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1. Introduction

In his famous, influential 1930 paper [1], Karamata initiated the subject nowadays known
as regular variation (see [2] and also [3–7]). His motivation was Tauberian theory, and the
first triumph of regular variation was a spectacular simplification of the work of Hardy
and Littlewood on Tauberian theorems for Laplace transforms; this resulted in what is
now called the Hardy-Littlewood-Karamata theorem (see [8], [2, Chapter 1], [9, Chap-
ter 4]). In what follows, we consider both regular variation and rapid variation (see [2,
Section 2.4] and references cited there).

However, the theory also was developed to some other directions. Recently, the au-
thors found in [10] (see also [11, 12]) that there is a nice connection between asymptotic
analysis of divergent processes (Karamata theory, the theory of rapid variability) and the
theory of selection principles, a quickly growing field of mathematics, as well as game
theory and Ramsey theory. (We refer the reader to the book [13] for more information
about infinite games.) In this paper, we will further demonstrate that certain subclasses
of the set S of sequences of positive real numbers, which are defined in terms of relation-
ships between sequences from S, satisfy some selection principles and game-theoretic
conditions. We believe that new techniques that we use in the proofs could be applied to
other constructions in the area of selection principles.

Let � and � be sets whose members are families of subsets of an infinite set X . Then
(see [14, 15]): S1(�,�) denotes the selection principle: For each sequence (An : n ∈N)
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of elements of � there is a sequence (bn : n∈N) such that for each n, bn ∈ An, and {bn :
n∈N} is an element of �.

Recently, in [16], new selection principles αi(�,�) were introduced and studied (see
also [17]).

The basic object in this paper will be

S= {c = (cn
)
n∈N ∈RN : cn > 0 for each n∈N}, (1.1)

the set of sequences of positive real numbers, so that � and � will be certain subfamilies
of S.

For a sequence (cn)n∈N ∈ S denote by Im(cn) the set of elements appearing in the
sequence.

Definition 1.1. Let � and � be subfamilies of S. The symbol αi(�,�), i = 1,2,3,4, de-
notes the following selection hypothesis.

For each sequence (An : n∈N) of elements of � there is an element B ∈� such that:
(1) α1(�,�): for each n∈N the set Im(An)\Im(B) is finite;
(2) α2(�,�): for each n∈N the set Im(An)∩ Im(B) is infinite;
(3) α3(�,�): for infinitely many n∈N the set Im(An)∩ Im(B) is infinite;
(4) α4(�,�): for infinitely many n∈N the set Im(An)∩ Im(B) is nonempty.
Evidently for arbitrary subclasses � and � of S, we have

α1(�,�)=⇒ α2(�,�)=⇒ α3(�,�)=⇒ α4(�,�),
S1(�,�)=⇒ α4(�,�).

(1.2)

2. Results

Definition 2.1. Let a = (an)n∈N ∈ S, and μ > 0 be fixed. A sequence b = (bn)n∈N ∈ S μ-
dominates a if there is n0 = n0(μ) such that an < μ·bn for all n > n0.

Denote by {a}μ the set of all sequences in S which μ-dominate a.
Evidently, for 0 < μ < ν, we have {a}μ � {a}υ.
Further, let

{a} =
⋃

μ>0

{a}μ. (2.1)

For b = (bn)n∈N ∈ {a}, we write

an =O
(
bn
)
, n−→∞, (2.2)

and say that a is subordinated to b.

Theorem 2.2. Let a= (aj) j∈N ∈ S and μ > 0 be fixed. Then α2({a}μ,{a}μ) holds.

Proof. Let (xi : i ∈N) be a sequence of elements from {a}μ and suppose that for each i,
we have xi = (bi, j) j∈N. Construct a new sequence (yi : i∈N) in the following way. There

exists j1 such that b1, j ≥ (1/μ)aj for all j ≥ j1. Consider the sequence y1 = (b1, j) j≥1. Sup-

pose i≥ 2 and that the sequences yk and numbers jk have been defined for every k ≤ i− 1.
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Put

j∗i =min
{
j ∈N : bi j ≥ i

μ
aj

}
,

j1 =
⎧
⎨

⎩

ji−1, if j∗i < ji−1;

min
k∈N

{
ji−1 + k·2i−1 : ji−1 + k·2i−1 > j∗i

}
, if j∗i > ji−1.

