p+1, A4p+2

}

= max

⎧⎨
⎩
(

x4p+1x4p−1x4p−3x4p−5 · · ·x1x−1
x4p−1x4p−3x4p−5x4p−7 · · ·x1x−1

)2

, A4p+2

⎫⎬
⎭

= max

⎧⎨
⎩
(

A4pA4p−4 · · ·A4A0

A4p−2A4p−6 · · ·A2x−1

)2

, A4p+2

⎫⎬
⎭ = A4p+2,

x4p+4x4p+3 = max

{
1,

x4p+3A4p+3

x4p+2

}
= max

{
1,

A4p+2A4p+3

x4p+2x4p+1

}
= 1.

(3.4)

from which the result follows. The proof is complete.
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