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We give some sufficient and necessary conditions for an analytic function f on the unit
ball B with Hadamard gaps, that is, for f (z)=∑∞

k=1Pnk (z) (the homogeneous polynomial
expansion of f ) satisfying nk+1/nk ≥ λ > 1 for all k ∈N, to belong to the space �α

p(B)=
{ f |sup 0<r<1(1− r2)α‖R fr‖p <∞, f ∈H(B)}, p = 1,2,∞ as well as to the corresponding
little space. A remark on analytic functions with Hadamard gaps on mixed norm space
on the unit disk is also given.
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1. Introduction

Let B = {z ∈ Cn : |z| < 1} be the open unit ball of Cn, ∂B = {z ∈ Cn : |z| = 1} its bound-
ary, D the unit disk in C, dv the normalized Lebesgue measure of B (i.e., v(B)= 1), and
dσ the normalized rotation invariant Lebesgue measure of S satisfying σ(∂B) = 1. We
denote the class of all holomorphic functions on the unit ball by H(B).

For f ∈H(B) with the Taylor expansion f (z)=∑|β|≥0 aβz
β, let R f (z)=∑|β|≥0 |β|aβzβ

be the radial derivative of f , where β = (β1,β2, . . . ,βn) is a multi-index and zβ = z
β1

1 ···zβnn .
It is well known that R f (z)=∑n

j=1 zj(∂ f /∂zj)(z)=∑∞
k=0 kPk(z), if f (z)=∑∞

k=0Pk(z).
As usual, we write

∥
∥ fr
∥
∥
p =

(∫

S

∣
∣ f (rζ)

∣
∣pdσ(ζ)

)1/p

(1.1)

if p ∈ (0,∞), and where fr(ζ)= f (rζ). If p =∞, then ‖ f ‖∞ = supz∈B | f (z)|.
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Let α > 0. The α-Bloch space �α =�α(B) is the space of all holomorphic functions f
on B such that

bα( f )= sup
z∈B

(
1−|z|2)α∣∣R f (z)

∣
∣ <∞. (1.2)

It is clear that �α is a normed space under the norm ‖ f ‖�α = | f (0)|+ bα( f ), and �α1 ⊂
�α2 for α1 < α2. Let �α

0 denote the subspace of �α consisting of those f ∈�α for which
(1− |z|2)α|R f (z)| → 0 as |z| → 1. This space is called the little α-Bloch space. For α =
1, the α-Bloch space and the little α-Bloch space become Bloch space � and the little
Bloch space �0. Some characterizations of these spaces can be found, for example, in the
following papers [1–6].

We say that an analytic function f on the unit disk D has Hadamard gaps if f (z) =
∑∞

k=1 akz
nk where nk+1/nk ≥ λ > 1, for all k ∈N.

In [7], Yamashita proved the following result.

Theorem 1.1. Assume that f is an analytic function on D with Hadamard gaps. Then for
α > 0, the following two propositions hold:

(a) f ∈�α(D) if and only if limsupk→∞ |ak|n1−α
k <∞;

(b) f ∈�α
0(D) if and only if limk→∞ |ak|n1−α

k = 0.

An analytic function on B with the homogeneous expansion f (z)=∑∞
k=1Pnk (z) (here,

Pnk is a homogeneous polynomial of degree nk) is said to have Hadamard gaps if nk+1/nk ≥
λ > 1, for all k ∈N. In [8], among others, Choa generalizes the main result in [9], proving
the following result.

Theorem 1.2. Assume that p ∈ (0,∞) and f (z) =∑∞
k=1Pnk (z) is an analytic function on

B with Hadamard gaps. Then the following statements are equivalent:
(a) ‖ f ‖Xp = (

∫
B |R f (z)|p(1−|z|2)p−1dv(z))1/p <∞;

(b)
∑∞

k=1‖Pnk‖pp <∞.

This result motivates us to find some characterizations for certain function spaces of
analytic functions on the unit ball, in terms of the sequence (‖Pnk‖p)k∈N.