(2.3)

Form the sequence yi in such a way that in the sequence yi−1, we replace each 2ith element
beginning with jith by the corresponding elements (of the same indices) of the sequence
xi. Suppose that yi = (hi, j) j∈N.

Let kj = lim sup i→+∞(hi, j). Then kj ≥ (1/μ)aj > 0, for j ≥ j1 and kj = b1, j > 0 for j ∈
{1, . . . , j1 − 1}. If for some j ≥ j1, we have kj = +∞, then we replace kj with b1, j . In this
way, we generate the sequence z = (kj) j∈N which, by construction, belongs to {a}μ and
has infinitely many common elements with each of the sequences xi; for xi, i > 1, each
2i+1th element of xi beginning from bi, ji+1+2i is such an element.

�

Definition 2.3. Let a= (an)n∈N ∈ S and μ > 0 and ν > 0 with μ·ν≥ 1 be fixed. A sequence
b = (bn)n∈N ∈ S is said to be (μ,υ)-weakly asymptotically equivalent with a if both b ∈
{a}μ and a∈ {b}ν hold, or equivalently, 1/ν·bn < an < μ·bn for all but finitely many n.

Remark 2.4. The relation of (μ,ν)-weak asymptotic equivalence is not an equivalence
relation on S, except the case μ= ν= 1.

Denote by

{a}μ,ν := {b ∈ S : b is (μ,ν)-weakly asymptotically equivalent to a
}
. (2.4)

We say that a sequence b = (bn)∈ S is weakly asymptotically equivalent to a, if b ∈ {a}
and a∈ {b}(i.e., if an =O(bn), n→+∞, and bn =O(an), n→+∞).

The relation of weak asymptotic equivalence is an equivalence relation on the set S.
The usual notation for this relation is a∈Θ(b) (or b ∈Θ(a)).

Theorem 2.5. Let a = (aj) j∈N ∈ S and μ > 0, ν > 0 such that μ·ν ≥ 1 be fixed. Then

α2({a}μ,ν,{a}μ,ν) holds.

Proof. Let (xi = (bi, j) j∈N : i∈N) be a sequence of elements from {a}μ,ν. Consider now a

sequence y1 = (b1, j) j≥1 (where (1/ν)b1, j ≤ aj ≤ μ·b1, j for j ≥ j1 for some j1 ∈N). Induc-
tively, for each i≥ 2 form a sequence yi as follows. Suppose the sequences y1, y2, . . . , yi−1

and natural numbers j1, j2, . . . , ji−1 have been already defined. Let

j∗i =min
{
j ∈N :

1
ν
bi, j ≤ aj ≤ μ·bi, j

}
. (2.5)
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Define

ji =
⎧
⎨

⎩

ji−1 if j∗i ≤ ji−1;

min
k∈N

{
ji−1 + k·2i−1 : ji−1 + k·2i−1 ≥ j∗i

}
if j∗i > ji−1.

(2.6)

The sequence yi will be defined in such a way that in the sequence yi−1, we replace each
2ith element, beginning from jith with the corresponding element (of the same index)
from the sequence xi. Let yi = (hi, j) j∈N, i∈N.

Let kj = limsup i→+∞ (hi, j). Then we have (1/μ)aj ≤ lim inf i→+∞(hi, j) ≤ kj ≤ ν·aj for
j ≥ j1. Also, we have kj = b1, j > 0 for j ∈ {1, . . . , j1− 1}. So, by construction, the sequence
y = (kj) j∈N belongs to the class {a}μ,ν and has infinitely many common elements with

each of sequences xi, i ≥ 1; surely, for xi, i > 1, each 2i+1th element of xi beginning from
bi, ji+1+2i is such a common element. �

Remark 2.6. Notice that in the proofs of Theorems 2.2 and 2.5 one could replace 2i with
mψ(i), i∈N, where m∈N and m≥ 2, and ψ :N→N is a strictly increasing function. (So,
we used m= 2 and ψ = idN.)

Definition 2.7. A sequence a = (an)n∈N ∈ S is said to be negligible with respect to a se-
quence b = (bn)n∈N from S if for every ε > 0 there is n0 = n0(ε) such that an ≤ ε·bn when-
ever n≥ n0.

