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We give some sufficient and necessary conditions for an analytic function f on the unit
ball B with Hadamard gaps, that s, for f(z) = > ;_ Py (2) (the homogeneous polynomial
expansion of f) satisfying n+1/nx = A > 1 for all k € N, to belong to the space BF(B) =
{flsup e,y (L =12) % f I, < o0, f € H(B)}, p = 1,2, as well as to the corresponding
little space. A remark on analytic functions with Hadamard gaps on mixed norm space
on the unit disk is also given.
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1. Introduction

Let B= {z € C": |z| < 1} be the open unit ball of C", 0B = {z € C": |z| = 1} its bound-
ary, D the unit disk in C, dv the normalized Lebesgue measure of B (i.e., v(B) = 1), and
do the normalized rotation invariant Lebesgue measure of S satisfying o(dB) = 1. We
denote the class of all holomorphic functions on the unit ball by H(B).

For f € H(B) with the Taylor expansion f(z) = 3 5. gz, let Z f (z) = 352 | Blagz?
be the radial derivative of f, where 8 = (81,2,...,8,) is a multi-index and ZP = zlf‘ cee zﬁ".
It is well known that Z f (z) = ;’:1 zj(0f/0zj)(2) = X ;o kP (2), if f(z) = 3o Pr(2).

As usual, we write

2l = ([ 1re01ra0@) w

if p € (0,0), and where f,({) = f(r{).If p = oo, then || fllw = sup,p | f(2)I.
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Let a > 0. The a-Bloch space B* = B*(B) is the space of all holomorphic functions f
on B such that

ba(f) =sup (1 - |zI>)" | Zf(2)] < . (1.2)

z€B

It is clear that 9% is a normed space under the norm || f g« = | f(0)| + by(f), and B* C
B% for oy < ap. Let B denote the subspace of B* consisting of those f € B* for which
(1-1z1*)%Zf(z)| — 0 as |z| — 1. This space is called the little a-Bloch space. For a =
1, the a-Bloch space and the little a-Bloch space become Bloch space % and the little
Bloch space %By. Some characterizations of these spaces can be found, for example, in the
following papers [1-6].

We say that an analytic function f on the unit disk D has Hadamard gaps if f(z) =
> oy akz" where ng1/ng > A > 1, forall k € N.

In [7], Yamashita proved the following result.

THEOREM 1.1. Assume that f is an analytic function on D with Hadamard gaps. Then for
a > 0, the following two propositions hold:
(a) fe %“(I) if and only if limsup,__ ., Iakln Y < oo
b) f € BED) if and only if limy_« |ax|n, * = 0.

An analytic function on B with the homogeneous expansion f(z) = ;" P,, (z) (here,
P,, isahomogeneous polynomial of degree n) is said to have Hadamard gaps if nx.1/nx =
A > 1, forall k € N. In [8], among others, Choa generalizes the main result in [9], proving
the following result.

THEOREM 1.2. Assume that p € (0,00) and f(z) = >.;_, Py (2) is an analytic function on
B with Hadamard gaps. Then the following statements are equivalent:
a) I flx, = (51 Zf(2)|P(1 — |2[*)P~ dv(2))"P < oo;
(b) Sy 1P, IIf < co.
This result motivates us to find some characterizations for certain function spaces of
analytic functions on the unit ball, in terms of the sequence (|| Py, [l ) ken-

Now note that the quantity b, in the definition of the a-Bloch spaces can be written in
the following form:

ba(f) = sup (1-7r?) sup|<%’f rO)| = sup (1—7r?)"Muo(Zf,r). (1.3)

0<r<1 O<r<1

On the other hand, the quantity b, can be considered as the limit case of the following
quantities:

I fllas = sup (1-r%) ||%ﬁ||p, (1.4)

0<r<1

as p — co. Note that for every f € H(B) and p € (0, ),

sup (1—7r?) ||<%)fr||p5 sup (1—r2)"|Z2f | (1.5)

O<r<1 O<r<1
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Hence, in this paper we also consider analytic functions with Hadamard gaps on the
following spaces:

{fl sup (1-1r2) ||%fr|| < 00, feH(B)}
0<r<l1 (1.6)
%={fﬁ§0—rYﬂ%ﬁM=0nfeHwﬂ.