Now note that the quantity bα in the definition of the α-Bloch spaces can be written in
the following form:

bα( f )= sup
0<r<1

(
1− r2)α sup

ζ∈S

∣
∣R f (rζ)

∣
∣= sup

0<r<1

(
1− r2)αM∞(R f ,r). (1.3)

On the other hand, the quantity bα can be considered as the limit case of the following
quantities:

‖ f ‖�α
p = sup

0<r<1

(
1− r2)α∥∥R fr

∥
∥
p, (1.4)

as p→∞. Note that for every f ∈H(B) and p ∈ (0,∞),

sup
0<r<1

(
1− r2)α∥∥R fr

∥
∥
p ≤ sup

0<r<1

(
1− r2)α∥∥R fr

∥
∥∞. (1.5)
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Hence, in this paper we also consider analytic functions with Hadamard gaps on the
following spaces:

�α
p =

{
f | sup

0<r<1

(
1− r2)α∥∥R fr

∥
∥
p <∞, f ∈H(B)

}
,

�α
p,0 =

{
f | lim

r→1
(1− r2)α‖R fr‖p = 0, f ∈H(B)

}
.

(1.6)

Motivated by Theorem 1.1 in this paper, we study analytic functions with Hadamard
gaps, which belong to �α

p or �α
p,0 space when p = 1,2,∞. Some characterizations for

these classes of functions on the unit ball are given in terms of the sequence (‖Pnk‖p)k∈N.
The following are the main results.

Theorem 1.3. Assume that α > 0, p = 1,2,∞, and f (z)=∑∞
k=1Pnk (z) is an analytic func-

tion on B with Hadamard gaps. Then the following statements are equivalent:
(a) f ∈�α

p;

(b) limsupk→∞‖Pnk‖pn1−α
k <∞.

Theorem 1.4. Assume that α > 0, p = 1,2,∞, and f (z)=∑∞
k=1Pnk (z) is an analytic func-

tion on B with Hadamard gaps. Then the following statements are equivalent:
(a) f ∈�α

p,0;
(b) limk→∞‖Pnk‖pn1−α

k = 0.

Throughout this paper, constants are denoted by C, they are positive and may differ
from one occurrence to the other. The notation A 	 B means that there is a positive
constant C such that B/C ≤A≤ CB.

2. Proof of main results

Before proving the main results of this paper we quote two auxiliary results which are
incorporated in the lemmas which follow (see [9, 10]).

Lemma 2.1. Assume that p ∈ (0,∞). If (nk) is an increasing sequence of positive integers
satisfying nk+1/nk ≥ λ > 1, for all k, then there is a positive constant A depending only on p
and λ such that

1
A

⎛

⎝
∞∑

k=1

|ak|2
⎞

⎠

1/2

≤
⎛

⎝ 1
2π

∫ 2π

0

∣
∣
∣
∣
∣
∣

∞∑

k=1

ake
inkθ

∣
∣
∣
∣
∣
∣

p

dθ

⎞

⎠

1/p

≤ A

⎛

⎝
∞∑

k=1

|ak|2
⎞

⎠

1/2

(2.1)

for any number ak, k ∈N.

Lemma 2.2. Assume that α > 0, p > 0, n ∈ N0, (an)n∈N0 is the sequence of nonnegative
numbers, In = {k | 2n ≤ k < 2n+1, k ∈N}, tn =

∑
k∈In ak, and g(x)=∑∞

n=1 anx
n. Then there

is a positive constant K depending only on p and α such that

1
K

∞∑

n=0

t
p
n

2nα
≤
∫ 1

0
(1− x)α−1g p(x)dx ≤ K

∞∑

n=0

t
p
n

2nα
. (2.2)



4 Abstract and Applied Analysis

Proof of Theorem 1.3. (a)⇒(b) (Case p = 1). Let f ∈�α
1 . Let fζ(w)= f (ζw), ζ ∈ S, where

ζ is fixed and w ∈D, be a slice function. By some calculation we see that

f ′ζ (w)= ζ1
∂ f

∂z1
(wζ) + ···+ ζn

∂ f

∂zn
(wζ)= 1

w
R f (wζ). (2.3)

From (2.3) and since f ′ζ (w)=∑∞
k=1nkPnk (ζ)wnk−1, we have that

∫

S
nk
∣
∣Pnk (ζ)

∣
∣dσ(ζ)=

∫

S

∣
∣
∣
∣
∣

1
2πi

∫

∂rD

η f ′ζ (η)

ηnk+1
dη

∣
∣
∣
∣
∣
dσ(ζ)