Denote by �(a) the set of all sequences b in S such that a is negligible with respect to
b. For b = (bn)n∈N ∈�(a), we use the notation

an = o
(
bn
)
, n−→ +∞. (2.7)

Observe that �(a)=∩μ>0{a}μ.
Let � and � be subclasses of S. The symbol G(�,�) denotes the infinitely long game

for two players, ONE and TWO, who play a round for each positive integer. In the nth
round ONE chooses a sequence sn ∈�, and TWO responds by choosing an infinite set
Tn from Im(sn). TWO wins a play (s1,T1; . . . ;sn,Tn; . . .) if ∪n∈N Tn can be arranged in a
sequence from � ; otherwise, ONE wins.

Evidently, if TWO has a winning strategy in the game G(�,�) (or even if ONE does
not have a winning strategy in G(�,�)), then the selection hypothesis α2(�,�) is true.

Theorem 2.8. Let a = (aj) j∈N ∈ S. The player TWO has a winning strategy in the game

G(�(a),�(a)).

Proof. We describe a winning strategy for the player TWO.

Round I. Suppose ONE chooses a sequence x1 = (x1, j) j∈N from �(a). Then TWO picks
a prime number p1 and a position jp1 = j1 in the sequence x1 such that aj/x1, j ≤ 1/P1 for
j ≥ jp1 , and fix elements x1,pk1

, k ∈N (for the setT1 = {x1,pk1
: k ∈N}), so that pk1 ≥ jp1 = j1

holds.
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Round II. ONE chooses a sequence x2 = (x2, j) j∈N from�(a). TWO picks a prime number
p2 > p1, finds a position jp2 in the sequence x2 such that aj/x2, j ≤ 1/P2 for j ≥ jp2 and puts
j2 =max{ j1, jp2}. In the sequence x1 TWO finds now elements x1,pk2

, k ∈N, with pk2 ≥ j2
and replaces them by elements x2,pk2

, k ∈N (so, T2 = {x2,pk2
: k ∈N}).

Round III. (i≥ 3): ONE takes a sequence xi = (xi, j) j∈N from �(a). TWO first chooses a
prime number pi,p1 < p2 < ··· < pi, and then consider a position jpi such that aj/xi, j ≥
1/pi for j ≥ jpi and takes ji =max{ ji−1, jpi}. Now, in the sequence obtained by this pro-
cedure in the step i− 1, one replaces elements x1,pki

, k ∈N, with pki ≥ ji by elements xi,pki ,
k ∈N (hence, Ti = {xi,pki : k ∈N}).

This procedure leads to the sequence y = (yj) j∈N, where yj = xi, j , if there are k ∈ N
and i∈N such that j = pki and j ≥ ji, and yj = x1, j otherwise. The sequence y belongs to
S and, by construction, has infinitely many common elements with every sequence xi.

We prove that y ∈ �(a), that is, that lim sup j→+∞(aj/y j) = 0. Suppose, on the con-
trary, that lim sup j→+∞(aj/y j) = A > 0. This means that there is a subsequence (aj(s)/
yj(s))s∈N of the sequence (aj/y j) j∈N such that

lim
s→+∞

aj(s)
yj(s)

= A. (2.8)

In other words, there is s0 = s0(A) such that for s≥ s0 (so j ≥ j0 = j(s0)) we have aj(s)/y j(s)
≥A/2 > 0.

Observe that among elements yj(s), s ∈ N, which occur in the subsequence (aj(s)/
yj(s))s∈N, there do not exist countably many elements from xi, for each i ∈ N. Other-
wise, those elements would form a subsequence of (yj(s))s∈N which would contradict to
condition (2.8). So, (yj(s))s∈N may contain only finitely many elements xi, j from xi for
each i∈N.

Choose i∈N, so that A/3≥ 1/Pi and denote by j(s1), s1 ∈N, the greatest index of ele-
ments from (yj(s)) satisfying the condition: elements from sequences (x1, j), . . . , (xi−1, j) oc-
cur in (yj(s)). (There are finitely many such elements and thus j(s1)∈N is well defined.)
Then, by construction, we have aj(s)/y j(s) ≤ 1/pi ≤ A/2, for s ≥ s1, which is a contradic-
tion. So, A= 0, that is, y ∈�(a).

�

Corollary 2.9. Let a= (aj) j∈N ∈ S. Then the selection property α2(�(a),�(a)) is satisfied

(and thus α3(�(a),�(a)) and α4(�(a),�(a)) are also satisfied).