Motivated by Theorem 1.1 in this paper, we study analytic functions with Hadamard
gaps, which belong to %§ or A7, space when p = 1,2,00. Some characterizations for
these classes of functions on the unit ball are given in terms of the sequence (|| Py, [l p)xen-
The following are the main results.

THEOREM 1.3. Assume that a >0, p = 1,2,00, and f(z) = Z;f:l Py, (z) is an analytic func-
tion on B with Hadamard gaps. Then the following statements are equivalent:

(a) f € B

(b) limsupy_, [Py, [l g% < o0.

THEOREM 1.4. Assume that a >0, p = 1,2,00, and f(z) = > et Pu(2) is an analytic func-
tion on B with Hadamard gaps. Then the following statements are equivalent:
a) f € By
(b) limg—oo | Py, Il 12~ = 0.

Throughout this paper, constants are denoted by C, they are positive and may differ
from one occurrence to the other. The notation A =< B means that there is a positive
constant C such that B/C < A < CB.

2. Proof of main results

Before proving the main results of this paper we quote two auxiliary results which are
incorporated in the lemmas which follow (see [9, 10]).

LEmMA 2.1. Assume that p € (0,00). If (ny) is an increasing sequence of positive integers
satisfying ngw1/nx = A > 1, for all k, then there is a positive constant A depending only on p

and A such that
p Vp . 1/2
d@) gA(Zlaklz) (2.1)

0 1/2 2t
| ]
L me) s(j
A (k—l 2m Jo k=1

for any number ay, k € N.

00
Z akeinkg
k=1

LemMMA 2.2. Assume that o« >0, p >0, n € No, (an)nen, is the sequence of nonnegative
numbers, I, = {k | 2" <k <2""', k e N}, t, = Dep, ak, and g(x) = > anx". Then there
is a positive constant K depending only on p and o such that

1< th (! S th
Ezﬁﬁﬁ) 0 lgP(x)dx <K S (22)
n=0 =
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Proof of Theorem 1.3. (a)=(b) (Case p = 1). Let f € BY. Let fr(w) = f({w), { € S, where
( is fixed and w € D, be a slice function. By some calculation we see that

of f

f('(W)=Cla71(WC)+- s (WC) *%f(WC)- (2.3)

From (2.3) and since f(’(w) = > 1oy 1k Py, (Ow™ 1, we have that

/()
[l Pu© o) = | ‘Zm . ”,{,Ekﬁ ﬂ‘do(()
Z
SN DA
T (1= r)erm’
which implies that
|l < (25)

for every k € N and r € (0,1). Choosing r = 1 — (1/nx), we obtain n}{_"‘l\Pnklll <C, as
desired.
(b)=>(a) (Case p = 1). Assume limsup;.__, || Py, Hln}(_“ < o0, We have that

1 f o = sup (1 —rz)“j |2 (r0)| do(D)

O<r<1

= sup (1—r%)" Or™ | do(0)

O<r<1

Nk

(oY)

O<r<1 k=1
. (2.6)
<sup (- S (5wl )
O<r<1 n=1 \ng<n
<Csup (1- 7’2)0‘+1 Z ( Z nZ) r"
O<r<1 n=1 \ng<n

where we have used the fact that there is a positive constant C independent of #n such
that >, ., 1y < Cn® (here is used the assumption that #xy1/nx = A > 1) and the following
well-known estimate:

Zn <C(1—r)" e+, (2.7)

a>0,r e [0,1); see, for example, [11].
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Case p = 2. Since

o 1/2
| fllgpe = sup (1 - rz)"‘(Z 2|57 M) (2.8)

O<r<1 k=1

we have that

[

sup (1 _rz)ankHPnkHzrnk < | fllmg < sup (1 —rz)“Z”kHPnkHzr"k: (2.9)