≤ 1
2π

∫

∂rD

∫

S

∣
∣R f (ζη)

∣
∣

∣
∣ηnk+1

∣
∣ dσ(ζ)|dη|

≤
∥
∥ fr
∥
∥

�α
1

(1− r)αrnk
,

(2.4)

which implies that

nkr
nk
∥
∥Pnk

∥
∥

1 ≤
‖ f ‖�α

1

(1− r)α
, (2.5)

for every k ∈ N and r ∈ (0,1). Choosing r = 1− (1/nk), we obtain n1−α
k ‖Pnk‖1 ≤ C, as

desired.
(b)⇒(a) (Case p = 1). Assume limsupk→∞‖Pnk‖1n

1−α
k <∞. We have that

‖ f ‖�α
1
= sup

0<r<1

(
1− r2)α

∫

S

∣
∣R f (rζ)

∣
∣dσ(ζ)

= sup
0<r<1

(
1− r2)α

∫

S

∣
∣
∣
∣
∣

∞∑

k=1

nkPnk (ζ)rnk
∣
∣
∣
∣
∣
dσ(ζ)

≤ sup
0<r<1

(
1− r2)α

∞∑

k=1

nk
∥
∥Pnk

∥
∥

1r
nk

≤ sup
0<r<1

(
1− r2)α+1

∞∑

n=1

(
∑

nk≤n
nk
∥
∥Pnk

∥
∥

1

)

rn

≤ C sup
0<r<1

(
1− r2)α+1

∞∑

n=1

(
∑

nk≤n
nαk

)

rn

≤ C sup
0<r<1

(
1− r2)α+1

∞∑

n=1

nαrn ≤ C,

(2.6)

where we have used the fact that there is a positive constant C independent of n such
that

∑
nk≤n n

α
k ≤ Cnα (here is used the assumption that nk+1/nk ≥ λ > 1) and the following

well-known estimate:

∞∑

n=1

nαrn ≤ C(1− r)−(α+1), (2.7)

α > 0, r ∈ [0,1); see, for example, [11].
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Case p = 2. Since

‖ f ‖�α
2
= sup

0<r<1

(
1− r2)α

( ∞∑

k=1

n2
k

∥
∥Pnk

∥
∥2

2r
2nk

)1/2

(2.8)

we have that

sup
0<r<1

(
1− r2)αnk

∥
∥Pnk

∥
∥

2r
nk ≤ ‖ f ‖�α

2
≤ sup

0<r<1

(
1− r2)α

∞∑

k=1

nk
∥
∥Pnk

∥
∥

2r
nk , (2.9)

from which the result follows similar to the case p = 1.
Now we show that (a)⇔(b) for case p = ∞. As above, the function fζ(w) =

∑∞
k=1Pnk (ζ)wnk , where w = reiθ , is a lacunary series in D and

(
1− r2)αR f (rζ)= reiθ

(
1− r2)α f ′ζe−iθ (reiθ), (2.10)

from which by Theorem 1.1 the equivalence follows. �

Proof of Theorem 1.4. (a)⇒(b) (Case p = 1). Let f ∈�α
1,0, then for every ε > 0 there is a

δ > 0 such that

(
1− r2)α

∫

S

∣
∣R f (rζ)

∣
∣dσ(ζ) < ε, (2.11)

whenever δ < r < 1. From (2.4), (2.11), and rotational invariance of dσ , we have that

∫

S
nk
∣
∣Pnk (ζ)

∣
∣dσ(ζ)≤ 1

2π

∫

∂rD

∫

S

∣
∣R f (ζη)

∣
∣

∣
∣ηnk+1

∣
∣ dσ(ζ)|dη|

≤ 1
2π

∫

∂rD

∫

S

(
1− r2

)α∣∣R f (ζη)
∣
∣

(
1− r2

)α
rnk+1

dσ(ζ)|dη|

≤ ε

(1− r)αrnk
,

(2.12)

which implies that

nkr
nk
∥
∥Pnk

∥
∥

1 ≤
ε

(1− r)α
(2.13)

for every k ∈N and r ∈ (δ,1). Choosing r = 1− (1/nk), we obtain

nk
∥
∥Pnk

∥
∥

1 ≤ Cεnαk , (2.14)

from which (b) follows in this case.
(b)⇒(a) (Case p = 1). Assume that limk→∞‖Pnk‖1n