Remark 2.10. Note that Theorems 2.2 and 2.5 can be formulated and shown in game-
theoretic terms.

Let

S∞ := {a= (an
)
n∈N ∈ S : lim

n→+∞an = +∞}. (2.9)

Corollary 2.11. S∞ has the selection property α2(S∞,S∞).
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Proof. Let a= (an)n∈N be the constant sequence with an = 1 for each n∈N (or an = c >
0, n ∈ N). Then S∞ = �(a). By Theorem 2.8, α2(�(a),�(a)) is true. Thus we have that
α2(S∞,S∞) is also satisfied. �

Let a= (an)n∈N ∈ S be fixed. A sequence b = (bn)n∈N in S is said to be strongly asymp-
totically equivalent to a if for every μ > 1 the conditions b ∈ {a}μ and a∈ {b}μ are satisfied.

This is equivalent to the fact that for every μ > 1 there exists n0 = n0(μ) ∈ N such
that (1/μ)·bn ≤ an ≤ μ·bn for all n ≥ n0, or to the fact limn→+∞(an/bn) = 1 if each bn is
nonzero.

This relation is an equivalence relation on S and is also known as the weak asymptotic
equality.

For a fixed a ∈ S denote by [a] the set of all sequences from S which are strongly
asymptotically equivalent to a.

Theorem 2.12. Let a∈ S be given. Then α2([a],[a]) is true.

Proof. The proof is quite similar to the proof of Theorem 2.8. �

Corollary 2.13. Let a ∈ S be a constant sequence an = c > 0 for each n ∈ N. Then [a]
satisfies S1([a],[a]).

Corollary 2.14. Let a = (an)n∈N ∈ S be a constant sequence with an = c, c > 0, n ∈ N.
Then [a]= [c]= {b ∈ S : limn→+∞ bn = c} satisfies the selection principles αk([a],[a]), k =
{2,3,4}.

Notice, that under assumptions of Corollary 2.14, the selection principle α1([a],[a])
is also satisfied.

Indeed, let (bn : n ∈ N) be a sequence of elements from [a] and let for each n, bn =
(bn,m)m∈N. Take an arbitrary i ∈N and set Ui = (c− 1/i,c+ 1/i). For each n ∈N there is
mn ∈N such that bn,m ∈Ui for each m≥mn. Put M =∪{N\{1, . . . ,mn} : n∈N} and let
ϕ :N→M be any bijection. Then the sequence (bϕ(n))n∈N is contained in Ui. Since i ∈N
was arbitrary, we conclude that α1([a],[a]) holds.

We end the paper with a result closely related to the considered material.
Let A∈ [0,+∞) and let a= (an)n∈N be the sequence such that an = A for each n∈N.

A sequence b = (bn)n∈N ∈ S belonging to [a] is said to converge rapidly to A if the Landau
sequence of b defined by

wn(b)= sup
{∣∣bm− bk

∣
∣ :m≥ n, k ≥ n}, n∈N (2.10)

belongs to de Haan’s class R−∞,s of rapidly varying sequences of index of variability −∞,
that is, for each λ > 1 the following asymptotic condition is satisfied:

lim
n→+∞

w[λn]

wn
= 0. (2.11)

Or equivalently,

lim
n→+∞

w[λn]

wn
= +∞, 0 < λ < 1. (2.12)
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If a= (an
)
n∈N ∈ S, then

[a]R−∞,s
= {b = (bn

)
n∈N ∈ [a] :

(
wn(b)

)
n∈N∈ R−∞,s

}
. (2.13)

In [11], we showed the following result.

Theorem 2.15. Let A∈ (0,+∞) and let a= (an)n∈N, where an = A for each n∈N, be the
constant sequence. Then the selection principle S1([a]R−∞,s

, [a]R−∞,s
) is satisfied.
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vol. 18 of Quaderni di Matematica, pp. 133–155, Seconda Universita di Napoli, Caserta, Italy,
2006.

[13] A. S. Kechris, Classical Descriptive Set Theory, vol. 156 of Graduate Texts in Mathematics,
Springer, New York, NY, USA, 1995.

[14] M. Scheepers, “Combinatorics of open covers I: ramsey theory,” Topology and Its Applications,
vol. 69, no. 1, pp. 31–62, 1996.



8 Abstract and Applied Analysis
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