0<r<1 0<r<1 k=1

from which the result follows similar to the case p = 1.
Now we show that (a)e(b) for case p = co. As above, the function fr(w) =
Sro Pu (Ow", where w = e, is a lacunary series in D and

(1=r)"Zf (r() = re® (1 = r2)* ff, o (re”), (2.10)

from which by Theorem 1.1 the equivalence follows. O

Proof of Theorem 1.4. (a)=(b) (Case p = 1). Let f € BT, then for every € >0 there is a
d > 0 such that

(1—r2)“L|9zf(rc)|da(c)<e, (2.11)

whenever § < r < 1. From (2.4), (2.11), and rotational invariance of do, we have that

Jnk|Pnk O lda(Q) ! J Mda(()ldnl
s oD Js

27-[ |,,lnk+1 |

- 74
L,DJ U= NRICD yooyag (212)

1 _ r2 nk+1

T (1= r)arm r)"‘r"A
which implies that

£

103
nr™ || Py |, < D (2.13)
for every k € Nand r € (8,1). Choosing r = 1 — (1/nx), we obtain
ni||Py, ||, < Ceng, (2.14)

from which (b) follows in this case.
(b)=(a) (Case p = 1). Assume that limy_ || Py, |l 1n ~% =0, then for every ¢ > 0 there
is a kg € N such that

P, |, <en® !, fork = k. (2.15)
k1 k
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We may assume that ko = 1. From this and by the proof of Theorem 1.3, (b)=(a) (Case
p = 1), we have that

(=) < sup (1-7) i<z”"“p”k”l>’"

O<r<1 =1 nK<n
< Cesup (1-r?) “HZ ( Z nk> (2.16)
O<r<1 n=1 \ni<n
< Ce sup ( (1-7r?) Z Y < Ce,
0<r<1 n=

from which the implication follows.

Case p = 2. By using (2.9) the result follows similar to the Case p = 1. The proof is omit-
ted.

Finally, in view of (2.10) and employing Theorem 1.1(b) it is easy to see that (a) < (b)
for case p = co. O

3. The case of mixed norm space

In this section, we give a note concerning analytic functions with Hadamard gaps on the
mixed norm space. The mixed norm space H, 4.«(B), p,q >0, and « € (—1,0), consists
ofall f € H(B) such that

1 1/q
o= ([, IGO0 =rrdr) <o 61

From [12, Theorem 4] the following result holds.

THEOREM 3.1. Assume that p € (0,0), a > —1 and f(z) = >.;_, akz™ is an analytic func-
tion on D with Hadamard gaps. Then f"™ € H,q4(D) if and only if >0 onf" Yagl <

0,

Proof. First we consider the case m = 0. Similar to the proof of [12, Theorem 4] and by
Lemmas 2.1 and 2.2, we have that

q 1 1 2n
=], (3,

q/2
| ak |2r2”k) (1-r)%dr

0

z akrnkeinkﬁ

P q/p
d@) (1—=r)*dr
k=1

(3.2)

w0 LE
1
= Z 2(at+1)k ( z |am |2) Z a+1 >

mely k=0

from which the result follows in this case.
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Since f has Hadamard gaps and f"(z) = 37 axne(ng — 1) - - - (mg — m+ 1)z ™ it
follows that £ has Hadamard gaps too. Applying the just proved result to the function
£, we obtain that ™) € H, 4(D) if and only if

o |m(m—=1) - (m—m+Da|* & |
z noc+1 = at+l-mgq < o, (33)
k=0 k k=0 Mg

finishing the proof. O

Remark 3.2. Motivated by [12, Theorems 3 and 4], we can conjecture that if p € (0, ),
a>—1,and f(z) = X, Ps(2) is an analytic function on B with Hadamard gaps, then
Z™ f € Hyqq(B) ifand only if 377 nzmﬂ*l [P I3 < o0. Note that the result is true for
the case of the weighted Bergman space, that is, when p = g, see [12, Corollary 1]. It is
also expected that Theorems 1.3 and 1.4 hold for every p € [1;00] (for the case n = 1, see

[13]).
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