1−α
k = 0, then for every ε > 0 there

is a k0 ∈N such that

∥
∥Pnk

∥
∥

1 ≤ εnα−1
k , for k ≥ k0. (2.15)
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We may assume that k0 = 1. From this and by the proof of Theorem 1.3, (b)⇒(a) (Case
p = 1), we have that

(
1− r2)α∥∥R fr

∥
∥

1 ≤ sup
0<r<1

(
1− r2)α+1

∞∑

n=1

(
∑

nk≤n
nk
∥
∥Pnk

∥
∥

1

)

rn

≤ Cε sup
0<r<1

(
1− r2)α+1

∞∑

n=1

(
∑

nk≤n
nαk

)

rn

≤ Cε sup
0<r<1

(
1− r2)α+1

∞∑

n=1

nαrn ≤ Cε,

(2.16)

from which the implication follows.

Case p = 2. By using (2.9) the result follows similar to the Case p = 1. The proof is omit-
ted.

Finally, in view of (2.10) and employing Theorem 1.1(b) it is easy to see that (a)⇔(b)
for case p =∞. �

3. The case of mixed norm space

In this section, we give a note concerning analytic functions with Hadamard gaps on the
mixed norm space. The mixed norm space Hp,q,α(B), p,q > 0, and α ∈ (−1,∞), consists
of all f ∈H(B) such that

‖ f ‖p,q,α =
(∫ 1

0

∥
∥ f (rζ)

∥
∥q
p(1− r)αdr

)1/q

<∞. (3.1)

From [12, Theorem 4] the following result holds.

Theorem 3.1. Assume that p ∈ (0,∞), α >−1 and f (z)=∑∞
k=1 akz

nk is an analytic func-

tion on D with Hadamard gaps. Then f (m) ∈Hp,q,α(D) if and only if
∑∞

k=0n
qm−α−1
k |ak|q <

∞.

Proof. First we consider the case m = 0. Similar to the proof of [12, Theorem 4] and by
Lemmas 2.1 and 2.2, we have that

‖ f ‖qHp,q,α
=
∫ 1

0

⎛

⎝ 1
2π

∫ 2π

0

∣
∣
∣
∣
∣
∣

∞∑

k=1

akr
nk einkθ

∣
∣
∣
∣
∣
∣

p

dθ

⎞

⎠

q/p

(1− r)αdr

	
∫ 1

0

⎛

⎝
∞∑

k=1

∣
∣ak

∣
∣2
r2nk

⎞

⎠

q/2

(1− r)αdr

	
∫ 1

0

⎛

⎝
∞∑

k=1

∣
∣ak

∣
∣2
ρnk

⎞

⎠

q/2

(1− ρ)αdρ

	
∞∑

k=0

1
2(α+1)k

⎛

⎝
∑

m∈Ik

∣
∣am

∣
∣2

⎞

⎠

q/2

	
∞∑

k=0

∣
∣ak

∣
∣q

nα+1
k

,

(3.2)

from which the result follows in this case.
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Since f has Hadamard gaps and f (m)(z)=∑∞
k=1 aknk(nk − 1)···(nk −m+ 1)znk−m, it

follows that f (m) has Hadamard gaps too. Applying the just proved result to the function
f (m), we obtain that f (m) ∈Hp,q,α(D) if and only if

∞∑

k=0

∣
∣nk

(
nk − 1

)···(nk −m+ 1
)
ak
∣
∣q

nα+1
k

	
∞∑

k=0

∣
∣ak

∣
∣q

n
α+1−mq
k

<∞, (3.3)

finishing the proof. �

Remark 3.2. Motivated by [12, Theorems 3 and 4], we can conjecture that if p ∈ (0,∞),
α > −1, and f (z) =∑∞

k=1Pnk (z) is an analytic function on B with Hadamard gaps, then

R(m) f ∈Hp,q,α(B) if and only if
∑∞

k=0n
qm−α−1
k ‖Pnk‖qp <∞. Note that the result is true for

the case of the weighted Bergman space, that is, when p = q, see [12, Corollary 1]. It is
also expected that Theorems 1.3 and 1.4 hold for every p ∈ [1;∞] (for the case n= 1, see
[13]).
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